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The problem of maintaining the locality of the bound-state wave function is discussed in the S-matrix
approach to the first-order energy shift. It is shown first that the nearby-singularity prescription in the
Dashen-Frautschi formalism leads to the inclusion of unphysical terms coming from the nonlocal component
of the wave function. It is pointed out that the infrared divergence of Dashen and Frautschi comes from this
unphysical term. We then present an alternative method based on the Gelfand-Levitan formalism on the
inverse-scattering problem. We discuss here an approximate solution of the Gelfand-Levitan equation that
leads to a localized bound-state wave function. It is pointed out that this wave function gives the first-order
energy shift without the infrared diKculty. Using soluble exponential potentials, we discuss numerical
accuracies of this approach.

I. INTRODUCTION

N a previous paper, ' it was shown that the use of the
. . Dashen-Frautschi' formula necessarily involves the
solution of the unperturbed problem, and therefore the
formula does not have general applicability. It was
shown in the case of a soluble square-well potential that
the disappearance of the infrared divergence is due to
the fact that the bound-state wave function is localized
(normaliz able).

In applications of the Dashen-Frautschi formula, the
solution of the unperturbed problem will in most cases
have to go through various approximations. Although
much eQ'ort has been made to understand the nature of
the bound state in the past years, it still seems to be of
prime importance to realize that the bound-state wave
function is localized. And, it still seems to be essential
to maintain the locality at every stage of approximation.
In this paper we discuss 6rst this locality problem in
approximate evaluation of the Dashen-Frautschi dis-

persion integral. It is shown that the nearby-singularity
approximation leads in general to a violation of the
locality which is responsible for infrared difliculties.

As an alternative approach we suggest the use of the
Gelfand-Levitan formalism on the inverse scattering
problem. ' ' We discuss here an approximate solution

of the Gelfand-Levitan equation which leads to a
localized bound-state wave function. By taking the
expectation value of the perturbing potential, one can
then obtain the Grst-order energy shift without infrared
difliculty.

In this approximation scheme, the bound-state wave
function is constructed from the three bound-state
parameters, namely, the binding energy, the residue of
the bound-state pole, and, the 6rst derivative of the D
function at the binding energy. Using soluble exponential
potentials, we then compare the results of the present
approximation scheme with the exact answers. Through-
out the entire paper we restrict ourselves to the S-wave
solution since the generalization to other partial waves
seems straightforward.

In Sec. II, we discuss ambiguities in the approximate
evaluation of the Dashen-Frautschi dispersion integral.
In Sec. III, the Gelfand-Levitan formalism is outlined.
We discuss then a one-pole-type approximation that
leads to a localized bound-state wave function. In Sec.
IV, we use soluble exp'onential potentials to discuss
numerical accuracies of the present approximation
scheme.

II. AMBIGUITIES IN THE DASHEN-FRAUTSCHI
FORMALISM
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Since the solution of the unperturbed problem will in
general have to go through approximations, we regard
these approximations as integral parts of the Dashen-
Frautschi formalism. We show in this section that the
nearby-singularity approximation leads in this case to a
violation of the locality of the bound-state wave
function.
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Thus, in order to guarantee the locality we should
remove this term:before making any approximations
along the contour O'. Or, equivalently, we should esti-
mate the contribution from this term before attaching
any significance to the numerical result.

In the calculation of the proton-neutrori mass diGer-
ence by Dashen and Frautschi, ' for instance, the infra-
red divergence, which should not appear in the problem
of a localized bound-state wave function, comes from
this incoming-wave component.

In the following sections, we shall discuss an approxi-
mation method that guarantees the locality of the
bound-state wave function.

and consider also the function g(s, t) determined by

sinks) (sinkt)
g(s, t) =

II IdLp(x) —po(x)g. (13)
ik k i

We have assumed that there is only one bound state.
The spectral function pp(x) corresponds to that of the
plane wave.

The E(r,r') function then satisfies the following in-
tegral equation:

r

E(r,r')+g(r, r')+ dt K(r, t)g(r', t) =0.
Q

III. APPROXIMATION METHOD BASED ON THE
GELFAND-LEVITAÃ FORMALISM

In this section we first outline the Gelfand-Levitan
formalism on the inverse scattering problem. ' This
formalism enables us to construct wave functions from
the scattering phase shifts and bound-state parameters
for a given orbital angular momentum. (We are of
course interested here in the S wave. ) Then we discuss
a one-pole-type approximation which gives a localized
bound-state wave function.

Let us represent %he regular solution of the Schro-
dinger equation as

Therefore, if the denominator Jost function fp( —k)
and the bound-state parameters xp and C are given, we
can determine g(s, t) by evaluating the integral of Eq.
(13), E(r,r') by solving the integral equation of Eq.
(14), p(r) by Eq. (9), and Vp(r) by Eq. (10).

We now adopt the following approximation scheme.
For the negative energy we take the exact spectral
function

dp(x)/dx= Cb(x+xp), x&0, (15)

and for the continuous positive-energy spectrum we
take the plane-wave approximation

r

$(r) = sinkr+ K(r,r') sinkr'dr'.

We already know one form of K(r,r'), that is,

K(r,r') = I(r,r') Vp(r') .

(9)
dp(x)/dx= dpp(x)/dx, x)0.

Then, as was pointed out in Ref. 3, the Gelfand-I. evitan
integral equation can be solved in the following simple
way. We observe first that the g(r, s) function takes the
simple form

But it is easy to see that the K(r,r') function is not
necessarily unique. One can in particular choose an
energy-independent E(r,r') function which satisfies
the differential equation

g(r, s) =C sinhnr sinhns/xp,

where n= (xp)'~'. The integral equation of Fq. (14)
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Q
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Next, we consider the following spectral functions: C
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At the binding energy k =io,, the above wave function
becomes

By Eq. (26) and the relation

fo(0, i—n) =2inD'( x—p),
Po(r)=i 1+—

Sp Q

sinh'nt dt sinhnr. (21)
Eq. (17) becomes

We now see that this wave function decreases as
exp( —ar) for large r and that the locality of the bound-
state wave function is manifestly maintained in this
approximation. As we can see by integration,

r —2 g
dr sinh'nr 1+— sinh'ntdt

gp Q C

the approximate wave function of Eq. (21) satisfms the
normalization condition of Eq. (12).

Our remaining task is to relate the constant C to the
bound-state parameters. For this purpose we follow
the steps outlined in Ref. 5. We first observe that the
regular solution p(r) can be written as a linear combina-
tion of the Jost solutions.

0 (r) = (1/2i)Lfp(k)fo(r —k) —fo(—k)fp(r»)] (22)

The Jost solutions fp(r, —k) and fp(r, k) satisfy out-
going- and incoming-wave boundary conditions, re-
spectively. Furthermore

fo(0, ~k) = fo(&k). (23)

Now at the binding energy 0=~0., the above equation
reduces to

go(r) = (1/2i) fp(in) fp(r, in) . — (24)

We note here that $o(r) is proportional to fp(r, —in)
and yb'(0) =in. Thus

Po= Lin/ fo'(0, —in)]fo(r, in) . — (25)

Multiplying Eq. (24) by Eq. (26), one obtains

~fp(~)
I y, (r)]i= Lfp(r, —in)]p (26)

2fo'(0, —in)

Next, we write the Schrodinger equation for the Jost
solution fo(r, —k),

fo"(r, —k)+Vo—(r)fo(r, —k) =k'fo(r, —k),

and differentiate the above equation with respect to
k. Then

fo"(r, —k)+Vo(r—)f (r, —k)
= 2k fp(r, k)+k'f(r, ——k),

where

Applying a canonical procedure to the above two equa-
tions and integrating over r at the binding energy
i=in, we arrive at

2in fpi(r, in)dr= fp(—0, —iu) f'(—0, ia) . (27—)
Q

1 " 1
IA(r) I'«= —fp(~)D'( —») (28)

C xp p 2c

On the other hand, fp(ie) is related to the residue of
the bound-state pole E. by

Therefore
fp(in) = —2aD'( —»)E.

1/C= —ZLD'( —*.)] .

(29)

(30)

We have shown above that the constant C can be
determined by the three bound-state parameters E., xp,
and D'( —»). Now, the determination of the wave
function is complete. One can then obtain the first-order
energy shift by taking the expectation value of the per-
turbing potential:

oe

l~() I'~V()d'
Sp p

(31)

Finally, let us make a few remarks about the nature
of the present approximation. As was pointed out in
the previous paper, the Born approximation is not ex-
pected to be valid along the continuous energy spec-
trum. Accordingly, we are not ready here to assert
that the wave function of Eq. (21) is very accurate.
However, this wave function satisfies the correct bound-
ary conditions at r=0 and r= ~. Furthermore, our
experience in variational method assures us that the
energy shift of Eq. (31) is not too sensitive to the exact
shape of the wave function. Thus the numerical ac-
curacy of Eq. (31) depends crucially on the position of
the peak of the wave function, which is in turn deter-
mined by the parameter C. We shall discuss this point
in the following section. Although it is another crude
approximation, the present method is a definite im-
provement over that of Dashen and Frautschi, and may
perhaps be the first step toward a more complete and
satisfactory procedure.

Vo(r) = —Vp exp( —mr), Vp)0, (32)

we solve the Schrodinger equation and obtain the exact
wave function and the Jost functions. The parameters
m and Vp are chosen in such a way that this potential
will give only one bound state. We then calculate the
bound-state parameters» R and D (») and con-

IV. NUMERICAL ANALYSIS

In order to investigate numerical accuracies of the
present approximation scheme, we discuss here soluble
exponential potentials.

First, for the exponential potential
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I IG. 2. Exact (EX},approximate (GL1), and adjusted {GL2)
wave functions. These curves are drawn in a normalized scale for
Vp=2.47m~, a=0.25m, and m=1.

-6

5V (r) = —(g/r) exp( —) r), (33)

TAnLz I. The ratio (r~ oL')/(r~ ax) is given for several dif-
ferent combinations of t/'p and m. (bxp)Ex and (bxp)GL1 are also
given at X=O (again in units of gxpm '). The binding energy is
fixed at (xp)'&=0.25.

struct the approximate wave function according to
the procedure described in the preceding section. Both
the exact and approximate wave functions are plotted
in Fig. 2. It is seen there that the approximate wave
function takes the maximum value at a larger value of
r than the exact wave function. This is, of course, due to
the Born approximation of the continuous positive-
energy spectrum.

In order to study a possible wider applicability of the
attractive functional form of Eq. (21), we replace the
constant C by a larger value C in such a way that the
new approximate wave function will have its peak at
the same place as the exact solution. We call this new
approximate form the adjusted wave function. Then,
the inclusion of the continuous positive-energy spectrum
will e6ectively correspond to this adjustment.

Next, we introduce a small perturbing potential of
the form

FIG. 3. Exact (EX), approximate (GL1), and adjusted (GL2)
values for the energy shift bxp. bxp is measured in the unit of
(gsp/Ia). These curves were also plotted for Vs=2.47IIIs, m=0.25III,
and m=1. The Dashen-Frautschi (Born approximation) curve
(DF) was calculated from Eqs. (19) and (20) of Ref. 1.The singu-
larity at li, =2a (0.5 in this case) is caused by the fact that the con-
tour C is pinched by the pole s= -xp and the a proaching singu-
larity of the perturbed amplitude A'(s) at s = ( ) )'.

and take the expectation values

exp= —(C,b V(r) C )

using the exact, approximate, and adjusted wave
functions. As is shown in Fig. 3, the energy shift for the
adjusted wave function is very close to the exact value.
The energy shift corresponding to the approximate
wave function divers by a factor of 1.5-2.5 for 0&X~m.

As is indicated in Table I, we would expect for all
range-depth ratios that the approximate energy shift
is smaller than the exact value roughly by a factor of 2.
It would be extremely interesting to see whether one
can improve this accuracy by including contributions
from the positive-energy spectrum.
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