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Particle mixing for meson fields of arbitrary spin is considered in a field-theoretic context. Expressions for
the field renormalization constants and mixing parameters are given in terms of the physical masses, assum-
ing Okubo-type octet breaking. Broken-SU(3) coupling constants are evaluated for the 2+ meson decays and
the predicted partial widths compared with experiment. Satisfactory agreement is found.

I. INTRODUCTION

S TATEMENTS about the validity of SU(3) for reso-
nance decays are statements about the validity of

assuming exact SU(3) coupling constants and physical
masses for the decaying particles and their decay prod-
ucts. That is, the assumption is made that the SU(3)
symmetry-breaking interaction (neglecting electro-
magnetic effects) renormalizes the SU(3) multiplet
masses to the physical masses without renormalizing
either the Gelds or the vertices. This is a strong as-
sumption, but since the mass renormalization due to
the SU(3)-breaking interactions is relatively small

(hm/m=10%), it is expected to give good qualitative
results, as indeed it does.

In addition to renormalizing the fields, the SU(3)-
breaking interactions will induce mixing between Gelds
with the same medium-strong quantum numbers. The
Grst aim of this paper is to obtain expressions for the
Geld renormalization constants and mixing parameters
for mesons of arbitrary spin. This we do in Sec. II by
a generalization of the field-theoretic approach of Cole-
man and Schnitzer. '

In Sec. III we derive the equations to be satisGed

by the mixing parameters of these meson Gelds of arbi-
trary spin. Assuming Okubo-type' octet breaking, we
examine the consistency of these equations and their
suKciency for determining the eRective parameters in
the theory.

Assuming that we can neglect vertex renormalization
(for which we have no method of calculation), we exam-
ine the renormalized coupling constants in Sec.IU, in par-
ticularly for the J =2+ mesons. The relations between
these coupling constants and the unrenormalized cou-

pling constants are discussed and the predicted partial
decay widths are compared with those of the unrenor-
malized SU(3) and with experiment.

IL RENORMAIIZATION AND MIXING

Let us consider meson Gelds of arbitrary spin l de-
scribed by tensor fields A'&»(x) Lwhere i is an SU(3)
index and (p) is an abbreviation for pgcs ~ pQ. The

*Permanent address: Imperial College, London, England.
i S. Coleman and H. J. Schnitzer, Phys. Rev. 134, 863 (1964).' S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 942 (1962);M.

Gell-Mann, Phys. Rev. 125, 1067 (1962).

matrix propagator is of the form

(ol r(a'(»(~)A („)b)) lo)

~'P(2&) & '"" "'~"l &t l(P') (~ 1)

where 6@&»~,&(ps) has a spectral representation of the
form

(s)(pl (P ) — dry (j!P rl+z )e

&& ((—1)'P~(»( ) (~s)w"(~')

+Z ~ (»()(~')p.*'(~')

+P r„(»(„)(ns )~„' (m')). (2.2)

All operators are sytnmetric, P~(Ps) being the normal
spin-l projection operator and P, (Ps), (r =0, 1, , / —1)
being spin-r projection operators in 2l indices associated
with the divergence of the fields. The projection opera-
tors T„(Ps) LL=@~P if 1 is even and s'(P —1) if / is odd)
are constructed from trace operators and spin projection
operators and are associated with the traces of the
Gelds. ' That is, if we have current conservation the spec-
tral functions p„(r=0, 1, , / —1) and all but one o,
are identically zero, whereas current tracelessness re-
quires all the 0„to be identically zero. We do not assume
either divergence-free or traceless currents.

The major assumption that we make is that the
SU(3)-breaking interaction leaves unaffected the vac-
uum expectation values of the meson-Geld equal-time
commutators and their Grst time derivatives.

Let the unperturbed spectral functions be p, ' (r= 0,
1, , j) and o,' (r= 1, 2, ~, L). Then, since Eq(ms)
contains terms in m 2' for s=0, 1, , l,4 we obtain
(1+1) relations between the perturbed and unperturbed

' The relevant projection operators for spin-2 fields (the case of
most interest to us) are given in R. J.Rivers, Nuovo Cimento 34,
386 (1964).

4 The spin-/ projection operator P&(ps) is a sum of products of
l spinwne projection operators. Since P&(iS) =g~-p&p, /pS,
Pq(ps) contains terms in p~ for s=0, 1, ~, l
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spectral functions. These can be written in form

L-1
dm'm-"{ (pi —p, ')+ P a, ( ) (p,—p, ')

If, in the limit of small mass-breaking, we take

m/M=1+5,
Z=11~,

we have

(2 9)

L

+p b (') (0 —~ 0))*'=0, (2.3)

for s=0, 1 -. / where u (' and b„(' are numerical
coe%cients, the values of which are obtained from the
explicit form of the projection operators.

The only spectral functions with poles are p& and p&'.

Normalizing the unperturbed 6elds up to the super-
strong interactions, we have

pioij(m2) —Q b ijtI(M 2 m2)+~)0ij(m2)

(2.4)
p("(m') =P Z "8(m„'—m )+rp'(m')

where

M= 2/3 . (2.10)

E«„)(,) (m,')Z,
~(.)()(p')"i.= Z (—1)' (2.11)

mp +zE1,2

That is, the extent to which the (relative) field renor-
malization differs from unity is proportional to the ma.ss
breaking, the coeScient of proportionality being twice
the spin. '

Let us now consider Eq. (2.7) in the case of particle
mixing. Suppose we have fields 1 and 2, with SU(3)
masses Mi and M2 that, on switching on the SU(3)-
breaking interaction are renormalized and mixed, the
resultant physical 6elds having masses m1 and m2.

The 2)&2 propagator submatrix has as its pole term,
using (2.2) and (2.4)

Br@=8„'8„~.
Let us define D(p') by

2.5

The masses M, are the SU(3) masses of the particles
considered, m„are their physical masses [assuming
SU(2) invariance], and bio, ri have no poles. The Z, '&

are relative renormalization matrices which, for the case
of no mixing, are the ratios of the field renormalization
constants with and without symmetry breaking, and for
the case of mixing contain all the mixing parameters.

Substituting (2.4) into (2.3) we obtain

D(p2) = Q Z„(p2 m,2+—ic) i- (2.12)

n=1—(P 8 )
—' (2.14)

and

This can be inverted to give'

D '(p') = (p' —Q M,.'b,+np'+p), (2.13)

where

/—1

dm m ((Tl 7')')+P ()'."(p. p')—
r=o

P=P M,2b„—(P Z„/m. „m)-' (2.15)

+Z b "(~ -~"))*' are real symmetric matrices. Let us take

b 1 f ) —(1—a)Mi2
+P (Z„/m„"—b,/M„")'&=0, (2.6) u=

e
(2.16)

(1—c)Ms2)

for s=0, 1, ~ ~

We now make the assumption that the integral over
the continuum can be neglected in (2.6) for the case
s= /, in which case the power of m in the integrand is at
its least and hopefully causes the greatest damping in
the integration. This approximation is improved if we

have restrictions on the currents (e.g., partially or fully
divergence-free) that cause some spectral functions to
vanish identically.

We therefore approximate (2.6) for s=l by

Then

(2.17)

I'rom (2.12) we see that (2.17) gives Zi and Zg as

~1
[bd f'j(mim m—s2)—

/bp' (AM)' fp'+e-
D—

&. (p2)
fp'+a dp' cN,')—'

Q(Z„/m„2() =g(b„/M„2&) (2 7)
(dmP —cMP —(fmP+ e))

E—(fmi2+e) bmim —gM 2j

[where the SU(3) indices have been omitted for clarity].
For the special case of a single field this gives

Z= (m/M)" (2.8)

' Thus the partially renormalized coupling constants obtained
by renormalizing the fields alone vrill satisfy the sum rules ob-
tained from 'As-breaking in the vertex function (in the absence of
mixing) to first order in mass-breaking.
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zs=
P&—f ](m,'—ms')

r
—dms +cMs

xj
fm, '+e

Alternatively, from (2.7), (2.12) and (2.17) we see
that we can express Z~ and Z2 in terms of a renormalized
mixing angle P, in immediate analogy with unrenor-
malized SU(3), as

a= (1+2e)~-' b= (1+2e)~ (3.8)

unitary singlet. The assumption that'the- symmetry-
breaking part of the Lagrangian transforms like part of
an octet' determines M&', a and b. For simplicity, we
adopt an inverse mass-squared law. H m3 is the physical

fmss+e mass (neglecting e mdi—fferences) of the isospin triplet
and m 4 the physical mass of the isospin doublets we take

bm—ss aMP
Mp=mss(1 —2e)=m4'(1+e), (3.7)

cos'P

PcosP s—in/

We consider Eqs. (3.1) to (3.5) for particular values
M m

I (2 20) 0
P' sin'P

A. t=o
r sin'P P cosP sinP)

Zs ——Zssj
EP cosP sinP P' cos'P

Equations (3.1) to (3.5) give

=0
(3.9)where b=d= j.

(2.22)
(as required by (2.14)] and

Z =mP'/Mts', (i=1, 2),

I=My/Ms.
and

(2.23) mg'm '= acing'M2'

mP+mss= aMP+cMss,
(3.10)The consistency of (2.18) and (2.19) with (2.21) and

(2.22) under the restriction of 6rst-order mass breaking
is discussed in the next section.

III. CONSISTENCY CONDITIONS

%e now consider the restrictions imposed on the pa-
rameters in (2.16) and the masses as a consequence of
(2.'/) and (2.11).

B. l=l
Equations (3.1) to (3.5) give

The requirement that D(p') has poles at mP and
mss (2.11) gives e=0,

(3.11)c=c=1)(3.1)mPmss(bd f') = (acMP—Mss —e')

where aMP is given by (3.'/) and (3.8) in terms of mss

and m4'. Thus cM~' is determined. The parametrization
is thus consistent and can be seen to be equivalent to
the normal mixing theory.

and Las required by (2.15)] and

(m a+ms') (bd —f') = (bcMss+adMP+2ef) . (3.2)

Equation (2.7), taken in conjunction with (2.18) and
(2.19) gives three more conditions. These are

mamas(bd f') =MPMs—s

(mP+mss) (/p// f') =bMss+—dMP,
(3.12)

f/), ( t+e/), (=0,
(mt' ms') (bd f') =M—P'(dh( t—cMs'h'i), —

where b,MP are given in terms of mss and m4' by (3.7)
(3.3) and (3.8). The parametrization is thus consistent. Since

in this paper we are mainly concerned with 7~=2+
decays we shall not discuss spin-1 mixing in any detail.

(mP ms') (bd f') =Ms" (b—h~~ aM—PA~), (3.5)— C. l=2

where
Substituting for e from (3.3) into (3.1) and (3.2) we

have three homogeneous equations in d,fs, and cMss
with coeKcients that, by (3.7) and (3.8), are functions

Let us suppose that, before SU(3) breaking, field 1 of the physical masses m&, ms, ms, and m4. This gives
described an I= F=0 member of an octet and 6eld 2 a rise to the determinantal mass relation

(a~/hs)s mpmss-
2d, g/hs —(mP+ ms')

—(mp —mss)

my'm2'b

(mP+mss)b aMP—
(mt' —ms') b—M g'Ag

—aM~'

3Ig462

=I'=0 (3.13)

s The "unphysical" octet mass m (m '=ubIP/b) is given by 3m„s=4m&~ —ma~, and b ~ (m„s/MP)'. =
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If we define 6; by NpP=Mts(1+6;) for i=1, 2 Eq.
(3.13) givesr

P=0(e'd„.,eh s 6 ') (3.14)

and, insofar as we are taking only first-order octet
breaking, is satisfied identically to the order required.

Suppose m~, m2, me, and m4 are taken from experi-
ment. Let us provisionally put M&2 ——M&2. We can then
solve Eqs. (3.1) to (3.5) for c, d, e, f to give values
Cp dp ep fp

Insertion of these values in (2.18) and (2.19) will give
the renormalized angle P as defined in (2.20) and (2.21).
Since Eq. (3.13) is not satisfied exactly the values of P
obtained from (2.18) and (2.19) will differ slightly.

This angle is to be compared with the unrenormalized
mixing angle n given by

sinsrr= (~rs —Mrs/g) (m P—mp ) (3.15)

We are justified in taking Eq. (3.13) to be approxi-
mately satisfied if for given m& and m2 the uncertainty
in P is of the same magnitude as the uncertainty in n
arising from the experimental errors in m~ and m2.

Pp ——Ps+3 '"X I, (43)

where I'8 is the pseudoscalar octet in which g has been
replaced by p cosg—X sin8, and

X =X cos8+rl sin8. (4.4)

We take account of the f', f mixing as follows: Let
us consider an identical decay of f', f (i.e., the same
decay products). In the absence of symmetry-breaking
interactions let us take Gf and Gf to be the respective
coupling constants for the unperturbed f' snd f.

We can define unrenormalized but mixed coupling
constants gP (i= f', f) by the equations

(8=&10') but the eBects of mixing can be appreciable.
For those cases where the decay products contain q we
Grst calculate decay fractions on the assumption that the
p is a pure member of an octet. When the decay fraction
is appreciable we estimate the e6ects of mixing by taking
a mixing angle of +10' and relate the g and X coupling
constants by taking the octet and singlet together as a
nonet

ms'= Mrs/a. (4.2)

IV. THE J"=2+ NONET

The known I =2+ nonet are the f'(M=1500&20,
1"=80), the f(M=1253&20, I'=118&16), the Ap(M
= 1324&9, I"= 90&10) and the E*(M= 1405&'8,
I'=95+11). These masses approximately satisfy the
Schwinger-type mass formula'

(mr —~s ) (mf ~s )= 8/9I mx mg, 5—, (4.1)

where

where

Z.Pg.P2 G2'Z'G (p= fI f)

gp =Gp cosp —Gr I slnp &

gr =GII slnP+Gy I cosP

(Gp)

This gives Drom (2.20) and (2.21)5

(4.5)

(4.7)

(4.8)

In calculating the partial decay widths of the 2+ nonet
we shall make the further approximation that we can
neglect vertex renormalization and can consider all the
coupling constant renormalization to arise from the field
renormalization. In many ways we shall adopt the
nomenclature of Glashow and Socolow" in order to
facilitate comparison between our results and those of
unbroken SU(3).

A. 2+ —+0-0- DECAYS

The 0 nonet consists of the m, ~, q, Xparticles. From
Eq. (2.7) we see that the 0 particles are not renormal-
ized by the symmetry-breaking interaction, and from
(2.18) to (2.21) we see that a mixing angle can be de-
fined in the usual way. " This mixing angle is small

7 The consistency condition for general spin l&2 is obtained
from (3.13) by replacing 6&, 61 by b, &, 6& 1, respectively.' A. H. Rosenfeld et a/. , Rev. Mod. Phys. 37, 633 (1965). The
uncertainty in the f' mass is that quoted by S. U. Chung et al.,
Phys. Rev. Letters 15, 325 i1965l.' J. Schwinger, Phys. Rev. 135, B816 (1964)."S.L. Glashow and R. H. Socolow, Phys. Rev. Letters 15,
329 (1965).' J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962).

grprpp i grprpp ( f& f ) )

where, from (2.20) and (2.21),

ZP&= mP/Mrs.

(4.9)

(4.10)

The unrenormalized SU(3) coupling constants are g;p~p
in which P has been replaced by rr and I put equal to
unity.

If gA,
' and g~*' are the A2 and IC* coupling constants

in the absence of symmetry breaking, the renormalized
coupling constants gA, and gz~ are given by

gA2Pj. Pg —~Ay gAgPgP2 P

1/2 0 (4.11)
and

gZ+P1Pg ~++ gX+PgPg
—g 1/2 0 (4.12)

Z~, 'I'= m~, '/Mt' Zxe'~'= maze'/Mrs (4.13)

We note that taking M~2AM22 does not increase the
number of effective parameters.

The renormalized coupling constants for f, f'~ Pt+Ps are thus



TABLE I. Decays of Jp =2+ nonet into two 0 mesorls.

my'= 1.56 BeV',
mp'= 2.30 BeV,

m~~'= 2.00 BeV',

esp, ' ——1.75 BeV',

which, with (3.1) to (3.8) give

M1'= 1.91 BeV',
a= 0.91,
b= 0.83,

co= 1.17,
do= 138,
eo= +0.27 BeV',

fp= +0.29.

(4.14)

Decay modes Rate in terms of Ii and Gb Predicted rate (MeV)&

f -+n+m
f -+g+x
f ~8+9~

Ag -+y+~&
+2re

A. g -+ X+X
K* ~X+~
Z~ ~X+yd
j' -+ ~+m
f' ~x+x
f' ~ 0+'re
f' ~ e+m'

161ZIo(2F sinP+G cosP) ~

21.2Zp( S si~-G cosp)&
1,$ZIO(2p sinp —G cosp)

20$ZgP'&
114ZggP&

113'~
77SZz+F~

24ZE."sF~

300ZI~o(2P cosP -G sinP) ~

107ZI o( Z cosP+G sinP)&
17.3ZI.o{2Pcosp+G sinp)'
17.3Zy~o(0.91I"cosp+G sinp) ~

1/0 lIO 110 110
8.2 7.9 7.6 7.0
0.$ 0.4 0.4 0.4
8.2 9.6 10,0 12.0
4.$ $.1 $.$ 6.6
4.$ $.1 $.$ 6.6

40 47 49 $8
1.3 1.$ 1.7 1.9
1.0 Z.3 40 P.O

48 49 Si $3
14 1$ 16 17
6.9 7.3 7.6 7.7

+ All the charge states are included.
b The phase space is evaluated in units of 10-~ Beve.
o Input values are italicized. Of the two values of P/G consistent with

the input data we have taken Ii/G &0 since the alternative solution is in
total disagreement with experiment.

d The y is here taken to be a pure octet member.
o An g -X mixing angle of +10' has been taken and the y,X coupling

constants related by Eqs. {4.3) and {4.4).

These values give"

0,'= 31.2 )

P= 22.7', (4.16)
Tp= Ts+3'"fp& (4.19)

Okubo nonet ansatz" that the unperturbed octet and
singlet form a degenerate nonet

gyo&= 0.82, Zy ~&= 1.20,

gg, '~'= 0.92 Z~~'I"= 1.05.
(4.17)

We take the effective SU(3) interaction Lagrangian
in the absence of symmetry breaking as

L,rt=6"I' Tr(Ts(Ps, Es))+Gpfp Tr(I'sPs), (4.18)

where Ts is the unperturbed 2+ octet and fp the un-
perturbed singlet. F and Go are the two independent
coupling constants. Writing lsG=Gp Drom (2.20) and
(2.21)j, all the 2+~ 0 0 partial decay widths can be
expressed in terms of the two parameters P and G.
Tabl.e I gives the predicted partial decay widths using
I'(f-+e-+e) and 1'(f' —+e.+e) as input for different
values of the latter.

From (4.11) and (4.12) we see that the renormaliza-
tion depresses the ratio of A2 to E*partial widths by
a factor of Z~,/Zx*=0. 77. Although this devia, tion is
slgnldcant~ lt ls hard to dlstlngulsh experlI11entally be-
tween the renormalized and unrenormalized predictions
since the only decays in which there is no g—X uncer-
tainty are As ~E'+E and &*~E+rr. &oth at present
have experimental errors larger th.an 20%, in addition to
the former partial width being small.

For f and f' decays the deviations from unrenormal-
ized SU(3) are less transparent since we have a two-
parameter Gt. The one obvious diGerence is that the
depression of the mixing angle by renormalization wiH

not give the observed stmng suppresssion of f' ~ rr+rr
decays (relative to f~ e+e. decays) if we assume the

"The calculated values of P horn (2.18) aud (2.19) are 22.2'
and 23.2; respectively (vie take P and a to be positive).

and in addition forbids terms proportional to Tr T9 in
the effective interaction Lagrangian. This assumption
gives I= 1, G=2v2F, whereas for the input values used
in Table I the ratio G/P varies fmm 3.1 to 4.2.

We can eliminate P and G and obtain several relations
between renormalized and unrenormalized partial
widths. Qualitatively we 6nd it difficult to reduce the
f~E+E branching fraction below 7% Lin contrast
to unrenormalized SU(3)g and we require less suppres-
sion of f'~ a+z than is necessary in unrenormalized
SU(3). For given f~ e+e and f'-+ z+z partial
widths, the f'-+ E+E partial w'idth is increased by
40—60% on renormalization to give rather better agree-
ment with experiment than the unrenormalized SU(3).

From Eq. (2.7) we see that the 1 nonet Lp, tp,p,
E*(890)j is renormalized. From Eqs. (2.18), (2.19) and
(3.12) we see that we do not alter the number of effec-
tive parameters by taking d= 1.Taking

m~~'= 0.794 BeV',

m p'= 0.582 BeV',
m„~=0.513 BeV,
m@~= 1.039 BeV,

(4.20)

/12= 0.708 BeV,
A&"2'= 0.693 BeV, (4.21)

"S.Okubo, Phys. Letters 5, j.65 (j.963).

we can calculate Mp and 3IIss for the 1 nonet (denoted
by EP and Nss to avoid confusion). We get
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from (3.12). This gives Lfrom (2.18)jt4

(Z 11)lie—0 434

Zz "~' tnz=. /Nt 1.0——6,
and

Z,'I'=m, /Nt 0 9——07..

(4.22)

V. COMPARISON V@TH EXPEMMEÃT

A. A2 Decays

The decay fractions are not yet well determined ex-
perimentally. Deutschmann et al.15 gave

r(A ~ g+vr)/r(A ~ p+m)=0. 0+0.03 (5.1)

gzyp=Zp' Zv grip

when T is A2 or E* and

(4.23)

Except for the case of E*-+co+E we define gr v~'
in analogy with gz»'.

For these cases the renormalized coupling constants
are given by

in a later paper Deutschmann ef ul. 16 give

I'(A z
—+ r)+z.)/r(Az ~ p+z) (0.03. (5.2)

This is consistent with the work of Chung et ul. '~ who
give

r(A2 —+ p+z)/r (Az) =0.91 o, +

gTv'p ~T '~v gvTp (4.24) and

when T is f or f'.
For E*~(a+E,

gz~ z=Zz~'I'(Z ")'I'gz~e, z' (4 25)

where gz«e, ze is the SU(3) coupling constant of E*
and E to the I= F=O member of the unperturbed
vector octet.

In the absence of symmetry breaking we take the
eBective Lagrangian to be

z,tt HT (T $V,P——]) (4.26)

TABLE II. Decays of J~=2+ nonet into one pseudoscalar
and one vector meson.

Decay mode

A2 ~P+m.
E+ ~E+(890)+~
E+ ~p+E
E*~ eo+EJ'~ Ze+X

Form in terms of Hb

54.4Zg~ZpH~
17.4' ZK (8g0)H
4.5Z~'ZpH~
3.4Z~'Z JIFF~

14.4'.0Z~'(890& cos'pII

Predicted rate
(MeV)

PO 80 70
51 46 40
9.7 8.6 7,6
1.7 1.5 1.3

46 41 36

a All charge states are included.
b Phase space is evaluated in units Of 10 ii Bev~.
o The input value is italicized.

'4 We do not need to calculate any other matrix elements of
Zu and Z@ because we are not considering any decays with qb in the
decay products and the pure SU(3) 1 singlet does not couple to
the 2+ octet~ octet.

where Vs is the unperturbed vector meson octet.
In Table II we give the predicted values of 2+ —+ 1 0

decays using r(A& —+ p+rr) as input.
Because of the vector meson renormalization the de-

viations from unrenormalized SU(3) can be greater than
in pseudoscalar decays. For example Zz+Zz~&sso&/Zzg,
=1.75. This enables us to make predictions for E* and

A~ decays that are in better agreement with experiment
than the prediction of unrenormalized SU(3). However,
the f'~E*+E decay is renormalized by a factor of
Zz~&sso&Zt'cos'P/Zgg, cos'+=2.6 relative to the Aq
-+ p+z decay. This leads to an f' —+E*+E partial
width rather larger than suggested by experiment. We
note however that the phase space is rather sensitive to
the mass values that are taken.

r (Az ~ q+z)/I'(Az) =0.03+0.03, (5 3)

but not in good agreement with the results of Trilling
et al.' which are

The predicted decay fractions are seen to be in agree-
ment with these results.

B. f Decays

There is no information on f~ p+p. The decay
fraction for f~E+E is given by Chung et a/. '4 as

r (f +E+E)/r(f) (0—04 .(5.8)

which is smaller than that predicted in fable I.
» M. Deutschmann et al., Phys. Letters 12, 356 {1964)."M. Deutschmann et at. , Phys. Letters 20, 82 (1966).» S. U. Chung, O. I. Dahl, L. M. Hardy, R. I. Hess, L. D.

Jacobs, J. Kirz, and D. H. Miller, Phys. Rev. Letters 15, 325
(1965).

18 G. H. Trilling, J. L. Brown, G. Goldhaber, S. Goldhaber, J.
A. Kadyk, and J. MacNaughton (unpublished). See G. Gold-
haber, in ProceeChngs of the Second Coral Gables Conference on Sym-
metry Princi ples at High Energy, 1965, edited by B. Kursunoglu,
A. Perlmutter, and I. Sakmar (W. H. Freeman Company, San
Francisco, California, 1966).

» Aachen-Berlin-Birmingham-Bonn-Hamburg-London (I.C.)-
Munchen Collaboration, Phys. Rev. 138, 897 (1965).

r(A, ~ p+ ~)/r(A, )=0.70,
and

r(Az ~ r)+z)/r(A2) =0.20, (5.4)

or with the results of Aderholtz ef ul. ' who give

r(Az —+ rt+z)/r(Az ~ p+rr) =0.3+0.2. (5.5)

We see from Tables I and U that g—X mixing as given
in (4.3) and (4.4) give predictions in reasonable agree-
ment with (4.23), (4.24) and (4.25).

The A& -+ E+E decay fraction is given by Deutsch-
mann et ul 16 as

r(Az-+ E+E)/r(Az~ p+z) =0.03&0.02, (5.6)

and by Chung et ul. ' as

I'(A, -+ E+E)/I'(Az) =0.055&0.015. (5.7)
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C. X*Decays

Chung 8I cl. glvc

F(Ea ~Ea(890)+~)/F(E*~ E+~)=-',~sr
F(Ee~&+E)/F(E*~E+~)&—,', . (5.9)

Segar et al."give

F (E*~E*+~)/F (E*~E+~)=0.30~0.&O

and F(Ea —& p+E)/F(E*-+ E+s)&0.10, (5.10)

vrhereas the Brussels-CERN Collaboration" gives

F(E*~E*+~)/F(E*~E+~)=0.70+0.15
and F(Ee~ p+E)/F(E*~E+~)&0.10. (5.11)

Badlel 8I cl. glvc

F(E*-+E+s):F(E*~E*(890)+s):
F(E*~E'+&) F(E"' E+~) F(E*~E+~)

= (37a19):(41+14):(13W5):(7+4):(2+2). (5.12)

The predictions of Tables I and II are in good agree-
ment vrith these last results.

D. f'Decays

There is no information of f' ~ s+s except that it
is small. Barnes et al.23 give

F(y'~ E'"+E)/F (f'~ E+E)=0.25, (5.13)

vrith vrhich the theoretical predictions disagree, the
lowest ratio Dor F(f'~rr+m)=90 MeV and. F(As
-+ p+s )= 70 MeVj being 0.68.

VL CONCLUSION

In determining mixing parameters and 6eld renor-
malization constants for mesons of arbitrary spin in
broken SU(3) the major assumption. that we have made
is that the vacuum expectation values of the equal-time
commutators and. their 6rst time derivatives are un-

»A. M, Segsr (unpubhshed) quoted by A. H. Rosenfeld, in
Proceed~rigs of the Oxford Conference on Elementary Particles, 1965
(Rutherford High Energy Laboratory, Harvrell, England, 1966)."Brussels —CERN Collaboration (unpublished) quoted by
A. H. Rosen6eld, in Proceedings of the Oxford Conference on Ele-
mentary Particles, N65 (Rutherford High Energy Laboratory,
Harwell, England, 1966).

ss J. Bsdier et at , Phys. Lette. rs 19, 612 (1965).
Is V. E.Barnes et a/. , Phys. Rev. Letters 15, 322 (1965).

affected by the SU(3) syrrunetry-breaking interactions.
This leads to relations betvreen perturbed and unper-
turbed spectral functions that have been approximated
by neglecting the continua for those cases vrhere the
integral over the continuum seems most likely to be
damped strongly by high povrers of the integrated vari-
able in the denominator of the integrand.

This approximation leads to spin-dependent field re-
normalization constants and to consistency conditions
between the mixing parameters of meson 6elds of spin
greater than one that are exactly satisfied. to 6rst order
mass breaking. Taken. in conjunction with Okubo-type
octet breaking, vre 6nd the equations are sufhcient to
determine all the effective parameters in the theory.

The further assumption that vertex renormalization
can be neglected enables us to obtain broken SU(3)
coupling constants in terms of exact SU(3) coupling
constants, renormalized mixing angles and simple re-
normalization constants. In the absence of mixing to
first order in mass-breaking the broken SU(3) coupling
constants are linear in the mass-brealang of the interact-
ing particles and hence satisfy the usual 6rst order sum
rules obtained from P 8 breaking.

When applied to J~=2+ nonet decays the renormal-
ized theory seems to be an improvement over the un-
renormalized theory for Ea decays and f~E+E
decays. It suGers in predicting rather too large a partial
width for f'~E*+Z on existing experimental evi-
dence. The best over-all picture is given by using as
input the values I'(f~ s+s) = 110MeV, F(2s ~ p+rr)
=70 MeV, F(f' +s+s) =4——9 MeV, and r)—X mixing
to be +10'.

The unrenormalized SU(3) results can be easily ob-
tained from the renormalized decay ampEtudes by re-
placing the renormalized mixing angle by the usual un-
renormalized angle and putting all renormalization con-
stants equal to unity. The deviations in decay widths
can be as large as 100%, depending on the, processes
considered.
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