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Low-Energy Theorem for Non-Abelian Compton Effect
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Love-energy theorems are derived for the scattering of isovector-vector bosons on nucleons, the external
boson mass having been continued to zero. The basic technique is that invented by Low to deal with the
ordinary or Abelian Compton effect. These theorems are combined with forward-dispersion relations to
yield two magnetic-moment sum rules. One of these sum rules is that derived by Cabibbo and Radicati;
the other —to the best of the author's knowledge —is new. Neither sum rule admits of even approximate
saturation by the (3,3}resonance.

1. INTRODUCTION that this part of the amplitude can exist, and our
manipulations with it are valid, in a variety of theories
invariant under the isotopic-spin group.

The second contribution of this paper is prompted by
a question which the reader may well ask: Does this
extension of Low's theorem to non-Abelian fields serve
any useful purposely We answer this question in the
afhrmative by deriving two sum rules for the magnetic
moments of baryons, exact to all orders in the strong
interactions (though only to the lowest order in the
electromagnetic coupling). This derivation is rendered
possible by identi6cation of the neutral component of
the conserved isotopic-spin current, within a trivial
scale factor, with the isovector part of the electro-
magnetic current. These sum rules are

' 'DELVE years ago Low, ' as well as Gell-Mann and
Goldberger, ' proved the theorem that conserva-

tion of electric charge coupled with the requirement of
Lorentz invariance was sufhcient to determine exactly
the Compton amplitude on a spin-~~ particle, up to and
including terms linear in the frequency of the incident
photon. Very recently this theorem has been used by
DrcQ and Hearn' to write down an amusing sum rule for
the anomalous magnetic moments of spin- —,'particles.

The object of the present paper is twofold. We 6rst
explore the possibility of generalizing Low's theorem
to the case where the electromagnetic 6eld is replaced
by an isovector-vector 6eM whose conserved source
charges' generate the non-Abelian group SU(2), in
contrast to the electromagnetic case v here the electric
charge generates the Abelian group U(1). The quanta
of such a field would, in general, be characterized by a
nonvanlshing mass' howcvcl t1ic low-frcqucncy limit
can still be attained by continuing the external masses to
zero. (With the external masses continued to zero the
process under study may aptly be described as a
"non-Abelian Compton effect.")

Such a Geld may, for example, be the Yang-Mills
6eld. ' The existence of very profound and hitherto
unresolved problems associated with the Yang-Mills
theory prompts us to state, however, that it is not our
intention in this paper to get involved in the details of
any gauge theory ofvector bosons. With this preset
limitation on our work, it is obvious that we cannot
present a straight generalization of Low's work. Wc are
able, however, to isolate a part of the scattering ampli-
tude for which a low-energy theorem can be proved.
This is the part which depends only on the conserved
source currents of the field and is more carefuBy deline-
ated in Sec. 2A below. It will be obvious to the reader
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Here ~„anda„arcthe anomalous magnetic moments of
the proton and neutron, respectively (in units of nucleon
magnetons), G~" is the electric-isovector Sachs form
factor, 0, '= 137, and ra~~ and 0~~2 are the cross sections
for the absorption of an isovector photon on a proton
in isotopic spin states ~3 and ~, respectively. The sufhxes
A and E specify the hclicity of the incident photon with
respect to the spin of the target proton, A for anti-
parallel and I' for parallel.

The 6rst of the above sum rules is readily recognizable
as the sum rule of Cabibbo and Radicati, ' which may
now be said to be liberated from the in6nite-momentum
limiting procedure on which the deduction of Cabibbo

' F. E. Low, Phys. Rev. 96, 1428 (1954).
~M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433

(1954}.These authors use standard Ward-Takahashi diGerentia-
tion techniques, which have a tendency to become extremely
cumbersome. We prefer the technique invented by Low.

3 S.D. DreH and A. C. Hearn, Phys. Rev. Letters 16, 908 (1966).
4 These are spatial integrals of the temporal components of the

solenoidal isospin current of hadrons.
' C. N. Yang and R. L. Mills, Phys. Rcv. 96, 191 (1954}. ' N. Cabibbo and L. A, Radicati, Phys. Letters 19, 697 (1966).
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and Radicati was predicated. The second sum rule, to
the best of our knowledge, is new.

Questions pertaining to the convergence of the second
sum rule, as well as detailed comparison with experi-
ment, lie beyond the proper scope of this paper. While
we hope to return to these questions in a later paper, we
feel obliged to point out that the absence of an energy
denominator in the integrand does not necessarily imply
that the sum rule diverges. The integrand is the diBer-
ence of two cross sections which are expected to ap-
proach each other, each of which being expected to
approach zero~ as or —+~. The integrand might well
approach zero faster than 1/or and render the sum rule
convergent. A quantitative estimation is possible within
the framework of a "Regge-pole model" and will be
undertaken in the sequel to this paper, as promised
above.

~= (er")*(b )*~"'e'"V, (2.1)

where e indicates the boson polarization vector, t the
corresponding vector in charge space; p and v are
Minkowski indices (=0, 1, 2, or 3), and n, P are isotopic
indices (=1, 2, or 3). The tensor R„„sis defined by

E„,~(k', k) =
(2x) s (4ko'ko) "' Zs( x—a y)d4+d4&

2. THE LOW-ENERGY THEOREM

A. Preliminary Considerations

We focus our attention on the retarded part of the
collision amplitude for scattering of vector bosons on
nucleons:

In the following we shall Gnd it convenient to intro-
duce a tensor M„„t' defined as follows:

LJo (x) Jo~(y)5g, so=is=»Jo~(x)b'(x y)— (2.6)

(Jo (x),J (y)'j., „,=ie rJ.v(x)3'(x y)—
+Q„s(x,y) . (2.7)

The second term on the right-hand side of Eq. (2.7) is
the now familiar Schwinger term, s Q„s(x,y) being an
operator involving gradients of delta functions, but
whose precise form is not always known. Adler and
Callan' have pointed out that within the framework of a
quark model, or the 0. model of Gell-Mann and Levy,
Q~s is symmetric in n and P. Proceeding on the assump-
tion that commutators gleaned from such models may
represent a higher degree of truth than the models
themselves, Adler and CaHan conjecture that in the real
world one may indeed have

Jt.'„„s=
I 1/(2x)s](4ko'ko) "'(2m)'

X34(p'+k' p ——k)M„„s,(2.3)

M„,s(k', k) = i s"—'d4x e(xo)

x(p'ILJ. (*),J.'(o)jl p& (24)

and shall often make use of the crossing property of the
amplitude, viz. ,

M„„s(k',k)=eM„„s(—k, —k').

e=+ 1 for the dispersive part, e= —1 for the absorptive
part.

We shall also need the equal-time commutation rela-
tions of the current operators.

»(xo—yo)(p'I LJ. (x),J '(y) jl p& (2 2)
Q s(x,y)=Q s (x,y). (2.8)

k' and k being the Anal and initial boson four-momenta,
and p' and p the final and initial nucleon momenta. The
J's are the conserved isospin currents which generate the
vector field.

The collision amplitude differs from E in that it con-
tains some equal-time commutators which arise in the
standard Lehmann-Symanzik-Zimmermann (LSZ) re-
duction of the matrix element ((k',p' out

I k,p in)
—(k',p'inIk, pin)). A proper investigation of these
equal-time commutators takes us deeper and deeper into
the most slippery details of vector-boson theories. In
this paper we therefore choose to bypass these complica-
tions and study only the properties of R. It is for this
object that we establish a low-energy theorem; we shall

see in Secs. 4 and 5 that such a theorem may be regarded
as sufBcient for the applications we consider.

~ We have in mind a generalized Pomeranchuk theorem which
would forbid both spin and isospin exchange at in6nite energy.
See L. L. Foldy and R. F. Peierls, Phys. Rev. 130, 1585 (1963).

In the rest of this section we shall accept Eq. (2.8) as
correct, "relegating to Sec. 5 a discussion of the extent
to which our results depend on (2.8).

Finally we express 3E in terms of its isotopic
projections

where"
M „s=M„&s&+M„.&»

m„„&-»=s-~s„„,
M ' @=',[r,r~]A„„-,

(2 9)

(2.10)

(2.11)

S„„andA„„beingthe charge-symmetric and charge-
antisymmetric parts of the amplitude. We shall establish

8 J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
'S. L. Adler and C. G. Callan (unpublished). See also K.

Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto) (to be
published).

"We feel it necessary to point out that Eq. (2.8) is not
guaranteed within the framework of the Yang-Mills theory, and
also record our view that this difBculty need not be taken seriously.

"In writing down equations such as (2.10) and (2.11) itis
understood that the right-hand side is sandwiched between the
appropriate nucleon spinors. This convention will be followed not
only in charge space but also in spin space.
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fp =4'&ooipo+7p'"& pP
—ko'Ao. k"—k'pA po&o (2.16)B. Exylicit Results

Equations (2.4)-(2.8) imply the divergence conditions

k'pM„„&'»=io»(p') J,~(0) ( p), (2.12)

Equation (2.16) may be used to determine A to the
requisite order. We can write

a low-energy theoremfor the charge-antisyrnmetricpart (e:, n are 3-space indices) or, alternatively,
of the amplitude only.

M„,&»k"=ie»(p'~ Jp(0) ~ p), (2.13)

&"M„,- u =,i.-s (u'+u) (p'(S, (0) ( p). (2.14)

Following Low, ' we note that since Moo& i') involves

only matrix elements of charge densities whose spatial
integrals are constants of the motion, we can evaluate
M00& &) exactly up to, and including, terms linear in
the frequency by retaining only unexcited intermediate
states on the right-hand side of Eq. (2.4). Of course this
evaluation is rendered easy by the fact that the spec-
trum includes only one such state, namely, the one-

nucleon state. Once we have determined M00& t", we

can evaluate the quantity 0 'M „~»)k„through the
identity

& 'M & @k =kp'Mop&»ho+a'PM„, l s&k"

—ko'Mp„& s&k"—O'PM„p&~ s&kp (2.15)

2 .=A .&&+A .«&, (2.17)

Since A „&"admits of direct evaluation, we can com-

bine Eqs. (2.12)-(2.14) and. (2.16)-(2.18) to uniquely
determine A ~', and hence A

Without further ado then, we quote the explicit re-

sults. All our results are in the laboratory frame, p= 0.

where the superscripts specify the parts of 2 „which
emerge from unexcited and excited intermediate states
on the right-hand side of Eq. (2.4). By constructing a
complete set of (true) tensors that can be constructed
from the vectors e, k', and k, and taking account of the
fact that A „&') is free of singularities in the zero-

frequency limit, one can convince oneself that A „&'&

may be written as"

~„„l&=~,l »„„+a~,l &t~„,~„j+0(&p'). (2.18)

1 1 1~ k' k kp ~BG&'(Z)~
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~
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(2or)'2„„&"&=a„&"&(k',k)—u. &"&(—k, —k'),

(2.19)

{2.20)

u l"&(k',k)=(16Mskp) 'D2k —k') —(1+ap—«„)i(k'Xo)~gf(k)a+(1+ap—a )i(kXe) )+0(kpo), (2.21)

~- BG~"(Z)) 1-
(2or)P&r«&= —kp ~ + +0(&o'),

BZ & s=o 8MP-

(2rr)PAs«& = (1+a —a )/4M+0(kp') . (2.23)

Equations (2.19)-(2.23) exhaust the content of the low-energy theorem we set out to prove. For forward scattering

of (massless) vector bosons with purely spatial polarisations (i.e. ore= op=0) these equations may be put together

to yield the neat result

1 1+a —a )P BG ~(Z)
(2~)'(er")*M .'»o'"=pl:r, r'j ef'e'—

2 2M ) BZ s p 8M'
1+a„—a

+irr (sr*&&e;) +0(kps) . (2.24)
4M

3. DISPERSION RELATIONS FOR FORWARD SCATTERING OF MASSLESS ISOVECTOR-
VECTOR BOSONS

In this section we write down, without supplying any proofs, dispersion relations for forward scattering of

inassless isovector-vector bosons on nucleons. A heuristic proof would merely be a repetition of the argument

advanced for photons by Gell-Mann, Goldberger, and Thirring".
For purely spatial polarization of the vector bosons, the retarded forward ampHtude may be exhibited in fuH

generality as

(2 )'M .'= B &'{S ( )B +& ( ) L, .g}+ L, q{~ ( )B .+~ ( )gL

n M. Cell-Mann, M. L. Goldberger, and W. Thirring, Phys. Rev. 95, 1612 (1954).

(3.1)
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where ~=—ks. The four amplitudes in Eq. (3.1) satisfy the crossing relations

Sr((o) =Sr(—ce) =Sr*(—co*),

s()=-s(- )=-s*(- '),
A r((o) = —A r(—o)) = —A r*(—es*),

As((o)=As( —(o) =As*(—eoe).

The dispersion relations, if valid without subtractions, therefore read as follows:

(3.2)

(3.3)

(3.4)

(3.5)

2 "Imsr(es')(a'd(a' 1 "o (ro')g+o (re')/

7l p M —
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—Z6 7l p CO
—
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—Z6

(3.6)

2N Imss(o/ )dM

Ss(eo) =-
7K' p CO —Cd —$6
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—
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2 "ImAs(e0')o&'dh0' 1 "
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As(re) =— Cd dCO
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—
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—S6 2X' p CO Cd $6

(3.9)

Here o(es) is the total cross section for absorption of a
circularly polarized neutral boson on a proton, os/s(r0)
and or/s(s&) are the partial cross sections for absorption
in isospin & and ~ states, respectively; the suffixes A and
I' indicate whether the helicity of the incident boson is
antiparallel or parallel to the spin of the target proton.
In deriving Eqs. (3.6)—(3.9) we have made use of the
unitarity conditions and expressed all cross sections in
terms of neutral boson absorption cross sections by per-
forming elementary isotopic rotations. Equations (3.6)
and (3.7) have been written down mainly for the sake
of completeness and are not used in the next section.

4. MAGNETIC-MOMENT SUM RULES

It is now a trivial matter to combine the dispersion
relations of Sec. 3 with the low-energy theorem of Sec.
2 to write down sum rules. Before we write down these
sum rules, we take note of the fact that all our considera-
tions are geared to the case of massless vector bosons
whose coupling to baryons is normalized by the com-
mutation relations (2.6) to be unity at zero momentum
transfer, i.e., Gay(0) = 1.We now formally identify the
neutral component of the conserved isospin current
with the isovector part of the electromagnetic current"
by making the scale transformation G/r v(0) ~ e. )our
units are such that e'= 4rr//137]. It is important to bear
in mind, however, that this identification is legitimate if,
and only if, we are prepared to neglect all eGects which

The sum rules therefore read as follows:

(1+«~ «„)' (—8Gs~(Z) 1—
—2i

— +0(as)
4M' ( BZ z p 4M'

"
(os/2 2&1/2)A+(~s/s —2~r/s)~

dM, (4.1)

1+«y «n
+0(n')

P(os/s —2o r/s) A, (os/2 2o 1/2)&jd~, (4.2)
p

where we have suppressed the frequency dependence of
the cross sections for absorption of isovector photons.

In writing down Eqs. (4.1)—(4.2) we have assumed, of
course, that the retarded amplitudes Ar(ce) and As(ru)

satisfy unsubtracted dispersion relations. This assump-
tion is discussed further in the next section.

It is worth noticing that neither pf the above sum
rules admits of even approximate saturation by the
(3,3) resonance. The left-hand, side of Eq. (4.1) is nega-
tive whereas the right-hand side receives a positive con-
tribution from the (3,3) resonance; for Eq. (4.2) the
signs are exactly reversed.

5. CONCLUDING REMARKS

In this section we brieQy summarize some aspects of

"The notation of sec. 2 Q tacitiy assumed tQe proportiona]ity this paper and, hopefully, shed some hght on the under-
of these currents. lying assumptions.
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We started with the retarded part of the collision
amplitude for the scattering of an isovector-vector boson
by a nucleon. We studied only this part of the amplitude
to avoid getting involved with some troublesome equal-
time commutators and with the hope that this part of
the amplitude may satisfy unsubtracted dispersion rela-
tions. We do not know any a priori criteria which will
tell us whether a given amplitude will satisfy an un-
subtracted dispersion relation; we merely choose to use
the retarded amplitude. '4

In deriving our low-energy theorem for the charge
antisymmetric part of the amp1itude, we used a con-
jecture of Adler and Callan which, in effect, told us to
ignore the Schwinger terms in the divergence of this
part of the amplitude. For the charge-symmetric part
these terms persist and so no theorem was derived. The
question naturally arises: Can one derive any theorem
without using the Adler-Ca1lan conjectureP We have
investigated this question in some detail and our answers
are as follows:

'4 The authors of Ref. 3 choose to use the full amplitude. We feel
that a very intriguing alternative is provided by an amplitude in
which the ordered product of current operators is modihed just
enough to make it formally covariant, LSee L. S. Brown, Phys.
Rev. 150, 1338 (1966).j Some delicate points arise in this context;
we hope to report on them in the near future.

For A&(te) a low-energy theorem always exists, and
is identical to that quoted in Eq. (2.24). Thus the
Cabibbo-Radicati sum rule is independent of the Adler-
Callan conjecture.

For As(ce) the low-energy theorem uses the Adler-
Callan conjecture in an essential way. Thus the sum
rule (4.2), it it converges, provides a test of this
conjecture.

Xofe added iN proof. Since this paper was written, we
have found a more elegant and general derivation which
enables us to handle also amplitudes such as Ss(te), and
derive more sum rules. /See M. A. B. Beg, Phys. Rev.
Letters 17, 333, (1966)j.The alternate derivation given
in this reference makes no appeal to the Adler-Callan
conjecture, the only input being a no-substraction-
ansatz. However, if one believes that the absence of
Schwinger terms is a necessary condition for the validity
of a no-substraction ansatz, LSee, e.g. , I. J. Muzinich,
Phys. Rev. (to be published)), one has made indirect
use of the Adler-Callan conjecture in deriving Eq. (4.2)—in accord with the last paragraph of the present paper.
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The calculation of Born terms for the three unitarily coupled reactions, xN~ mN, gN*-+ ~N, and
mN~ —+ ~¹, is considered from two viewpoints: (1) the usual method involving perturbation theory and
the invariant amplitudes; (2) a more general method based on the crossing relations of Trueman and Wick.
Our purpose is to facilitate the inclusion of the ~N* channel in relativistic multichannel calculations in
which Born terms are used, and also to give a method for calculating Born terms that is independent of
perturbation theory. Using this method we obtain a simple expression for the m.¹N Born term of total
(orbital) angular momentum J(l) corresponding to the exchange of a baryon of arbitrary mass and spin.
A few remarks regarding the removal of kinematic singularities are made.

I. INTRODUCTION

HERE exist certain general requirements or
symmetries which must be rejected in the

structure of any relativistic theory of strong inter-
actions. In this category are the geometrical symmetries
and crossing. For spinless particles the latter is simply
the statement that there exists one analytic function
which can describe any one of several diBerent reactions

t This work was performed under the auspices of the U. S.
Atomic Energy Commission.

~ Present address: Physics Department, University of Ten-
nessee, Knoxville, Tennessee.

according to the region in which it is evaluated. %hen
particles with spin are considered, more than one
amplitude is needed for the description of any given
reaction. In this case, crossing symmetry means that
there is a linear relationship between the amplitudes of
one reaction and the amplitudes for a crossed reaction.
The relations between two such sets of amplitudes are
referred to as crossing relations.

Trueman and Kick, as well as Muzinich, ' have
recently derived crossing relations for two-body

'T. L. Trueman and G. C. Wick, Ann. Phys. (¹ Y.}26, 322
(1964); hereafter referred to as TW; see also I. J. Muzinich, J.
Math. Phys. 5, 1481 (1964).


