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The one-meson exchange potentials in B, MM, BB, and BB states may be represented approximately
by sums of central and tensor potentials, where M/ and B denote the meson and baryon supermultiplets of
dimensions 36 and 56. This formulation leads to a clarification and generalization of a model developed
recently by the author, in which the relative forces in different channels are assumed equal to the relative
magnitudes of the Born-approximation scattering amplitudes at the physical threshold. It is shown that
the tensor forces dominate the SU (6) w-symmetric meson bootstrap model, in which the M are M bound
states. A generalization of a theorem proved previously implies that the tensor forces cancelin the MM, M B,
and BB states corresponding to the larger SU(3) representations, and in all BB states. Actual nucleon-
nucleon forces are very sensitive to symmetry breaking; the implications of the theorem for these forces are
discussed and compared with phenomenological analyses of experiment.

I. INTRODUCTION

HE first proposed applications of the group SU(6)
to hadron physics had the property that the three
components of the total intrinsic spin vector were
generators of the group. Because of this, the forces were
spin-independent. Thus, the theory was in conflict with
the known strong spin dependence of strong interactions.
This dilemma was solved by various modifications of the
SU(6) theory; the solution is stated most simply in
terms of the group SU(6)w. The intrinsic spin com-
ponents are not generators of SU(6)w, and spin-
dependent forces are allowed.

In this paper we will assume SU(6)w-symmetric
MMM and M BB interactions, where M and B denote
the odd-parity mesons and the baryons, identified with
the representations 35®1 and 56. Mass differences
within the M and B multiplets are neglected. We are
concerned with the M exchange (one-meson exchange)
forces existing in MM, MB, BB, and BB states; the
vertices are evaluated in the limit of small momentum
transfer between the real particles. Two types of forces
exist, central and tensor forces. We will assume that the
tensor forces are dominant for determining the observed
spectrum of hadrons. This assumption is the opposite of
the spin-independence assumption of the early SU(6)
theories.

One of the main purposes of the paper is to clarify and
extend two recent works of the author on SU(6)w-
symmetric M exchange forces in the states MM.!? The
first work (denoted by R1) shows that the M may be
bootstrapped as MM bound states, and the second
(denoted by R2) discusses the even-parity meson reso-
nances predicted by the model. The forces in R1 and R2
are assumed proportional to the threshold values of the
scattering amplitudes in Born approximation. The
tensor force-central force picture allows one to weaken
this threshold assumption,

* Supported in part by the National Science Foundation.

1R. H. Capps, Phys. Rev. 148, 1332 (1966). The symbol R1
will be used to refer to this paper. :

2 R. H. Capps, Phys. Rev. Letters 16, 1066 (1966). The symbol
R2 will be used to refer to this paper.
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The forms of the potentials are listed in Sec. IL. A
plausibility argument for the dominance of tensor po-
tentials is given. It is shown in Sec. III that the tensor
forces do dominate in the meson bootstrap model of R1.
In Sec. IV, the theorem of R2 is generalized; this
theorem shows that in the limit of exact SU(6)w
symmetry, the tensor forces cancel in MM, MB, and
BB states corresponding to the larger SU(3) repre-
sentations, and in all BB states. The effect of symmetry
breaking on the nuclear forces is discussed.

II. THE POTENTIALS

Three types of meson-exchange processes occur in the
model, P (pseudoscalar meson) exchange, and mag-
netically and electrically coupled V exchange. We con-
sider the vertex ZZM, where the real initial and final
particles Z both belong either to the 56-fold baryon
multiplet or the 36-fold meson multiplet. The spins of
the two Z particles may be different. In the limit of
small momenta of the Z, the three types of vertices may
be written in the forms,

i(G/m)(S-q), (1a)
i(F/m)(S-qXe), (1b)
feo, (IC)

where the three components of S are Hermitian opera-
tors connecting spin states of the initial and final Z, q is
the momentum transfer, » is the Z mass, e and e, are
the space and time components of the polarization four-
vectors of the exchanged V mesons, and G, F, and f are
coupling constants corresponding to P, magnetic and
electric vertices.?

We write the P and magnetic V exchange potentials
(Up and Un) for the process Z;+Zy— Zi+Z, in
configuration space, where Z; and Z, each represents
either the meson, baryon, or antibaryon multiplet. The
contributions of a particular P and V meson to these

3 The relativistic MM M interactions are listed in R1. It is easy
to show that these interactions may be written in the form of the

above Egs. (1a) through (1c) in the limit of small momenta of the
real mesons.

1263



1264 RICHARD

potentials are,
Up=(G1Go/m?) (S1- V)(S2- V)e /7, (2a)
Un= (F1Fo/m2)(S1X V) (S:X V)e#/r,  (2b)

where p is the meson mass and 7 is the interparticle
distance. The coupling constants depend on the
quantum numbers of the real particles and of the ex-
changed P and V mesons; the relevant indices have
been suppressed. If the sum over the nine virtual P and
V mesons is taken, the resulting potentials are matrices
in the space of the different Z:Z, channels. A positive
diagonal element of the potential matrix corresponds
to repulsion. Each of these potentials may be written
as a sum of central and tensor parts, i.e.,

UP,m= 4 P,mclUc"{"A P,muU ¢, (3)

The coefficients 4 corresponding to particular P and
V mesons are given by the equations,

Ap'=Ap'=GiGz, (4a)
Am®=2FF3, Ant=—FF,. (4b)
The forms of the central and tensor potentials are,
Vo= 3m=2(Sy- So)[urewr—dr3 ()], s)
Vt=m2[3(S1-1)(S2-1)r2—S;-S2]
XL a3l (6)

We now consider V-exchange forces of the electric
type. It is shown in R1 that these forces must be
modified if the forward and backward one-meson ex-
change amplitudes are to be SU(6) w-symmetric. If the
static value of the vertices [Eq. (1c)] is used, this
modification takes the form of a simple subtraction to
the propagator. One makes the replacement,

G+ = () () 7

The V-exchange potentials that result are purely central
and are of the form,

fifelr e s —pu~24x(r) ]. @®

If the modification of Eq. (7) were not made, the delta
function term would not occur in Eq. (8).

We now assume that the interaction constants satisfy
SU(6)w symmetry.* The resulting symmetry of the
Born-approximation amplitudes can be established by
using the method of R1. In momentum space, the
forward amplitudes vanish and the backward ampli-
tudes are all proportional to the kinematic factor
¢%/ (u*+¢%). The coefficients of this factor are operators
in spin space and internal space that satisfy the SU(6)w
symmetry.

The delta function term in the central potential may
be regarded as the static limit of a core of finite range.
One cannot make an accurate evaluation of the relative

4The SU(6)w symmetry is defined and discussed by H. J.
Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670 (1965) ; Phys.
Rev. 143, 1269 (1966).
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strengths of the central and tensor potentials for any
particular process, since the extent to which recoil
effects smear out this delta function is not known.
However, since the magnitude of the delta function is
such that the volume integral of the central potential
vanishes, it is reasonable to hypothesize that the
strongest meson-exchange forces are the tensor forces.

In R1 and R2 the M exchange amplitudes were ex-
amined at the physical threshold. Those terms linear in
the initial and final momentum are P-wave amplitudes,
while those terms quadratic in either the initial or final
momentum are linear combinations of S-wave ampli-
tudes and S-D transition amplitudes. The potential
picture of the present paper allows one to weaken the
threshold assumption. The potential is static, in that the
spin dependence of the vertices is evaluated at threshold.
However, the meson propagators are treated rela-
tivistically in the potential method. Furthermore, the
method makes possible the treatment of higher partial
waves, although we discuss these waves only briefly in
this paper (in Sec. V). Our assumption of dominant
tensor forces implies the assumption of R2, that the
strongest forces in states of even parity correspond to
S-D transitions.

The static potentials can represent only a first ap-
proximation to the actual interactions. Therefore, the
goals of this model are only to compare the coefficients
of the potentials in different states, and to compute the
relative components of different two-particle channels in
the states assumed to resonate.

III. THE MESON BOOTSTRAP MODEL

In this section, we analyze the meson bootstrap model
of R1 in terms of the central and tensor force picture.
We review briefly the method and results of R1, in order
that this section be self-contained. The 36 meson states
(P and V nonets) are taken to be degenerate, and exact
SU(6)w symmetry is assumed for the MMM vertices.
All P-wave MM amplitudes are computed in Born
approximation at the threshold energy. These ampli-
tudes are matrices in the various PP, PV, and VV
channels. The forces are assumed to be measured by the
threshold amplitudes. (This is called here the threshold
approximation.) The largest positive eigenvalues of the
amplitude matrices (most attractive forces) correspond
to a P singlet and octet and a V singlet and octet. It is
assumed that these states are bound and may be
identified with the 36 original M states. The assumption
that the relative constants coupling different two-
particle channels to a particular bound-state pole are
proportional to the relative components of the channels
in the eigenamplitude leads to ratios of MM M constants
consistent with the SU (6)w-symmetric values assumed
originally.

Each threshold P-wave amplitude may be written as
a sum of two terms, which result from the central and
tensor forces. The amplitudes of R1 are separated into
these two parts in the Appendix. The threshold ap-
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proximation is equivalent to assuming a particular rela-
tive importance of the central and tensor force parts. In
order to allow a different weighting of the potentials, we
present the results with the central force terms multi-
plied by the parameter x. It is shown in the Appendix
that the eigenfunctions of the threshold amplitude
matrices are independent of x. The eigenvalues are listed
as functions of x in Table I. (The normalization of the
amplitudes and eigenvalues is not important, and is
explained in R1.) The notation (a,b)¢ denotes a multi-
plet of SU(3) and spin multiplicities ¢ and 5, whose
1,=Y =0 members are of charge-conjugation parity 1.
If x=1, these eigenvalues are equal to those of R1.

Because of the 72 and ur terms in Eq. (6), the
fractional decrease in strength of the tensor potential
with increasing r is greater than that of the central
potential. The threshold approximation for P waves
weighs the two potentials according to the Born ap-
proximation, with the radial wave function ¢ given by
¢=Cr, where C is a constant. If a more realistic wave
function were used, the constant C would be replaced by
a function that decreases with increasing . With such a
wave function the relative importance of the central
potential would be smaller. If the delta function terms
of the central potentials were spread out over a finite
range, this would decrease the effective strength of these
potentials further. (The unmodified delta function plays
no role in any states other than S states.) Hence, the
most appropriate value for the parameter x of Table I
is between 0 and 1.

It is seen from Table I that the states (1,1)*, (8,1)*,
(8,3)—, and (1,3), identified with the P and ¥V nonets,
correspond to the largest eigenvalues for any value of x
in the range 0<x<1. The fact that the eigenvalue
corresponding to the vector singlet is less than the
others is expected, because the SU(6)w-symmetric
direct coupling of this particle is % that of the others, as
discussed in R1. We conclude that the meson bootstrap
model remains self-consistent if the threshold approxi-
mation is relaxed.

The above arguments show that the tensor forces
dominate in this P-wave bootstrap model, since the
eigenfunctions and the ordering of the eigenvalues
(force strengths) are the same for pure tensor forces as
for any reasonable superposition of the central-type and
tensor-type amplitudes.

IV. THE TENSOR-FORCE THEOREM

It was shown in R2 that if only SU(6)w-symmetric
one meson exchange forces are considered, the S-D
amplitudes (tensor forces) vanish for MM and MB
states of certain SU(3) representations. If the M and B
are considered as composites of spin 3, SU(3) quarks
and antiquarks, the tensor forces vanish for every state
that does not contain any quark and corresponding
antiquark simultaneously. The theorem depends only on
the SU(6)w symmetry of the MMM and M BB vertices,
and not on the validity of any quark model. The results

TENSOR FORCES
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TABLE I. Quantum numbers of multiplets with nonzero eigen-
values of the Born-approximation amplitude matrix.

Eigenvalue States
5/3+3 L* @n* 3"
§+3x (1,3~
i3 L9 @5t B3 65 @I
—t+3a 1,5~
—&+3x 1)+ @3t G~ B3 @5
~5/3+2x 11"

of this theorem, extended to include BB and BB states,
are given in Table II,

The fact that all tensor forces cancel in BB states
follows from even simpler considerations, i.e., from the
fact that the spin and W-spin operators are identical for
B states. We hypothesize that the experimental absence
of strongly bound BB states results from the lack of
tensor forces.

Nuclear forces are very sensitive to the breaking of
the SU(6)w symmetry, because nucleons are coupled
particularly strongly with pions, and the pion mass is
much smaller than that of any of the other mesons. In
order to understand the symmetry-breaking effects, we
consider the nucleon-nucleon forces in more detail. It is
seen from Egs. (4a) and (4b) that if the coupling con-
stants at the two vertices are identical, the contributions
to the tensor force of P exchange and magnetic V ex-
change are of opposite sign. In the exact symmetry
limit the tensor force contributions from = and p ex-
change cancel, and those of 3, X, », and ¢ exchange
cancel.

Because of the large p-v mass difference, the p-ex-
change contribution to the tensor force cannot cancel
the long-range part of the m-exchange contribution. If
the coupling constants of Eqs. (1a) through (1c) are
given by SU (6)w symmetry, then the ratio of the p and
w contributions to the tensor force approaches (—1) as
r approaches zero. The prediction that the tensor forces
vanish in NN states is not new; several papers give
results that imply such a cancellation.’ However, the
usual analytical procedure has been to use scattering
data directly to test predictions of SU(6)w symmetry
(or a related symmetry). Because of the large p-r mass
difference, this procedure is unreasonable for any phe-
nomenon affected appreciably by the long-range part of
the potential. The most one can hope for is that the

TaBLE I1. SU(3) representations for which tensor
forces may exist.

Type of state Representations
MM 1,8
MB 1, 8, 10 (but not 10%)
BB 1, 8, 10, 10+, 27
BB None

® See, for example, P. B. Kantor, T. K. Kuo, Ronald F. Peierls,
and T. L. Trueman, Phys. Rev. 140, B1008 (1965).
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symmetry predictions for relative coupling constants
will be satisfied approximately.

Gammel and Thaler obtained evidence for a diminu-
tion at small distances of the tensor force in the proton-
proton state several years ago.® A more recent analysis
of NN data by Bryan and Scott, in which the potential
is assumed to be a sum of various one-meson exchange
contributions, leads to a value of about F2~20 for the
magnetic pVV coupling constant.” This compares favor-
ably with the value of (~14) obtained from SU(6)w
symmetry and the known magnitude of the NN
interaction. Analyses such as those of Ref. 7 omit the
coupling of the NN channels to other channels, such as
the NN* channels, and cannot be expected to yield
accurate values for the interaction constants of the
heavier mesons. The important fact is that the mag-
netic p VN interaction is of the same order as the xNN
interaction.

If SU (6)w symmetry is approximately valid, one does
not expect a large isospin-independent tensor potential
at either short or long range, since the masses of the
isoscalar mesons 1, X, w, and ¢ are of the same order.
This prediction is confirmed by the recent analysis of
Ball, Scotti, and Wong,? (as well as by some of those
listed in Ref. 7). In Ref. 8, the X is neglected, the 7
assumed weakly coupled, and the tensor (c,,¢,) inter-
actions of the w and ¢ taken as zero. The contribution to
the tensor potential resulting from the  and that
resulting from the Dirac (y,) coupling of the » and
¢ are of opposite signs, and are smaller than the = and
p contributions to the isovector-exchange tensor po-
tential. _

We now turn to the BB, MM, and BB states. In the
BB states the P and V,, (magnetic V) contributions to
the tensor forces are additive, rather than subtractive.
However, the P and V,, contributions cancel separately
for all states of the SU(3) representations 64, 35, and
35*, In the cases of MM and M B states the P and V,,
contributions cancel each other for the large representa-
tions, but not for the small representations. One may
understand most of these effects by noting that the
ZZP and ZZV , interactions transform oppositely under
the operation of particle-antiparticle conjugation.

In the original SU(6)-symmetric baryon bootstrap
model, in which the B are P-wave bound states of the
type BM, produced by B-exchange forces, no use was
made of the group SU(6)w.? The validity of this model
requires that some combination of P mesons and mag-

6 J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957).

7Ronald A. Bryan and Bruce L. Scott, Phys. Rev. 135, B434
(1964). A similar conclusion has been reached in other analyses of
this type; many of these are summarized by John W. Durso and
Peter Signell, Phys. Rev. 135, B1057 (1964). The magnetic con-
stant F? quoted above is approximately equal to the constant
[ev+ (2M /my) fy? of Bryan and Scott, or to the constant
(gv+g7)? of Durso and Signell.
(18g6.)s. Ball, A. Scotti and D. Y. Wong, Phys. Rev. 142, 1000

966).

¢ R, H. Capps, Phys. Rev. Letters 14, 31 (1965) ; J. G. Belinfante
and R. E. Cutkosky, #bid. 14, 33 (1965).
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netically coupled V mesons be coupled to the baryons,
the interaction constants being proportional to the
matrix elements of the axial-vector (spin one) generators
of SU(6). The relative contributions of the P and V.,
interactions are not fixed; one may write the meson
states corresponding to angular momentum one in the
symbolic form ¢=aP-+(1—a?)2V,,.2° If one considers
the meson-exchange potentials to BB states that result
from such an interaction, the central potentials are
independent of ¢, and lead to SU(6)-symmetric S-
states potentials.® On the other hand, the tensor po-
tentials depend on ¢; they vanish only if a= (})'2, the
value prescribed by SU (6)w.

V. CONCLUDING REMARKS

The assumption that the tensor forces are more im-
portant than the central forces has been shown to be
valid in the meson bootstrap model based on MMM
vertices. If this assumption is valid generally, the results
of the model are not very sensitive to the breaking of the
symmetry of the MMM and M BB vertices. In fact, the
electrically coupled ¥ mesons do not contribute to the
tensor potentials, so the results of the ‘“tensor domi-
nant” model are not affected at all if the electric V'
interaction constants deviate from the values prescribed
by the symmetry, or if the vertices are not modified as
in Eq. (7). Generally speaking, the largest tensor po-
tentials occur in those states in which the contributions
of P exchange and magnetically coupled V exchange are
of the same sign. Only in rare cases may the sign of one
of these contributions be changed by the symmetry
breaking.

Because of the tensor force theorem of Sec. IV, the
tensor-dominant hypothesis predicts two important
features of the observed hadron spectrum correctly, i.e.,
the lightest hadron states correspond to the smaller of
the SU(3) representations allowed in the octet model
and to the baryon numbers 0 and 1.

Two-particle scattering processes at high energy and
small momentum-transfer are often considered ideal
phenomena for the study of SU(6) and the collinear
symmetry SU(6)w. However, the forward amplitudes
vanish in our meson exchange model. One should not be
surprised if peripheral processes are not the best place to
look for SU (6)w symmetry.

The meson exchange force is not the only force in
hadron physics that may lead to SU(6)w symmetry in
the collinear directions. It is well-known that baryon-
exchange forces are crucial for P-wave M B states. If the
masses of the M and B particles are u and m, the baryon-
exchange forces may be written in particularly simple
forms if (u/2m) is zero or one. Experimentally, this ratio

10 R. H. Capps, in Proceedings of the Third Coral Gables Conference
on Symmetry Principles at High Energy, 1966 (W. H. Freeman and
Company, San Francisco, California, 1966), p. 222.

1 The hypothesis that these central potentials produce S-wave
multiplets corresponding to representations of SU(6) has been
explored by R. H. Capps, Phys. Rev. Letters 14, 842 (1965).
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is closer to zero; this is the well-known static limit. The
baryon-exchange potential cannot be written as a
simple potential in configuration space. However, in the
static limit, the baryon-exchange vertices may be
written in the form of Egs. (1a) through (1c) if the
virtual baryons are in positive-energy states, the spin
operators act in the space of the baryons, and q refers to
the meson momentum. The force affects only P waves in
this limit.

In the bootstrap model of Sec. III, the M are bound
states produced by M-exchange forces in MM states.
The baryons may be assumed to be M B bound states,
produced mainly by B-exchange forces.® In the present
model, the next most important forces in MM and MB
states of odd orbital parity are the M-exchange tensor
forces that induce P-wave-F-wave transitions. This
type of force may help produce Regge recurrances for
some, but not all, of the M and B particles. For example,
there is a tensor force that corresponds to the antisym-
metric-octet, PP-VV process, where the total intrinsic
spin of the V'V state is two. The P-wave-P-wave part
of this force helps produce the V octet in the bootstrap
model of Sec. III. This same tensor potential affects the
j=3, P-F transition amplitude, where the PP state is
the F-wave state. There may be a resonance produced in
this state that is identifiable with the Regge recurrence
of the V octet. On the other hand, only PV states
contribute to the bound V singlet in the bootstrap
model. No P-F transitions involving these states
correspond to total angular momentum 3.

APPENDIX

This Appendix contains the analysis discussed in Sec.
III; the tensor force and central force parts of the
P-wave MM — MM amplitudes in the Born approxi-
mation at threshold are separated. For each amplitude,
characterized by a particular internal [SU(3)] sym-
metry and particular values of the initial and final total
intrinsic spins, there are four angular momenta. These
are the initial orbital angular momentum and total
intrinsic spin (L and S), and the final values of these
variables (L’ and §’). We may substitute the momenta
k and k’ for L and L/, since we are considering P-wave
amplitudes at threshold. The angular momentum analy-
sis of these amplitudes involves coupling k and S, and
contracting with a similar combination of k’ and §'. An
alternate coupling scheme involves combining k and k’,
and contracting with a combination of S and §'. It is
pointed out in R1 that no kXK’ terms exist, so that the
combination of k and k’ transforms under rotations
partly like a scalar and partly like a tensor. These two
parts are the central and tensor force parts, respectively.
The contributions of central or tensor potential to the
states of different total angular momentum j are pro-
portional to the appropriate 6-j coefficients of SU(2).22

12 Convenient formulas for the 6-j symbols are listed by A. R.
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The central potential (k-k’ term) contributes only if
the magnitudes of S and S’ are equal, and gives a
contribution that is independent of j. The separation
may be made easily from the amplitudes listed in Sec.
IV of R1. We list the results below.

There are no central or tensor forces contributing in
the P-wave states of the SU(3) representations 10, 10%,
and 27, as pointed out in R1. We consider next the
states 8%, i.e., SU(3) octet states with I,=¥ =0 mem-
bers of even charge-conjugation parity. The states
involved are VV states of total intrinsic spin one, and
PV states. All states are of total intrinsic spin one, and
the relative contributions of the central and tensor
potentials to the amplitude matrix corresponding to a
particular total angular momentum are the same for
each matrix element. These relative contributions may
be read off from the eigenvalues of Table I, i.e.,

U1=5/3+%x3 U3=_%+%x: Uﬁ:%“"%x’

where the central force term is multiplied by x, and U,
is the eigenvalue corresponding to the total angular
momentum multiplicity #.

The SU(3) singlet cases are even simpler. All the 1+
states are V'V states of total intrinsic spin one, and all
the 1~ states are PV states. In both cases the relative
contributions of the central and tensor potentials may
be read off from Table I.

The remaining case, the 8 case, is the most compli-
cated, since it involves states of all the types (PP),
(PV), (VV)o, and (VV),, where the subscript is the
total intrinsic spin. The PV states are of the nonet
D-type, and the other states are of F-type, as discussed
in R1. If the central force contributions to the Born
amplitude matrices for these states [Egs. (23) of R1]
are multiplied by x, the results are,

=3, U(VV)=%+3x,

j=0, U(VP)=—§+3x,

j=2, (VV)q (VP)

U=(VV)2(—7/12+%x (F6)” )
(VP) —irt+ix

j=1, Ve  (VV)o (VP) (PP)
(VV)2 (/12452 (5/36)'2 G (5/12)'%

U=(VV)0 & 0 (1/48)2%
(VP) 5/1243 0
(PP) i

It is easy to show that the eigenfunctions of these
matrices are independent of x, and that the eigenvalues
are those listed in Table I.

Edgnongis, Angular Momentum in Quantum Mechanics (Princeton
University Press, Princeton, New Jersey, 1957), Table V.



