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A Regge-pole formula is derived for the elastic scattering of two unequal-mass particles that combines
desirable I-plane analytic properties (i.e., a simple pole at /=c in the right-half / plane) and Mandelstam
analyticity. It is verified that such a formula possesses the standard asymptotic Regge behavior #=(®) even
in regions where the cosine of the scattering angle of the relevant crossed reaction may be bounded. The
simultaneous requirements of /-plane and Mandelstam analyticity enforce important constraints, and the
consistency of these constraints is studied. These considerations lead to the appearance of a “background”
term proportional asymptotically to #=(®-1 which has no analog in the equal-mass problem. We also con-
clude that a necessary condition for consistency is a(%) <0.

I. INTRODUCTION

HE description of very high energy scattering
processes in terms of Regge poles has been widely
discussed. In practice one is, of course, concerned with
experiments carried out at energies which are probably
too low for the simplest asymptotic forms to be accurate.
It is consequently of importance to use representations
in which the proper analyticity, threshold behavior,
contributions of Regge poles in all three channels, and
background (i.e., non-Regge) terms are taken into
account as well as possible. Several efforts in this direc-
tion have been made for equal-mass scattering proc-
esses.! The present paper is devoted in part to a re-
examination of such representations with particular
attention to analyticity and consistency. Our principal
concern is, however, to discuss the surprisingly non-
trivial extension of these ideas to processes involving
unequal masses (e.g., =N scattering). The directly
related question of asymptotic behavior in situations
where the cosine of the scattering angle in the crossed
reaction is not large is explored in detail.

Stated briefly, we have found the following results:
(1) The requirements of analyticity implied by the
Mandelstam representation impose important con-
straints on a representation of scattering amplitudes in
terms of Regge poles and “background terms.” These
constraints imply the necessary condition that a(«)<0
and they require, in the unequal-mass problem, a
“background” term proportional to #*®-1, (2) The
characteristic power-law behavior of amplitudes (e.g.,
A~u*®, with s and » the usual variables) persists even
in those unequal-mass situations where a too naive
application of Regge analysis does not allow a prediction.

In Sec. II we discuss the equal-mass problem to de-
termine a Regge-like representation consistent with
analyticity, one whose background term is of known
size. The corresponding and rather more complicated
discussion for the unequal-mass case is given in Sec. IIL.
The question of asymptotic behavior is treated in Sec.
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1 G. F. Chew and C. E. Jones, Phys. Rev. 135, B208 (1964).
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IV and some general considerations, speculations, and
suggestions are given in Sec. V.

II. EQUAL-MASS PROBLEM

We consider the scattering of two spinless particles of
equal mass. We confine our attention to that portion of
the amplitude coming from the s-¢ double spectral
function:

ds’ dt’

1
4 S,l)=——// 4 slytl);
( 7 s'—st'—t (

where s is the square of the total energy and ¢ is the
negative squared momentum transfer. In the special
case of potential scattering, Eq. (2.1) gives the complete
scattering amplitude, whereas in the relativistic case the
contribution from the other two spectral regions is not
included. We treat each spectral function separately so
we can discuss both cases at once.

In addition to the requirement of Mandelstam ana-
lyticity expressed in Eq. (2.1), we shall also assume that
the particle-wave amplitude a(s,!) is meromorphic in the
angular-momentum plane in a region that includes
Rel>—3%+¢, where 0<e<%. We maintain a discreet
silence on the question of moving branch points in the !
plane. We make a few comments on the subject in Sec.
V. The consequences of requiring both Mandelstam and
I-plane analyticity will now be explored. Our object is to
derive a formula in which the Regge-pole terms have the
correct analyticity and where any correction terms are
no larger asymptotically than the usual Regge back-
ground, that is, bounded by ¢~*+< for large ¢.

We use the Mandelstam? version of the Regge-
Sommerfeld-Watson representation :

A(vg)= B(V,t)—{-z v.(») (v) i

(2.1)

¢
XQ—I—a;(V)(_ 1—'2"') ) (22)

V.

where we have introduced for economy of writing the
square of the center-of-mass momentum y=%s—m? In

2S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).
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potential theory, v=2mE, where E is the center-of-mass
energy and m is the reduced mass. The first term,
B(v,t), is the background term, defined more precisely
below; v:(») () is related to the actual residue 8;(»)
of a Regge pole in the complex angular-momentum plane
atl=a,;(») according to v;(») (») %" = Qa;(r)+1)8:(»)/
cosma;(v); Q—1—a(—z is the Legendre function of the
second kind and z=1+1{/2» is the cosine of the scat-
tering angle. The virtue of the representation (2.2) over
the more familiar one using P, (—2) is that while P, has
the Regge pole at I=q¢, it also possesses a spurious pole
at I=—a—1; Q-1—, has only the pole at I=a. We
separate from the amplitude and write explicitly all
those Regge poles which appear in the region Rel>—3%
+¢ for any value of the energy above threshold, »>0.
The background term B(»,f) is thus defined uniquely to
be the analytic function of » and ¢ which is the difference
between A (»,t) and these selected poles. The function
B(»,t) is equivalent to a line integral in the ! plane which,
at a given value of », runs from —3-+4-e—i® to —3+e
+4w, detouring to the left of any pole which for some »
above threshold reaches the region Rel>—34¢ We
may therefore assert that B(p,t) is an analytic function
of » and ¢ with the property

B(yt)<constXi¥te, (f—) (2.3)

for all positive » above threshold. In what follows we
shall suppress the summation sign and the index ¢ in
Eq. (2.2).

It is well known that neither B(»,f) nor the Q func-
tions in Eq. (2.2) have the correct Mandelstam ana-
lyticity as expressed by Eq. (2.1). It can be shown
explicitly in potential theory that a cancellation takes
place between the terms, and that the proper double
spectral function is obtained. In what follows we assume
that such a cancellation always occurs. We proceed to
write a fixed <0 dispersion relation? for 4 (»,t):

’

1 00
At)=— [ Imd (V')
wJo V—v

1 2 dv 1 > dy
=—f ImB(/,5)+—
0o V—v P

™

0o V—v

XIm[’Y ) (V')“(”"Q—l—a(v'>(— 1—';“)] ; (24)

V/

in the following we shall not show the argument of a but
if it appears under an integral, it will always be a func-
tion of »'. Possible subtractions in Eq. (2.4) are dis-
regarded because they do not affect the subsequent

3 The use of a fixed-# dispersion relation to discuss the Regge
asymptotic form for values of » other than »>0 was apparently
first described by H. Cheng (unpublished). It is further discussed
by Squires in Complex Angular Momentum and Particle Physics
(W. A. Benjamin, Inc., New York, 1963), p. 13. Squires does not,
however, address the question of full Mandelstam analyticity.
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discussion. Note that we require the representation (2.2)
only in the region for which it was originally defined,
namely, v>0, t<0. We now study the integral over the
Regge pole in Eq. (2.4), call it A(v,t). It manifestly has
the proper s cut and we wish to examine its ¢ analyticity.

The Regge term in Eq. (2.4) may be written as a
contour integral and then may be easily evaluated. It
becomes

T —,div<u'><u'>ae_1_a(—1~i)

wi e v —v 20

=7<»>(v)aQ_1_a(—1—5%). 25

The contour C encloses the real »" axis in a clockwise
direction. The equivalence of the contour integral in
Eq. (2.5) to the corresponding term in Eq. (2.4) which
involves the imaginary part follows from the reality of
the integrand just below »=0. It is assumed here that «
and v have only the usual threshold branch point; the
function Q_1—4(—2) has branch points at z=-1 and
z= o, Since, in fact, the integrand of Eq. (2.5) has no
singularities at all below »=0(t<0), we can completely
unwrap the contour C and thus obtain just a contribu-
tion from the pole at »'=».

Although the function v (») (#)*Q—1—a(—1—12/2») has
the correctly located » cut for £<0, the » cut is wrong for
£>0. Furthermore, the branch cut in ¢ does not start in
the right place, that is, at the place required by the
Mandelstam analyticity. Since in practice where one is
concerned with the amplitude in a crossed channel
(with £>0, »<0) it is important to get the analyticity
right, we therefore proceed to correct these deficiencies.
First, we analytically continue Eq. (2.5) to the region
»<0 and then to £>0 above the ¢ cut. We can thus
determine the absorptive part D,(¢,») in this region to be

D, (t,y)=ImAg(»,t)=—v(»)(— ) sinre
XO-1—a(—1—1t/2v). »<0,

We see that D,(»,f) has a cut from v=—%i to y=—oo,
which is at variance with the Mandelstam analyticity,
Eq. (2.1). We therefore explicitly remove this unwanted
cut and define a corrected D;, call it D,:

£0. (2.6)

_ 1 ¥4 gy
Dy=D—- —l-———"/(v')(—v')“-sinwa P (—1—t/2V)

I

1 palt—to gy
™ ./:) l/,_‘ 14

Xsinra Q_1_o(+1+2/24')].

In writing Eq. (2.7) we have also corrected D,(t,») in
order to get the correct boundary of the double spectral
function. This is done by means of the second integral in
Eq. (2.7) [d is a constant and ¢, is the ¢ threshold].

Im[—y (") ()"

2.7
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Our final form for the Regge-pole term R(»,¢) is then
given by

1= dr
R(v )=~ / Rl Yoy 2.8)
m™J e t,'—t

where the integral in Eq. (2.8) is defined, if necessary,
by means of analytic continuation in a. The Regge term
R(v,t) now has the correct Mandelstam analyticity. A
formula similar to Eq. (2.8) was first discussed by Chew
and Jones.!

We come now to the important question of the con-
sistency of the Mandelstam representation and mero-
morphy in the / plane in the region Re/>—3%-e. The
fixed ¢#(<0) dispersion relation Eq. (2.4) was written
on the assumption that there was complete consistency
—in particular, it assumes that the background term
and the Regge-pole term conspire in such a way as to
give the correct Mandelstam » cut for any value of ¢, not
just the negative ¢ values for which the dispersion rela-
tion was originally written. This implies that the
““error” In the pole term is of background magnitude and
it is just this consistency which we now check.

To study the consistency question we write the one-
dimensional dispersion relation Eq. (2.4) as a two-
dimensional one as follows:

I dt/
oo [ [
vVi—vit'—

/ dt’
X {ImB ()} -+— / /

V—yit'—t

{Im['y(l/) 070 - 1—;—)}} L)

where {---}; means the imaginary part which is ob-
tained when ¢ is continued from the negative values for
which the quantities ImB(¥',f) and Im[y(»')v' *Q0—1-«
X (—1—1/2v")] were originally defined. The region of
integration in Eq. (2.9) is presumed to be just over the
proper double spectral function boundary—we have
thus assumed that the requisite cancellation does occur.
The second term in Eq. (2.9) is just our previously
defined R(»,t), Eq. (2.8). We now define a correction
term C(»,t) given by

Crt)=R(@,0)—v () (1) *Q1-a(—1—t/20). (2.10)

Recalling that according to Eq. (2.2), 4(v,))=B(»,)
+v () Q0-1-o(—1—1/2v), we find from Eq. (2.9) that

1 dv dt
C(z/,t)r—B(u,l)-—-2 /[ - ;,——t{ImB(v',t’)} . (2.11)
(3 V—vi—

Thusif »> 0, the consistency of our assumed Mandelstam
and /-plane analyticity leads to the statement

C(y,t)<constXiHte, {—o,

(2.12)
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This follows because both terms on the right of Eq.
(2.11) are of Regge background size for v>0 and large z.

We may now check the requirement expressed by
Eq. (2.12). By utilizing the well-known representation

1 H Py(a)
0o / P

1 z—3

1 Qs(=2)
-+—sinmp dz ,
™

o 2 —z

(2.13)

we may extract an explicit Q_y—o(—1—¢/2») from R(»,t)
as given by Eq. (2.8) and write an exact expression for
C(v,t). It is clear, however, that to within terms
asymptotically of order ¢, the large ¢ behavior of
C(»,t) is the same as that of D,(t,») — D,(t,»). A straight-
forward estimate of Eq. (2.7) leads to®

Di(tp) =D ()~ Cot=+-Cot™2,  (2.14)

where C; and C, are functions of » (v520). If =0, the
second term in (2.14), which arises from the double
spectrum correction term in Eq. (2.7), goes like (12,
This sudden change in the asymptotic behavior of the
second term is presumably related to the phenomenon
of an accumulation of an infinite number of Regge poles
on the line Rel=—1% at »=0.4

In potential theory it is known that a(«)<—1 for
the class of potentials leading to a Mandelstam repre-
sentation, hence the consistency requirement, Eq. (2.12)
is satisfied. In the relativistic case, if o approaches a
limit for large », we require a(®)<—3+e.

We conclude this section by remarking that the
treatment of the two other spectral region contributions
(in the relativistic problem) leads to the same results as
obtained here, only with an appropriate permutation of
the variables s, ¢, #. This is an obvious consequence of
the equal-mass problem symmetry.

III. UNEQUAL-MASS PROBLEM

In this section we repeat the argument of Sec. II for
an unequal-mass problem, such as pion-nucleon scat-
tering (treated for simplicity without spin complica-
tions). We choose to look at an amplitude which has
only an s-% double spectral function. This is done be-
cause of the current interest in backward pion-nucleon
scattering® which one expects to be controlled by the s-»
spectral region. We shall speak briefly later about the
other regions.

We continue to consider the contribution of Regge
poles in the s channel and will be ultimately interested
in the behavior of the scattering amplitude for large .

% Note added in proof. We have assumed in this discussion that
v(®) is a constant. If, in fact, y(s)~»™" for large », our condition
on a(») becomes rela.tlvely harmless, a () <n—%+e.

4V. N. Gribov and I. Ya. Pomemnchak Phys. Rev. Letters 9,
238 (1962).

8 H. Brody et al., Phys. Rev. Letters 16, 828 (1966).
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The Regge-Sommerfeld-Watson representation which is
defined originally in the physical s-channel region s> s,
= (M+p)?, — o <u<(M—p)?is given by

A (sy)=B(s)+2 vi(8) () “O0-1-asc0
x(_Hﬂﬂ_‘ﬁ), G3.1)

2v

where r=M?—pu?. As in the equal-mass case, v;(s) (v) %
=[2a;(s)+1]8:(s)/cosma;(s), where 8:(s) is the residue
of the Regge pole located at I=a;(s); the variable » is
again the square of the center-of-mass momentum which
is related to s by

v=[s— (M —p)*1s— (M+p)*1/4s. (3.2)

Note that » has zeros at s= (M =x)? and a pole at s=0;
these properties play an important role in the derivation
of a Regge formula with the correct Mandelstam
analyticity. We shall assume in the subsequent discus-
sion that v;(s) and a;(s) have only the physical thresh-
old branch point at s=s,.8 We recall that the double
spectral function for 4 (s,u) has asymptotic boundaries
at s= (M+u)? for u—w and u= (M+u)? for s—x. As
before, the summation in Eq. (3.1) runs over all Regge
poles that appear in the region Rel>—3-+¢ for any
§>so. The background function B(s,#) has the asymp-
totic property

B(s,u)<constXu¥te y—c0

(3.3)

for all positive s> so.

We begin our study by again using a one-dimensional
dispersion relation (with fixed negative #) in order to
obtain a representation of A (s,#) valid for all s:

1 = ds 1 = ds
A(s,u)=—/ ImB(s’,u)+—
s §—5

TS S—S

XIm[V(S’)(v’)"Q—l—a<—1+$)], (3.9

where we have suppressed the summation over poles.
The Regge-pole term in Eq. (3.4) can be written as a
contour integral and evaluated:

1 ds’' (/s —u
Ants)=— [ 001 1)

2ri o s’ —s v

(7%/s)—u
—_ p)«  la __1 —
Y00~ 1)
1 72/ 2/
+ 7(s'>(—»'>aPa<1—55/—sl,—“),
2 0 14
3.5)

where the contour C encloses the threshold cut in a

8 One arrives at this result by means of a generalization of the
techniques employed by R. Oehme and G. Tiktopoulos [Phys.
Letters 2, 86 (1962)] for the equal-mass problem. Some care must
be taken in studying the analytic properties at the point s=0.
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clockwise manner. The second term in Eq. (3.5) comes
from a left-hand cut (for negative #) in the integrand of
the contour integral and is not present in the equal-
mass case [compare Eq. (2.5)]. It is perhaps worth
noting that the derivation of Eq. (3.5), although
straightforward in principle, is not entirely trivial.

By analogy with the equal-mass problem, we ana-
lytically continue A g(s,#) to the region 0<s<s, and
#>>0; we then compute the # absorptive part:

D, (u,5)=1ImA g(s,2) = —v(s) (— »)*(sinme)
(2/s)—u\ 1 prilv ds'
<on{-+)5
Xv(s") ()= sinra Pa(l - w) . (3.6)

2

The function D, (#,s) for » for #>>0 is a real analytic
function s with the threshold cut so<s< c but with an
unwanted cut — » <s<Z—u, where Z=2(M?+u?). We
remove the latter and also correct for the boundary of
the double spectral region (since D,, should be cut from
So to « only as #—c0). This gives finally for the
corrected absorptive part D,

_ 1 pz» ds
D.~D.— / (&) (—)e

’

o S'—s
(2/s)—w\ 1 peotdlv gy
X sinra Pa<— 1+————)—— /
2 T J s s'—s
(/s )—u
XIm[—'y(s')u'“ sinra Q_I_a(1—~———-———>:| .
20’
3.7

The upper limit on the last term in Eq. (3.7), which is
the one that corrects the double spectral function
boundary, is correct only for # — < ; one can, of course,
use the exact curve in any given situation.
The Regge-pole term R(s,#) which has the correct
analyticity is defined as
/

1 00
R(s,u)=- / D.(,s).
TS ' —u

3.8)

The lower limit #; may have any value greater than the
u threshold of (M+p)?. In writing Eq. (3.7) we have
assumed that #>2 so that we must have %;>2. Smaller
values of #; may be used but one must then analytically
continue Eq. (3.7). In practice we are interested in
R(s,u) for large u so that #;/4<1 and the precise value
is irrelevant.

The discussion of asymptotic behavior and con-
sistency will be taken up in the next section.

IV. ASYMPTOTIC BEHAVIOR AND CONSISTENCY
IN UNEQUAL-MASS PROBLEM

In this section we emphasize the important differences
between the equal- and unequal-mass Regge formulas



150

[we refer here to our modifications which incorporate
the analyticity requirements, Egs. (2.8) and (3.8)]
with regard to asymptotic behavior (#— in the
present case) and the consistency of Mandelstam and
l-plane analyticity. The issue of asymptotic behavior is
dramatically different in unequal-mass scattering for
purely kinematical reasons: The cosine of the scattering
angle for the s reaction z, does not become large for all
fixed s as #— o in the physical region of the % reaction.
To see this we recall that

¢ Z—s—u 7/ s)—u
z=14—=14 =—14 .

2y 2y 2y

The physical region for the % channel includes the posi-
tive s domain 0<s<7*/u, > (m-+p)?. Evidently, no
matter how large # becomes in the u-channel physical
region (it is of course limited by #<#?/s), |2,|<1 in
this region. At the value s=0, % can become indefinitely
large, but z,=--1 and the question of interest is whether
the familiar Regge asymptotic form which holds for
$§<0, #— 0, namely, #*()_ persists at s=0.

It is perhaps worth noting that from the simple-
minded Regge point of view we require |z,|>>1, which
in the neighborhood s=0 means %>>7%/ | s|. This peculiar
nonuniform approach to the asymptotic regime is, as we
shall show, a fault of the Regge representation which is
corrected by incorporating the correct analyticity. The
fact that there is no singularity in the whole amplitude
at s=0 suggests, but of course does not prove, that an
asymptotic form valid for s<0 persists at s=0; an
asymptotic expansion of an analytic function does not
necessarily share the analyticity of the original function.

The question of consistency of Mandelstam and I-
plane analyticity is also changed in the unequal-mass
problem because of the presence of the integral term
over the region 0<s<7?/u in the absorptive part
D, (u,s) given by Eq. (3.6). This term has no counter-
part in the equal-mass case where D,(¢,v), Eq. (2.6), is
entirely given by the Q function.

The consistency issue and asymptotic behavior are so
closely linked that we discuss them more or less to-
gether. To begin, we define a correction function C(s,)
by analogy with Eq. (2.10) as follows:

C(s,u)=R(s5,0)—v(s) (") *PQ_1-ac)
(r*/s)—u
X<-— 1+T> . (1.2)

We then require for consistency [at least for s> s, where

(4.1)

mI'(—a(0))

Du(u,5)=—~(0)[sinma(0) ]m

2

—'Y(O)("' i—)a(O)[Sinm (0)]Q—1—a<0><1—§;>:|

S. 4

) a(0) — [7 (9) (— V)“(‘*)[:simra (S)]Q—-l—a(s) <_ 1+
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Eq. (3.1) is originally defined] that
C(s,w)<constute¢, y—o, 4.3)

Again, to within terms of order #7' this consistency
check can be made by simply using D.,(#,s). The terms
in D, that must be examined are all those apart from

(r*/s)—u
—v(s) (—v)@ sinTa Q_l_.,l(— 1-{——-——) .
2y

From Egs. (3.6) and (3.7) we see that there are three
such terms. We first inspect the difference D,—D,
which consists of the two integral terms in Eq. (3.7).
The evaluation of D,— D, is very similar to that dis-
cussed in Sec. II for D,—D;, Eq. (2.14). We find

Du—Du~D1u“(°°)—|—D2u"3/2 N (44)

where D; and D, are functions of s. The second term
changes character abruptly at s=s, and becomes ~a1/2,
Provided that it is reasonable to discuss the consistency
question for each double spectral region separately, we
would again require a(=)<—3%- ¢ as in the equal-mass
case.

Finally, we discuss the asymptotic behavior of D, (#,s),
Eq. (3.6). The integral term in D, should also be of
background size for consistency. It is useful to rewrite
D,(%,s) in a form which will also be convenient for
examining the asymptotic behavior in # for s=0. The
point is that although both terms in Eq. (3.6) diverge
like s~% (Ins) near s=0, the sum is, in fact, analytic at
this point by construction. We wish to make the cancel-
lation of singularities manifest.

To proceed, we use the following dispersion relation:

7(0)(“'2)a((’)[sinm<<)>]Q_1_a<o)(1—%>

4s

(u—c0, s750),

1 prile ds' g2 \e©
=7(0)[sin7ra(0)]|:-—-/ - (“7) Py
2Jo §'—s\4s
25w\ T (—a(0
x<—1+—fﬁ)+w—————u1( on *“”] (4.5)
7/ T'(—a(0)—3%)

where the term proportional to #*® is a subtraction
constant. The left-hand side of Eq. (4.5) gives the
leading singular behavior near s=0 of the first term in
D,, Eq. (3.6). The utility of this form is that an explicit
cancellation of the singularity in the second term of
(3.6) can be made. We find then for D, (u,s) the follow-
ing expression:

oy

2y

1 v ds'
__{/ —I-_{'y(s')y,“(")[ﬁnﬂ'a(S’)]Pa(é*’)
0

2

§ =S

><(1—(—72{;—/)7:2)—y(O)(—rz—l)a(m[sinm(())]Paw)(~1+gi1f)]I . (4.0)

14

4s r?
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Let us now examine D, (#u,s) for large u. If 5540, the
#*® term is cancelled by the Q4 term and we find

2 )_
D (u,5)~—(s) (— ”)“(’)Q—l_a(,;)(- { +£'_/_;__f>

14

~+const X u*@1  (4.7)

as u— o0, The term in curly brackets in (4.6) goes like
=2, In order to have consistency, the second term on
the right of Eq. (4.7) should be of background size, i.e.,

a(o)—lﬁ—%-l-f;

a(0)<3+e, 0<e<}. 4.8)

This condition is undoubtedly fulfilled in the interesting
case of pion-nucleon scattering. We defer further dis-
cussion of the general situation to the next section.

Now we come to the question of the asymptotic be-
havior at s=0. The two terms in the first square bracket
of Eq. (4.6) cancel in this limit whereas the terms in
curly brackets yield a term proportional to #*©®-1, We
are left then with the first term %@, which is precisely
what would have been obtained from a blind extrapola-
tion of the Regge behavior valid for large # and s<0.
The way this has come about from our enforced
analyticity is remarkable.

" There remains finally the question of the behavior of
the amplitude for fixed positive s< (M —p)? There is in
this region no possibility of # becoming indefinitely
large and thus one cannot talk about an asymptotic
form. It is a quantitative question whether the Regge
term we have isolated is large compared to the back-
ground. It is clear, however, that if we sit on the curve
s=1%/u, as u increases, we will recover our behavior %=,

Before closing this section we remark that an entirely
analogous treatment of the s-¢ spectral function can be
readily given in the unequal-mass problem and one finds
an asymptotic behavior of (—u#)*® ats=0asu— -+ .
Because of the different analyticity structure, there is no
tendency for cancellation between the s-# and s-¢
spectral region contributions. The term (—u)*©® would
be automatically included if we introduced angular-
momentum amplitudes of definite signature into the
problem,

V. CONCLUSIONS AND DISCUSSION

We have studied the consequences of requiring simul-
taneously /-plane and Mandelstam analyticity for two-
particle elastic-scattering amplitudes. We assume that
the partial-wave amplitude is meromorphic in the I
plane to the right of Re/=—%-¢, where 0<e<4%. Then
we insist that the Mandelstam-Regge-Sommerfeld-
Watson representation implied by the I-plane analyticity
should be consistent with the Mandelstam double dis-
persion representation. We perform surgery on the
isolated Regge-pole contributions to make them con-
form with Mandelstam analyticity and investigate
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whether the required correction terms are of a magni-
tude that can be cancelled by the background integral.
We furthermore assume that each spectral region may
be handled separately.

When this procedure is applied to the scattering of
equal-mass particles (or in potential theory), we find
that a necessary constraint of the Regge trajectory a(s)
is that a(«) be negative. We obtain a modified Regge
representation in which the pole terms have the proper
spectral support and which, when all three spectral
regions are included, provides a suitable form for either
phenomenological analysis or as an ansatz for dynamical
calculations of the variety discussed by Chew and
Jones.!

The corresponding treatment of unequal-mass scat-
tering amplitudes was considerably more complicated
and has some implications which may be of a rather
fundamental nature. One of the features of unequal-
mass problems is that the cosine of the scattering angle
in the crossed channel does not become large at high
energies (and in fact for part of the physical region lies
between =1 no matter how large the energy). This has
led to considerable uneasiness in application of Regge-
pole ideas to such processes. We have found from our
representation that the Regge asymptotic form #%®
valid for s <0, # — o persists down to s=0 even though
cosfl, — +1. This comes about by virtue of the fact
that one of the correction terms forced by analyticity
takes over the asymptotic behavior previously given for
$<0 by the usual Regge term Q_;,(cosf).

The persistence of Regge asymptotic behavior near
s=0 was conjectured by Chew and Stack’ and the
question has recently been studied by Freedman and
Wang,® who use techniques quite different from ours.
These authors urge the use of a representation of
scattering amplitudes directly in terms of powers, in a
manner first suggested by Khuri,® so that the cosine of
the scattering angle in the crossed channel never ap-
pears. We feel that this approach, while leading rather
easily to results about asymptotic behavior, is less
satisfactory than the one we have presented here. If one
attempts to describe the power-law behavior in these
terms, he finds that #*® in the / plane has poles at
I=a(s), a(s)—1, a(s)—2, - - -, which can produce diffi-
culties.!® OQur representation, incorporating as it does all
the correct analyticity and threshold properties as well
as involving only individual Regge poles (and no
satellites at a—1, etc.), is hopefully suitable for discus-
sion of the direct channel amplitude at low energies.
This means that a representation (generalized to include

7J. D. Stack, Phys. Rev. Letters 16, 286 (1966) ; see also G. F.
Chew and ]J. D. Stack, University of California Laboratory
Report No. UCRL-16293 (unpublished).

(1;6125 Freedman and J. M. Wang, Phys. Rev. Letters 17, 569

9 N. Khuri, Phys. Rev. Letters 10, 420 (1963) ; Phys. Rev. 132,
914 (1963).

10 For a discussion of some drawbacks of the Khuri representa-
tion see C. E. Jones, Phys. Rev. 135, B214 (1964).
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all spectral regions) based on our results can be expected
to give a reasonable description of the scattering ampli-
tude at both high and low energies. The recent analysis
of backward pion-nucleon scattering by Barger and
Cline" lends support to this idea. We feel, however, that
the form of their Regge-pole term is of a somewhat
ad hoc character. It would be interesting to compare the
energy dependence of their Regge-pole term with that
predicted by our Eq. (3.8), which should be more
precise.

We turn finally to the question of the consistency of
I-plane and Mandelstam analyticity in the unequal-mass
problem. As in the equal-mass case we must require that
a(») be negative. The more striking requirement is that
a(0) be less than 3+¢, 0<e<3, which arises from the
presence of the asymptotic term %@L, If «(0)<3%,
there is no problem. If, however, a(0)>% and if € can
take on any value greater than zero but less than one-
half, one has a contradiction, for there would be nothing
to cancel the fixed singularity in the angular-momentum
plane at /=a(0)—1. It is conceivable that in this case
such a singularity would be covered by cuts in the
angular-momentum plane, the possible existence of
which has been ignored. A very subtle failure of the
Mandelstam representation for unequal masses is not

11y, Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966).
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out of the question. If there were an infinite number of
Regge poles to the right of Rel=—4% in the relativistic
problem, the term #*®-! might be cancelled.

Finally, we note that the requirement that a(«) be
negative, which holds in both the equal- and unequal-
mass problems, implies in particular for the Pome-
ranchuk trajectory the existence of ghost states.

We have no further light to shed on these points but
wish to draw attention to the fact that the constraints
on the asymptotic behavior of scattering amplitudes
implied by combined /-plane and Mandelstam ana-
lyticity may be of fundamental importance.
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Ua Note added in proof. An alternate explanation based on the
existence of a family of trajectories ax(s) [with residue functions
vi(s)] arranged so that ax(0) =« (0)—%, k=1,2, ---, and yp~s"*
near s=0 has been proposed by Freedman and Wang (Ref. 8).
An improved version of their argument based on the formalism
of the present paper has been given by one of us (C.E.J.) in
collaboration with Freedman and Wang (to be published). It
should be emphasized that the existence of this family of tra-
jectories has been demonstrated only in a simple model; we have
no real assurance that this way of avoiding the conflict between
Mandelstam and angular momentum analyticity has been chosen
by nature.



