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Conditions on Pion-Nucleon Scattering Derived from
Current Commutation Relations*
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Using the assumptions of current commutation relations and of a partially conserved axial-vector current,
new relations between pion-nucleon scattering parameters, the axial-vector renormalization constant gg,
and the nucleon-isovector charge and magnetic moment are derived. Calculating the nucleon total magnetic
moment, we obtain a result which is in good agreement with experiment.

L INTRODUCTION

SSUMING that the equal-time commutators of
~ ~

the integrated time components of the hadron
currents obey the algebra of SU(3)XSU(3), as well as
assuming a form of the partially conserved axial-vector-
current (PCAC) hypothesis, Adler and Weisberger'
have shown that there follows a relation between the
axial-vector coupling constant in P decay, g~=G~/Gv,
and the pion-nucleon scattering amplitude. Further-
more, this relation, together with Adler's consistency
condition, ' which is a relation involving only strong-
interaction parameters, have been derived simultane-
ously' using the form of PCAC analogous to that of
Bernstein et al.4 That is to say, one assumes that the
divergence of the axial-vector current is a highly con-
vergent operator whose matrix elements obey unsub-
tracted dispersion relations. The connection between
the compatibility of these two relations and the exist-
ence of various dispersion theoretic subtraction con-
stants was discussed by the author. ' In this paper we will
show that from the same starting point, and with only
slightly more restrictive assumptions on the existence
of subtraction-free dispersion relations, further con-
sequences may be deduced which involve the pion-
nucleon scattering parameters g~ and the nucleon iso-
vector magnetic moment.

rents. The quantity R p is related to the amplitude for
scattering protons by an axial-vector Geld, and we
define qm such that

pl+ ql ps+ qs (2)

to be able to use the scattering amplitude description
more conveniently. Equation (2) then represents energy-
momentum conservation for the process. From in-
variance arguments, R p may be written as a sum of
second-rank tensors formed from combinations of the
p;, q;, and y matrices evaluated between Dirac spinors,
each multiplied by a Lorene-invariant scalar function.
The arguments of the scalar functions are the invariant
variables in the problem, which are chosen to be

where
v=Q P/M, t=h', qrs,

2 (pl+ps)
Q= :(q +qs), -
~=q —qs=Ps —P,

(3)

and M is the proton mass. We restrict the initial and
Gnal proton and the final meson momenta to satisfy

p 2 pss Ms qss q
2

Finally, we note that

II. DERIVATION OF THE RELATIONS

We consider the matrix element of the time-ordered
product of two components of the axial-vector current
between one-proton states of momenta p~, ps.

2qrpr= 2Mv

2qrPs= 2Mvy rst, -
2qrqs= t+2qP ~

From Eq. (1) we obtain

(6)

&'* '" (p l&(~.'()~ (o))IP)
q;q, &z.s d'x e '&'*i(——p, l

r(—a A +(o)a&As-(x))
I pr)

where A +=A '+iA '. The currents A', i=i, 2, 3, are
the isovector members of the octet of axial-vector cur-
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where

—s(*o)(p I I
a-a.+(o),a;(*)3Ip )

+&(*s)sqs'(Psl C~s'(o),~s (*)jl pt)1

R(qts, v, t) C(t)+iX—Q(v, t), —(7)

Xv= (2rr) sMv/Ev.

It has been shown that, by using the fact that
qj q2t'R p vanishes in the limit q&, p, t —+0 and by
assuming pion-pole-dominated dispersion relations in
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where F~~ is the isovector Dirac form factor for the
nucleon, and the tilde indicates that the nucleon Born
terms have been extracted. All quantities involve on-
mass-shell variables. Although 2FP(0) = 1, we write it
as above to emphasize the relation of Eq. (9) to the
results vre will obtain below. We are using the usual
conventions that the scattering amplitude T which

appears between Dirac spinors may be vrritten in the
form

T= A+i—p QJ3 (10)

and that each term may be decomposed into symmetric
and antisymmetric isotopic-spin parts,

wN A vN(+)8 +2(& & jA mN( —)

where n, P are isotopic-spin indices for the pions.
Now we return to the consideration of Eq. (7) with

the momentum-transfer variable t tak.en nonzero. The
term C(t) is expected to be small for t= 0. This function
and its relation to a subtraction constant in the dis-
persion relation for the even isotopic-spin amplitude
A ~&+& were discussed in I and in the work of Mahan-
thappa and Riazuddin. ' ln order to relate C(t) to some

quantity we have more information about, vre might
assume that the commutator defining C(t) could be
evaluated by using the SU(6) algebra which includes,
in addition to the vector and axial-vector currents, the
scalar and pseudoscalar densities vrhich are all con-
structed according to a quark model. The resulting
scalar form factor should be slowly varying as a function
of t, since a dispersion relation in t vrould be determined

by scalar meson poles, vrhich do not exist for lovr

masses. ' Therefore we assume that 8C/Bt may be
neglected in the following.

The remaining equal-time commutator J(v, t) deter-
mined by the chiral SU(3)XSU(3) current algebra, is
given by

N(ps)2rs( —vFs (t)+iy Q(F~ (t)+Fs"(t))}N(p~), (12)

vrhere I'&, Ii2" are the Dirac and Pauli isovector form

' K. T. Mahanthappa and Riazuddin, University of Penn-
sylvania Report (unpublished).' Riazuddin and Fayyazuddin, Nuovo Cimento 44, 546 (1966).

qJ' for axed t=0, v=0, one may derive two conditions
on the pion-nucleon scattering amplitude. The reason
that two relations emerged is that for Gxed q~'=t=0,
the left-hand side of Eq. (7) vanishes like v'. Hence the
term independent of v gives rise to Adler's consistency
condition

f 2Am'(+) (v t 0) 2~g s (8)

while the term proportional to v gives rise to the Adler-
Weisberger relation, which we vrrite as

8gwN( —)

g~s=2Ftv(0) —f ' +s."t-i), (=t=w w
Bv

One easily sees that in the limit of t=0, the expression
(12) reduces to essentially 2vF&v(0) = v, it is this which
gives the one in the Adler-Weisberger relation.

The expression for E p may be expanded in kinematic
tensors, as described above; if one takes the limit q& q2,
v~ 0, it may be easily seen that the left-hand side of
Eq. (9) must vanish like t as t ~ 0. We are thus led to
new relations if vre set the term in the right-hand side
of Eq. (9) which is proportional to t equal to zero. The
term independent of t, of course, has already been con-
sidered above; it gives rise to Adler's consistency con-
dition, Eq. (8).

Finally vre turn to the Grst term on the right-hand.
side of Eq. (7), R((tP, v, t). We follow the procedure
employed in the derivation of Eqs. (8) and (9) and
assume that for fixed v=O, t=O, the quantity R(g&,v, t)
satisles an unsubtracted dispersion relation in q&~ vrhich
is dominated for q&'—0 by the double pion pole at
q&' ——p'. We have dered R as E with the one-neutron
pole term E~ extracted. It is the one-neutron pole term
which gives the g~' in the Adler-Weisberger relation.
Then R(gP=O, v, t) is proportional to the amplitude for
z p scattering on the mass shell

R(IMP=0, v, t)= f sT, v(v—,t) -(14)
with v, t—0. We would now like to extract the term
proportional to t in the expressions for R, E~, and J
which we have obtained. Hovrever, this is not as simple
as it was for the analogous problem of the term pro-
portional to v since we have not yet displayed the com-
plete t dependence of these quantities. In order to do
this, vre project the helicity amplitudes. If vre denote the
nucleon's helicity by subscripts + or —,we have the
helicity amplitude'

~++= (coss8) (f~+fs)
= (cosxs8) LA (v,t)+ (v —t/4M)8(v, t)j (15)

and the kinematic relations

cos-', 8= L(Ss+st/Ss J(s
S'= Ls—(m+t()s)Ls —(m —p)s$,
s= (P~+gj)s=3P+t)s+2Mv 'st. —

(16)

Now, if we project the ++ helicity amplitude out
of all the terms in Eq. (7) and take the derivative
with respect to t, there vrill be tvro terms. One will be
8(coss8)/Bt multiplied by an undifferentiated expres-
sion, while the other will be cos-', 8 multiplied by the
derivative of the expression with respect to t. It is clear
that the expression multiplying 8(coss8)/Bt will vanish
owing to the Adler consistency condition, vrhen we let
v, t, q&' —+0. Hovrever, the second term, multiplying

~ M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).

factors for the nucleon

F, (0) =-', , F (0) =-', ( „—„)=1.85. (13)
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III. CONCLUSIONS

In order to compute 8' &(v=t=0) we may assume
that 8(—& satisies an unsubtracted dispersion relation
in v for 6xed t=0, and then extract the Born term.
This gives

2 A8' &(v=t=0)= — —1mB& &(v,0).

The function Im8' ) Inay be taken from the paper of
Hamilton and Woolcock. For the range p& v&11 p, we
use their Fig. 7, which is based on a phase-shift analysis
of s.-p scattering data. For very high energies, Hamilton
and Woolcock estimate

ImB &
—

& (v,0) —', (o —~+),

where o~ is the tr+p total cross section. We find that
the integral up to a pion lab kinetic energy of 300 MeV
contributes 4.3; the integral over the range 300 MeV to
1400 MeV contributes 1.0; the integral over the range
1400 MeV to 00 contributes about 0.10. Thus we see
that the 3-3 resonance is the dominant factor in deter-
mining 8&—), and we obtain

8&-& (v = t= 0) =5.4. (21)

If we put this value into Eq. (18), we find that the left-
hand side is 4.9, while the right-hand side is 4.7. The
agreement is excellent.

8 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

cos-,'8, now has all the t dependence exposed and will in
the limit of v, t, qi —+ 0 give some new information. The
relations that appear after these manipulations are

f 'BA&+&(v=t=0)/Bt=g~'/4', (17)

f.'Bt—& (v=t=O) =2[F,v(0)+Fsv(0)j, (18)

where the tilde as usual denotes that the nucleon pole
term has been extracted. It should be noted that we
have assumed that E p has no pole at w= t= gI' ——0; this
is true if we remember the nonzero neutron-proton mass
difference. However, then A &+) has a contribution from
the one-nucleon pole and thus the tilde in Eq. (17) has
some meaning. (See discussion in I.) Again, as in the
case of the Adler-Weisberger relation, the right-hand
side of Eq. (18) comes from the current commutation
relations at equal times. Since 2 & & is an odd function
of v, the fact that BAi &/Bt=0 at v=t=0 is trivial;
contrariwise, Eq. (17) is nontrivial. Also, since 8&+& is
odd in v it does not contribute to Eq. (17).

Similar relations involving Fs (0), the isovector

charge radius, and the amplitude for isovector photon
production on protons have been derived by several
authors. ~" We may use these relations to compute
Fsv(0). If we do this, we find values for Fsv(0) which

are consistently larger than the experimental number,

although roughly in agreement among themselves.
These relations involve production amplitudes which

are not experimentally determined at present, and so
their evaluation depends upon theoretical models of
photoproduction. On the other hand, the relations de-

rived in this paper may be checked by using only a
phase-shift analysis of pion-nucleon scattering data. If
one is con&dent of the phase-shift analysis up to say
1.4 GeV, then the contribution from the second and
third pion-nucleon resonances are then known, and the
value of 8& & (v= t=0) is fixed quite accurately.

We have not here attempted to check Eq. (17) by
computing BZ'+& (v = t= 0)/Bt. It would be of interest to
evaluate this expression by use of either the experi-
mental phase-shift analysis of pion-nucleon scattering
or by a model of pion-nucleon scattering with 3-3 reso-
nance dominance. There is however one point of un-

certainty here, and that is our assumption that the
scalar form factor C(t) may be neglected. Although

C(t) may be small, it is possible that the t dependence

may be such that this term becomes non-negligible.
In the above we have used only the chiral

SU(2))&SU(2) current algebra, and the PCAC hy-
pothesis applied in the case of pions. However, we might
point out here that if one uses the chiral SU(3) )&SU(3)
current algebra and the I'CAC hypothesis for kaons,
one would obtain relations involving kaon-baryon scat-
tering parameters, the d/f ratio for the axial current,
the baryon isovector and isoscalar magnetic moments,
and of course the axial-vector renormalization con-
stant g~.
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