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where fz is the renormalized orgy coupling constant:

f-.' stttv)s g gas
=is(1—2e )' (five=0 08.);

fiv' stt f g.tv„'

or

an uncertainty on the order of a factor of 2 in the coeK-
cient of (15) is probably not an overestimate. With the

16
choice D(W)=W rrt, —however, the sign of the mass
difference appears quite stable" within the framework
of the Dashen-Frautschi method.

0.88

(1—2~.)'
=3.5 MeV for e„=0.75

(Martin's value), (17)

as compared to the experimental value 3rrt= (6.5=1)
MeV. The expression (17) becomes catastrophically
large (88 MeV) if no= 0.55, which, as was noted in Sec.
2, corresponds to the highly unlikely case g z-.sjg &tv'
=0.01. For 0.55(cro(0.75, Eq. (17) gives 3.5 MeV
&5m&88 MeV, which is consistent with experiment.
In view of the crudity of the D function used and the
drastic assumptions made in extracting the form factors,
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'2 To estimate the uncertainity in the mass difference due to
variations in the numbers a, b, c, etc., we obtained values of the
latter using the older Cornell data LK. Berkelman, in Proceedings
of the 1963 International Conference on Nucleon Structure (Stanford
University Press, Stanford, California, 1964),p. 45$. Some of these
values differ considerably from those given in (5') and (9). Upon
evaluating the mass difference, however, there is much cancellation,
with the result that 5m suffers only minor changes.
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The reciprocal relationship between conservation laws and symmetries is established for those theories
wherein the equations of motion are derivable from a variational principle. It is shown, for a general varia-
tional problem with arbitrary number of independent and dependent variables, that to every diver-
genceless vector there corresponds another which differs from it, in general, by terms that vanish when
the Euler-Lagrange equations are satished and which has the structure obtained by applying Koether s
theorem to some symmetry transformation. Thus existence of a continuity equation implies some invari-
ance property of the variational problem (converse of Noether s theorem). The Lagrangian is invariant,
in general, up to a divergence. Derivatives of dependent variables of any arbitrary 6nite order are allowed
to appear in the Lagrangian; it is assumed, however, that it does not contain independent variables ex-
plicitly. A systematic procedure is formulated to deduce the invariance property associated with a given
conservation law and is illustrated by some examples.

I. INTRODUCTION

' 'N a previous paper' an attempt was made to prove,
& - in the Lagrangian formalism of local Geld theory,
that every conservation law has associated with it some
symmetry property of the (coupled) field system. An
analogous proof can, of course, also be worked out' in
particle mechanics. The proofs given in Ref. 1 and in a
previous work by Horn' have rather severe limitations.
Apart from assuming the existence of the space inte-
grals of the time components of the conserved currents,
they involve very restrictive assumptions about the
structure of the conserved quantities and of the Lagran-
gian. In this Paper we shall give a more general proof
whose scope has been outlined in the abstract.

' Tulsi Dass, Phys. Rev. 145, 1011 (1966).' Tulsi Dass (unpublished).' D. Horn, Ann. Phys. (N. Y.) 32, 444 (1965).

Instead of specializing to speci6c dynamical systems,
we shall speak of a general variational problem leav-
ing the nature of the variables unspecided. Indeed,
Noether's theorem' ' itself deals with variational prob-
lems in general, without having any physics associated
with it. Like every other theorem in mathematics, it
becomes a statement of a physical law only when the
variables are identified with the dynamical variables of
some physical system.

In Sec. II we collect some useful formulas from the
calculus of variation. The next section contains the
above-mentioned proof' of the converse of Noether's

4 E. Noether, Nachr. Akad. Wiss. Goettingen, Math. Physik.
Kl. IIa, Math. Physik. Chem. Abt. 1918, 235 (1918).' E.L. Hill, Rev. Mod. Phys. 23, 253 (1951).

A. Trautman, in Brand@is Summer Institute in Theoretical
Physics, 1964 (Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1965), Vol. I.
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theorem. In Sec. IV we formulate a systematic proced-
ure to deduce the symmetry associated with a given
conservation law, and to illustrate this we consider as
examples the zilch tensor~' and the two conservation
laws proposed by Fairlie' as counterexamples to the con-
verse of Noether's theorem.

II. NOETHER'S THEOREM AND
CONSERVATION LAWS

Consider a general variational problem in which there
are m independent variables x„and S dependent vari-
ables Q~(x). When the Lagrange function contains de-
rivatives of the Q's up to, say, nth order, the Euler-
Lagrange equations take the form'

parameters c, (r=1, . f) by writing

bx„= &„X„",

~e.=.,~."(Q),
be~ = ~.B'~"—Q~.~X~"3=—"C'~"

80„=&„Ii„",

where

O'„'=F„"+ZX„"

8„",„=0, (10)

n ~1
+Z Z(—1)'~ @ ',;., -'; (ll)

a 1 j 0 ~~QA, vl ~ vq-gp

one obtains from Eq. (8) the conservation equations

(1)
With m=1, Eqs. (1) and (11) take the familiar form

where Q~,„—=B„Q~=—Be~/Bx„and the summation con-
vention has been used. If the infinitesimal transforma-
tion and

82 ( 82
=0,

Be (Be
(12)

82+ (80„+Zbx„),„—=0,

where 5 denotes the local variation

(3)

x„~x„'=x„+5x„,
Qg(x) —+ Q~'(x') =Qg(x)+beg(x)

is a symmetry transformation, "" ' the following identity
must hold':

O'„' =F„"+ZX„"+ C&~"

A, p

=F„"+ Z8„„— Qg „X„'+ 0'~". (13)
&Q~,, — &Q~,,

III. CONVERSE OF NOETHER'S THEOREM

&Q.=e.'(*)—e.(') =~e.(*)—e..~*.,
bc= Z(x,e'(x)) —Z(x,e(x)),

(14)
bO„ is an arbitrary in6nitesimal vector which vanishes
if the Lagrangian is form invariant under the transfor-
mation (2).

Now, it is easy to show that

Apart from the index p, the quantity J„may carry an
arbitrary number of indices representing its transfor-
mation properties in various spaces. These indices will
be suppressed in the following discussion.

Now, Eq. (14) holds, in general, by virtue of the equa-
tions of motion (1), some given subsidiary conditions,
and certain identities that may be applicable. Calculat-
ing (J„,„) and substituting the identities and the sub-
sidiary conditions (which we treat as identities) at ap-
propriate places, we will be left with an identity of the
form

where

Substituting (5) in (3), we get
~ . =f([~j~)

[Z],3Q,+(8fl„+5„+ZSx„)„—=0.
where the function f vanishes with its argument. When
J„ is a differential expression involving Q s and their
derivatives (with a possible explicit dependence on x),
this identity will take the form

This identity is known as Noether's theorem. %hen the
Qz's satisfy the Euler-Lagrange equations, this gives

(bQ„+bt„+Zbx„),„=0
~P,y= (GA+GAP~ga+GAPv~y~~+ ' ')[+]A 1 (16)

We are given a quantity J„(x,e(x)) satisfying the
(4) conservation equation

Expressing the variations in terms of a discrete set of

~ D. M. Lipkin, J. Math. Phys. 5, 696 (1964).' T. W. S.Kibble, J.Math. Phys. 6, 1022 (1965).' D. S.I"airlie, Nuovo Cimento 37, 897 (1965).
'o R. Courant and D. Hilbert, Methods of Muthenutical Physics

gnterscience Publishers, Inc., New York, 1962), Vol. I.

where the 6's may in general be functions of the x's and
of the Q's and their derivatives. The form (16) does not
necessarily imply the assumption that the divergence
of J„vanishes linearly with the equations of motion
(1); this is because the G's have been left completely
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arbitrary and may themselves contain powers of $Z]A.
Some of the G's may be singular when equations of
motion (1) are satisfied; however, this does not concern
us so long as each term on the right-hand side is well
behaved. Now

GA 8 5+]A (GA (+]A), GA, PvC]A ~

0„,„=—GAL&]A, (17)

where the vector 0~«differs from J«by terms that vanish
when the equations of motion (1) are satisfied.

Now, the right-hand side of (17) is a special case of
the general structure.

)a+a«8«+u«„8«8„+ ]2
8Z

+CbA+f)A„B„+7) „.8„8.+ . ]

The second term on the right can be absorbed in the
term GALL]A, the first term when moved to the left
amounts to deducting a term GA«LZ]A from J«. This
term vanishes when the equations of motion are satis-
fied. A similar treatment can be given to the third and
higher terms on the right of (16). We are therefore left
with the simpler identity

This gives

0„=&„+&,2+)&A,"+&A« "B.+ .]

+LCA„."+CA„.."8.+ ] + . (20)
A, v

n m 82
+Z Z CA«(vi ~ vv)(ri ~ rv')

BQA, vi ~ vi, r)" rv'

(21)

where re is some finite positive integer.
Now,

O„,„=z„,„+(w„z),„
n m 82

+P P CA«(vi" »)(rz" rv') «
BQA,.i-';,.i ";

n m ( BZ
+P Z CA«(vi" vi) (ri"'rv)l

4~1 7~1 &BQA, vx' ~ vi ri rg«~

Since we are interested in the st)picture of 0~«only when
Eqs. (1) are satisfied, we are free to use these equations
to make simplifications. Eliminating BZ/BQA from (20)
in this manner, we obtain

BZ
+LCAv+CAv«8«+ ' ' ] + ' ' ' . (18)

A, v

=~ «+(~«&). ++ CA«(i" ') «I'

&BQA, „,...„,./

Operating on the left of (18) by Bq, we will again get
a similar structure. The converse, however, may not be
true, i.e., if the derivative of a differential expression
has a structure (18) the expression itself may not al-
ways have this structure. We should write, therefore,
the most general structure of 0~«satisfying the identity
(17) in the form

O~« =F«+ ((A «+A «,8,+2„.,8.8,+

+P4«'+&A«'B. + ]

A {Vyv ~ rvs) (0'1~ ~ ~ 0'7)

= CA«(vi "vi) (ri" rv), «+CArv(vi vi) (ri "ri "i)

fol 4=1) ''' sj) 17 (23)

EA(v7, ...vs) (~g...~ +g) CAr +g{vg" vs) (aj ~.r )

for i=1, , e. (24)

The identity (17) now gives

&v vv+ 1 (+r. Z «~&. - '&&. --;&~I . ) (D)
(,BQA „,...„,

where

BZ
+L A«v + A«vr Br+' ' '] +' ' '

~ (19) P +(g g) +P

The function E„and the coefFicients A, 8', C', ~ ~ will,
in general, be functions of the x's and of Q's and their
derivatives.

We assume that Z does not contain &x explicitly so
that we can write

n m+1 82
+Z Z ~A(vi" vi) (ri" rv)

s=l 7=1
'

BQ..„...,. ..,....,
&v

=Z(—1)'G ! . (»)
1 BQA„,....,& „,...„

QA, r+ QA. , vr+ ' ' + A, V1v ~ ~ Vt), O' ~

8QA BQA, v 8QA, n" v»

Now, the choice of QA's is in general arbitrary. The
functional form of the quantities (BZ/BQA„i „,), ... .
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will change when a different choice of the Q s is made. Substituting (30) in Eq. (21), we obtain
In order that (25) may hold as an identity, we must have

and

~(vi" vi)(vl" v/) ( ) ~i)G&()vlvl' ' '~vvvv ( 6)

Substituting this in Eqs. (23) and (24), we obtain

C+n("&"'"i) (v& vi')"&+C&vi(vi vi") (vi"'vv'-i)

=(—1) S;;G~S„„," S„,.,
for 1=i) ''') 8; /=i, ''') g—1 (27)

A p(vy ~ vs) (oi ~ o")
= —(—1) e(i—j—1)8»,b„v, bv,.,G&,.,+,...v, ,

An(vi ~ 'vi) (vl' ~ 'vn-i) ( ) ~vnGÃvyv) '
vi ivi iv—i)v-

for i =1, , e. (28)

Putting j=m 1 i—n (27), we obtain

CAf (vi. ~ v~) (~i ~ ~~-2)

CAR(vt ~ vs) (ei ~ o'~ 2y) )X

+(—1)" '8;,n (Gg()»„~ 8„,. „,A„,.
= —(—1) 8;„Gg,,,()»,, i)„, ,„

+(—1)" 'i);,„)Gg8„„, .5„,. „, ,()»,.

( ) (lvivi' ' ''()vn 0vn i~nvn g['t)inGA, vi+()i, n 1GAj~—

(29)

Substituting successively lower values for j in Eq. (27),
we obtain the following general expression for the C's:

n i1-( ()g
+Z Z( 1) 'I

I
c'a, )+i" '-i (37)

8QA, vl' "vi-ln, vi' ' ' vi

which is of the same form as determined by applying
Noether's theorem to the transformation (36).

IV. SOME EXAMPLES

We have seen that in all theories wherein the equa-
tions of motion are derivable from a Lagrangian, every
conservation law has associated with it some invariance
property of the equations of motion. Proceeding along
the lines of the proof given in the previous section, one
can directly deduce the symmetry transformation as-
sociated with a given conservation law. The following
systematic procedure could be followed:

(i) Calculate the divergence of the conserved quan-
tity and, making use of appropriate identities and sub-
sidiary conditions, obtain an identity of the type (17).
This determines C'g [see Eqs. (9) through (35)]. If the
expression for C ~ contains no term proportional to Q~,)„
then X„=O, i.e., no transformation of the independent
variables is involved. If such a term is present, however,
then it may not always allow an unambiguous deter-
mination of X„through the relation

C'A=+4 Qd, x+n

For j=i, Eq. (30) gives

&„„(»...v;) v, = 8(i 2)b»,.8»v—,G~,„, „, , ..(.31)

Putting j=1 in Eq. (27), we get

CAp(vg ~ vs)
— CA) (vg ~ v&) p, ))), ~i,1GA~vl p

= —l)»,G~,»...„,. for i = 1, ~, I, (32)

where Eq. (31) has been used in the second step. This
gives

CAp(vi ~ v ),p, GA vi" v ~ (33)

Now, on substituting from Eqs. (26) and (33), Eq. (25)
gives

BZ
F„,„+(A„z),„+g

%=0 BQg l.. ivv.~, „,...„,.=0, (34)

where we have put

4A—=—GA. (35)

The identity (34) is analogous to the identity (3), in-
dicating invariance of the Lagrangian (up to the diver-
gence of the vector F„)under the transformations

(a) The "Zilch"

An interesting example is the zilch tensor of the free
electromagnetic field whose conservation, first dis-
covered by Lipkin, ~ initiated an interesting discussion
of the conservation laws and invariance properties of
linear Geld theories. We shall employ Kibble's expres-
sion (with a modi6ed notation) for the zilch, i.e.,

where
Z„,(,=*F„),8(J" )„+*Fg,80F)„, (38)

because transformations mixing Q~ with their deriva-
tives cannot be excluded.

(ii) Write the conserved quantity in the form of the
right-hand side of Eq. (11). In. most of the cases this
will determine X„and F„unambiguously.

(iii) If some ambiguity remains, it can be removed

by actual veriGcation that the Lagrangian is invariant
under the transformation (36) up to the divergence of
the vector F„.

We shall now consider two examples from field
dynamics.

bx„= eA„,

~QA &c'A ~

(36)
E„v=A„,„—A, ,„,
c.pv= g Cava~'aP ~
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~~ Cg ~$4PGglPCLPd7 f P,dt y

(42)

Since there is no term in 8A proportional to A, q, no
transformation of the space-time variables is involved.
Now, it was found by Steudcl" that the zilch is con-
tained in the conservation laws associated with the fol-
lowing 60-parametric transformation of the free electro-
magnetic field:

A straightforward calculation shows that

zp.p.p= G—p. s-~s..( ~ )..
where

Gpvappr 2 (eplpp~vp+ 6papv~va+ &vapp~pr+

Sap'happ)

(40)

The quantity G„„p„is symmetric in p, v, antisymmctric
in nP, and symmetric in o r Now. , (39) gives

[Z„„,—G„, p„Ap„& j,p
G——p.a—pp,~p;. ~a (4&)

The symmetry transformation associated with the con-
servation of zilch is, therefore,

(46) and (47), and holds good by virtue of these the
foHowing conservation laws:

[(*,~„)z'„,„—,'(x.~.)z'„„j,„=o. (49)

Then he contends that since the method of construction
of these conservation laws is appropriate to conformal
invariant theories, which a massive field theory is not,
these conservation laws do not follow from any invari-
ance property of the equations of motion.

The point is that this method of construction does
not always correspond to conformal invariance. For ex-
ample, if a quantity T &p'&, where (r) is an arbitrary
set of internal or space-time indices, satis6es equations
analogous to (46) and (47), then corresponding R„&'&

and Spp will also satisfy equations analogous to (44)
and (45). The invariance properties associated with the
conservation of E„") and 5»(") can bc easily deter-
mined in terms of those associated with the conservation
of T„„&"&.Suppose this latter symxnetry transformation
18

Ri„=ca pb„,A„, p,

c~p= cp~ p bye= —bye.
(43)

bQA &&p)PpA

bx„= ~(„)„X„&"&.
(50)

Our deduced synunetry transformations (42) are indeed
a subset of these transformations.

The verification that the Lagrangian of the free elec-
tromagnetic field is invariant, up to a divergence, under
the transformations (42) is straightforward.

{1)The Counter-Examples of Pairlie

Now If

R„&"&,p= Tpp&"'+x.T—p.&"',„
—=T„p&"&—x,C.g&"&[Zjg.

T-"=g~ "[~j~
R„&"',„=—[gg &"~—x„C„g&'&1[2)g,

(52)

(53)

It is well known that electromagnetism and other
massless free-field theories are invariant under the con-
formal group. "This invariancc yields, apart from the
conservation of the energy-momentum and angular mo-
mentum tensors, the following additional conservation
laws:

R„,„=—(x„T„,),„=0, (44)

&....-=[(*,')T:-l(*.*)T.,j.,=o. (45)

These conservation laws can also be deduced from the
conservation and tracelessness properties of the energy-
momentum tensor, I.e.,

(46)

(47)

Fairlic9 showed that, for a free inassive vector Geld,
a certain. tensor Z'„„satishcs equations analogous to

"H. Steudel, Nuovo Cimento 39, 395 (1965).
'2 J. A. McLennan, Nuovo Cimento 3, 1360 (1956).

so that the relevant symmetry transformation is

&Q~ = ~.[—g~ "+*P,~ &"'j. (54)

The same is true for 5»(").It is dear that the symmetry
associated with the conservation of E„(")and 5»("& will
not be the conformal group in general; this latter sym-
metry appears in the particular case when the symmetry
associated with T„,'"& is that of translations, e.g., for
the energy-momentum tensor T„„.

Proceeding along the same lines, one can easily deduce
Rnd vcllfy thc lnvR11ancc plopcI'ty RssoclRtcd %1th thc
conversation equations (48) and (49).
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