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sense:

&ksr(s), vl Ts Ilw(j), v&

=Q„C(ts,i,t; Its, v —ts, v)C(t~, i&t; Its, v —is, v)

X(je,islt, ts&(w, v—y, l2"s lw; v —ts)

=41Q„C(4,1,t; Its, v —p, , v) C(t ii, t; I is, v—is, v) (v —is) .
(BS)

Taking expectation values as in Secs. 2 and 3, and
noting (85), (37), and (88), we 6nd at once

&sl I&I I j&C(t;,i,t;I v, 0,v) =2 ~;.*~;1
k, l

xP c(ts, i, t; Its, v —is, v)c(tl, i,t;Its, v —is, v)

&&(&~l l61 It&C(«, i,t.l.,0,.)+-',C6. ( —.)) (»)
On the right, the term containing (C/2)5siv simplifies

by virtue of (36) and (83), and one gets

(il lbl I j&C(t;,i,t,
l v,0,v) =-,'Cvs, ;

+2 rris rrii 2 C(tsyi~tiltsy v is~ v)C(tbi~ts'Its& v» ")
k, l, p

X&(kl I3I It&C(ti, i, tells, 0,ts) —-', Cishsi). (810)

This is a set of simultaneous inhomogeneous linear

equations for the (s I I II I j)whose solution is unique. By
inspection, the solution is given by

& II6llj&C(t, i,t'I 0, )=-:C3' (fo ll, j) (311)

To check, notice that by virtue of (311), the first term

on the right of (310) equals the left-hand side, and the

second term on the right vanishes because the contents

of the curly brackets vanish; here again one relies

on (87).
Evaluating the mass difference between substates of

I i& with equal and. opposite values of v (to which the

tensor splitting does not contribute), we 6nd from (35),
(37), and (311),

P(s,vlbls, v&
—&i,

—vl6li, —v&J=Cv, Q.E.D., (812)

independently of i, and independently of the dynamical

coefjicients a;;. The results (2.11) (with M=O) and

(3.8) are special cases of (812).
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A class of representations of the nonchiral SU(3) Ox SU(3) is worked out. These consist of a sequence of
self-conjugate representations of SU(3), starting always with a singlet and witll each SU(3) representation
occurring once. An analog of the GeH-Mann-Okubo mass formula, valid for these representations of SU(3)
Qx SU (3), is obtained. When applied to the lowest nontrivial representation, this formula correctly explains

~+ jinxing, thus providing a justiacation of Okubo s ansatz. Possible use of the next higher representation
is indicated. From the same construction, the corresponding unitary irreducible representations of SI.(3,C)
and Te&SU I',3) are simultaneously obtained.

L INTRODUCTION
'

N this paper we describe the explicit construction of
~ - a class of irreducible representations of the nonchiral
SU(3) Qx SU(3) and discuss their possible experimental
relevance. ' Let G; and F, denote the in6nitesimal
generators of the two commuting SU(3)'s. We now
de6ne a third SU(3) whose in6nitesimal generators are
G,+F;.The special representations we have in mind are
those in which this last SU(3) is diagonal and which
consist of a 6nite sequence of self-conjugate repre-
sentations of this SU(3), starting always with a singlet
and with each representation occurring once. These

*On leave of absence from Center for Advanced Studies in
Theoretical Physics and Astrophysics, University of Delhi,
Delhi-!, India.' J. Schwinger, Phys. Rev. Letters 12, 237 (1964); A. Salem
and J. C. %'ard, Phys. Rev. D6, 3763 (1964}.

representations are characterized by a single parameter
which can take up odd integral values, and which is
essentially a measure of the dimensionality of the
representation.

Our construction also yields the corresponding
representations of the noncompact SL(3,C). In this
case, the diagonal SU(3) can be identi6ed with the
maximum compact subgroup. The single parameter that
labels the irreducible representations can now take up
real, odd-integral values or purely imaginary values. In
the former case we get Gnite-dimensional nonunitary
IcplcselltR'tlolls (unjtary tllck) I11 t.hc la't'tcr case wc

get in6nite-dimensional unitary representations. For
the sake of completeness we also describe a similar
representation of Ts)t,'SU(3)—the semidirect product
of SU(3) with eight mutually commuting translations
I:.see Eq. (38)J.
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It may be noted that the above-mentioned class of
representations are labelled by a single parameter.
Hence, out of the four Casimir invariants of
SU(3) Qx SU(3) Eor SL(3,C)l, only one is independ-
ent. This is the maximal degenerate situation and is
analogous to the corresponding representations used in
classifying the states of the nonrelativistic hydrogen
atom and other dynamical systems, ' as well as the isobar
states of the charge-independent, pseudoscalar strong-
coupling theory. ' These representations are thus of
intrinsic theoretical interest. Apart from this, there
remains the possibility of being able to group together
distinct SU(3) multiplets of particles, with the same
spin and parity, in a single degenerate representation
of SU(3) Qx SU(3). The lowest nontrivial representa-
tion ESU(3) singlet plus octet] is already realized
experimentally. It is interesting to see if the next
representation might also be realized. In this connection
the most promising candidate seems to be a boson
27-piet (see Sec. IV).

In Sec. II we work out the desired representation.
In Sec. III we consider the problem of symmetry break-
ing. With a simple assumption about the symmetry
breaking interaction, we obtain an analog of the
Gell-Mann-Okubo mass formula for the present case.
This new formula expresses masses within multiplets
of SU(3) as well as transition masses between adjacent
multiplets in terms of two unknown parameters. As an
application of these ideas, we consider in Sec. IV the
lowest nontrivial representation. In this case we obtain
a rigorous justification of the "nonet ansatz" of Okubo. 4

In Sec. V we make concluding remarks.

J3 =F—G.s7

so that their commutation relations are

(5)

EA;,A;)=if,;sAs, (6)

EA;,Bg=if;;sBs, . (7)

EB;,B;j=if;;sAs. (8)
'N. Mukunda, L. O'Raifeartaigh, and E. C. G. Sudarshan,

Phys. Rev. Letters 15, 1041 (1965), and references cited therein.' Y. Cook, C. Goebel, and B.Sakita, Phys. Rev. Letters 15, 35
(1965); Y. Dothan and Y. Ne'eman (unpublished); see also
S. K. Bose, Phys. Rev. 145, 1247 (1966); V. Singh, ibid. 144,
1275 (1966).' S. Okubo, Phys. Letters 5, 165 (1963).

II. REPRESENTATION

Let us start with a pair of commuting SU(3)'s so that
their infinitesimal generators obey the commutation
relations:

EI"*IVJ =if'sos (1)

EG;,G;l= if;,sGs, (2)

EG'P'sl= 0. (3)

In the above, f;;s are the structure constants of SU(3)
and i, j, k take values 1, 2, 3 8. We now define new
operators A; and 8; as

A;=F;+G;, (4)

Equations (6)—(8) define the algebra of SW(3). If in-
stead of Eq. (5) we define B; as

B =i(F—G;)

then the right-hand side of Eq. (8) will acquire a
negative sign and we will have the algebra of non-
compact SL(3,C). First notice that operators A;
generate algebra of SU(3); we shall, construct
representations of SW(3) or SI.(3,C) in which this
SU(3) is diagonal. We shall follow a method which is a
straightforward extension of that used by Naimark' in
obtaining the representations of SL(2,C). We first
rewrite Eqs. (6)-(8) on a spherical basis:

Ig Atas——As, I~=Br+sBs,
E~——A 4~ iA5, Eg =84~i85 7

L~ As+—i—Az, Ig ——Bs&iBz,
Is——As, F=-'sV3As, Is=Be, Y= s93Bs. -(10)

Let us now denote by fr,r„r""a set of vectors which
provide a unitary irreducible representation of SU(3),
so that I+, I3, E+, I+, and P are represented in this
basis in the usual way. ' We have now to obtain repre-
sentation of operators Iq, E~ ~ ~ Y; Clearly it is suffi-
cient to obtain Yfr, r, ,r ", as this yields the form of
every other generator through Eqs. (7) and (10). First
we note that according to Eqs. (7) and (10) the operator
T transforms as the I=0, F=0 component of a regular
SU(3) tensor Hence. , acting on fr,r„r""it can only
change ns and n, the allowed values of this transition
being (m,zs) ~ (m+1,re&'1), (m, rt) (rl-+ %1,st+2),
(m, zt) ~ (m+2,I+1), and (m, rt) ~ (m,N) To o.btain
the desired representation we seek to construct an
invariant vector space for our operators using only
those vectors for which m=e. Thus we have to consider
only transitions m —+m~i and m —+m. Hence we
write, putting I3=I,
Yfr,r" 5( Im, F——; m 1)fr,r—

+A(m, I,Y)fr, r +B(m,I,Y)fr,r
—7t(m, IF m+ 1)fr, r~'+' (11).

Remembering once again that F is the component of a
regular tensor operator of subgroup SU(3) generated
by A; and applying the Wigner-Eckart theorem, we
conclude that each of the (unknown) functions
7t(m, I,F;m&1), A(m, I,F), and B(m,I,Y) will factor
into a suitable Clebsch-Gordan coefhcient and a reduced
matrix element independent of I and F. The Clebsch-
Gordan coefBcients corresponding to the m —+ m~1
transitions have been given in an explicit form by Lurie
and Macfarlane' and those corresponding to the
diagonal terms m —+ m are given by Okubo' in the form

'~

' M. A. Naimark, Linear Represerttatiorts of the Lorewts Groztp
(Pergamon Press, Inc., New York, 1964).' L. C. Biedenharn, J. Math. Phys. 4, 436 (1963).' D. Lurid and A. J.MacFarlane, J.Math. Phys. 5, 565 (1964);
J. G. Kuriyan, D. Lurid, and A. J. Macfarlane, ibid. 6, 722
(1965).' S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
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of his celebrated mass formula. Combining these results we obtain from Eq. (11)

Ffr,z"=j (m,I,F; m 1—)C fr, r '+{Fa„+P(I+I) ~—F' ',m—(-m+2)fb }fr, r"
j(—m, I,F; m+1)C~+ifr, r"+'. (12)

The Clebsch-Gordan coeflicients occurring above are given by

j(m)I, F) m —1)= —%2{L(m—I)'——,
' F' jL(m+I+1)'—-', F'$}'", (13)

j (m I F m+1) =—V2{t (m —I+1)'—' F' jf(m+I+ 2)'—-'F'j}'" (14)

It remains to determine the parameters a, b, and c, which depend on m only. First we obtain from (7), (10),
and (12):

Z,f, ,
r"=)FZ+jf,,r

= Pj (m, I+g', F+I;m 1)b+—j(m, I—,F; m 1)b+—ajc~ fragile™ 1,F+I
J'(m&I+'2&F+I ~ m+1)by j(m—&I&Fpm+1)b+g7c~yfryyp +

&
F+ I

+La +k(2I+I —F)b jb+fr+~n"~F+I (15)
when b+ is given by

(I+1+—'F) (m+I+2+-'F) (m —I—-'F)

2 (I+1)
(16)

We now solve Eqs. (18) and (19). First consider SW(3), i.e., plus the sign on the right-hand side of Eq. (19).
From Eq. (18) we get

(20)

(21)

(m+2) u„—mu„g+-', (m+2) $(2m+3) b„—(2m —1)b g]=0,
a„—a,+-', $(2m+3) b„(2m——1)b„Q=0.

and b+q and b+2 are obtained from b+ by the substitution m ~ m —1 and m ~m+1, respectively. We now use the
remaining commutation relation (8). From Eqs. (8) and (10) we get

LF,Z'+j= +E+. (17)

The plus and minus signs on the right-hand side of (17) refer to SW(3) and SI.(3,C), respectively. Applying (17)
to fr, r and using Eqs. (12)—(16), we get equations for a, b, and c .
(m+2)u„—ma g+-', (m+2)(2m+3)b —-', (m+2)(2m —1)b

+ (I——',F)La~—a~g+-,' (2m+3)b ——', (2m —1)b Q =0, (18)

4 (m I+1+-',F) (—m+I+ 2 ',F) (m+2) c—+—P 4(m —I+-,' F—)(m+I+1 ——',F)mc„'
+La„+(I—-', F'+-', )b ]'=+1. (19)

From Eqs. (20) and (21), we get a recursion relation From Eqs. (26) and (27) we get a b =0, so that there
for a, are two cases to consider:

(m+2)a —(m —1)a g=0,

whose solution is given by

a =a/m(m+1) (m+2),

where a is a constant. In order that u remain
defined for m=0, we dehne a new constant c as

(22)
(a) a =O, b AO,

(b) a.so, b„=o.
(23)

However, from Eqs. (20) and (21) we see that b =0
well will automatically imply u =0 as well, so that case (b)

is not possible. Hence we obtain

(24)

Clearly, mo is to be interpreted as the least value of m
in an irreducible representation. Ke defer the deter-
mination of b to a later occasion and pass on to
examine Eq. (19), which is equivalent to a set of three
simultaneous equations:

4( +1)(m+2)' '—4 '( +1) -'
+(.+-',b.) =1, (»)

(m+2)c~P mc ' ', b (a—+-',b —)=-0, (26)

(m+2)c~P —mc„'—-', b„'=0. (27)

(28)

which implies that mo ——0. Thus the desired representa-
tion starts with a SU(3) singlet. With (28), Eqs. (20)
and (21) reduce to a recursion relation,

(2m+3) b„(2m—1)b g
——0,—

whose solution is

b =2b/(2m+1) (2m+3), (30)

where b is a real constant independent of st. With 6
and b„ thus determined, Eqs. (25) and (26) acquire
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now the final form

4(m+1) (m+2)'c~iP —4m'(m+1)c '
+b'/(2m+1)'(2m+3)'= 1

(m+2) c~P—mc '—b'/(2m+1)P (2m+3)' =0

To solve the above equations we define

o.=4m'(m+ 1)'c.',
so that Eq. (31) becomes

o~i—o ~= (m+1) —b'(m+1)/(2m+1)'(2m+3)'

Hence

(31)

(32)

(33)

(34)

(35)

o- = P (o. +i—o.)

m—1
= Z (~+1)—kb'Z

n-p n=o (2~+1)' (2ip+3)'

with each representation occurring once. The sequence
(37) always starts with D(0,0) [SU(3) singlet) and
ends with a definite SU(3) representation depending on
the value of the parameter b.

In terms of representations of the two commuting
SU(3)'s generated by G; and F;, respectively, the
sequence (37) means (d,d*). Thus ~b =5 corresponds
to (3,3*), [b(=7 to (6,6 ) (=1Q+SQ27), )b[=9 to
(10,10*) (=1Q+ SQ+ 27Q+ 64), and so on. The explicit

m(m+1)
[(2m+1)'—b'].

2 (2m+1)'

From Eqs. (33) and (35) we get the final solution

1 (2m+1)' —b' i"
C (36)

2 (2m+ 1) 2m (m+ 1)

Equation (32) is also now satisfied, as can be verified
by direct substitution. Equations (12), (13), (14), (28),
(30), and (36) give the desired class of representations.
These are characterized by a single parameter b which
is real because the group generators are Hermitian
[see Eq. (30)]. This parameter has a simple meaning,
i.e., it is the highest value of m in a given representation
so that b is related to the highest dimensional SU(3)
multiplet in a given representation of SW(3). Thus if
we have a representation with a SU(3) singlet and
octet, then cp=0 and

~
b

~

=5. Similarly, in a representa-
tion with a singlet, octet, and 27-piet of SU(3), we have
cp=0 so that ~b~ =7, and so on. We summarize our
results on SW(3). The class of representations under
discussion consists of the following sequence of SU(3)
representations:

D(0,0), D(1,1), D(2,2), D(3,3), , (37)

H= H'p+Hi. (39)

Hp is invariant under SW(3) and Hi transforms as the
I=O, F=O component of a certain tensor. This tensor,
of course, is a linear combination of a finite number of
SU(3) tensors. We now require that within a given
SU(3) multiplet the usual Gell-Mann —Okubo mass
formula be left undisturbed. It then follows that the
noninvariant part H~ transforms as the component of
an octet tensor [under SU(3) generated. by A;]. Be-
cause the generator Y has exactly the same properties,
we conclude that B~ transforms as F,

IIg Y. (40)

Using Eqs. (12), (30), and (36), we can obtain from
(40) the desired mass formulas. For diagonal matrix
elements, valid within a SU(3) multiplet, we get

M=(m'IFiH(mIF)
=Mp+ [2b/(2m+ 1)(2m+3)]

&&[I(I+1)——,'F' —-', m(m+2)]M'. (41)

For transition masses between adjacent SU(3) multi-
plets, we get

values of matrix elements of generators are given by
Eqs. (12)-(14), (28), (30), and (36).

A similar construction can be done for SL(3,C). We
state final results. The right-hand side of Eq. (30) now
undergoes the substitution b —+ib, and. the right-hand
side of Eq. (36) is multiplied by p. The unitary repre-
sentations of SW(3) discussed above thus become
nonunitary representations of SL(3,C). However, if in
this case b is chosen as purely imaginary we have a
unitary representation [Hermitian generator, see
Eq. (30) with b-+ pb] of SL (3,C). In this case we see
from Eq. (36) that c WO for any mso that we have an
infinite-dimensional representation. Finally, we might
mention that considerations identical to those above
can be made to obtain a similar representation of the
group TpXSU(3) (semidirect product of SU(3) with
eight mutually commuting translation generators),
which appears in strong-coupling theory. In this case
the right-hand side of Eq. (1/) is zero and the final
solution is exactly as above except that Eq. (36) is now
replaced by

c = [b/2(2m+1)][2m(m+1)] '" (38)

so that the representation is infinite dimensional unless
b= 0, in which case all translation operators are
identically zero.

III. MASS FORMULA

We consider the problem of mass splitting. We
assume that the Hamiltonian consists of two pieces:

Mr=
~

&m —1,IF~H~mIF&~ =
2 (2m+1)

[(m—I)'—p F ][(m+I+1) —
4 F'][(2m+1)'—b']

m(m+1)
M'. (42)
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Equations (41) and (42) give the mass formula for the
maximal degenerate representation of SW(3). In these
formulas 3f0 and Jj/I' are unknown parameters, I and I"
denote the isotopic spin and hypercharge, respectively,
m denotes the SU(3) representation (dimensionality
= (1+m)s), and b is the label of SW(3) representation.
Using Eqs. (41) and (42), we can diagonalize the mass
matrix and obtain sum rules between physical masses.
Because of the absence of the term proportional to
hypercharge, Eq. (41) gives very bad results for
fermions, and in what follows we apply it to bosons only.

Finally, we mention that for SL(3,C) Eq. (42)
remains valid, but in Eq. (41) we have to replace
b —+ib.

IV. APPLICATIONS

2K*—
op =@. (46)

Equations (45) and (46) are in excellent agreement with
experiments. These results were first derived by Okubo'
on the basis of his "nonet ansatz, " so that we have
found a rigorous justification for his ansatz. For pseudo-
scalar particles, Eqs. (45) and (46) are in bad agree-
ment with observed masses, but agreement for 2+
particles is again good.

The next higher representation is ~b~ =7, which
contains a singlet, octet, and a 27-piet. The mass
formula becomes

M»=M, +(14/35)
X[I(I+1)——,

' 7'—8/3]M', (47)

Ms =Mo+ (14/15)
X[I(I+1)—-'F' —1]M', (48)

Mg ——Mp, Ms (1&-+ 8)= (-'s+5)M', (49)

We consider possible applications of the above
scheme. The simplest nontrivial representation of
SW(3) is for lIb

~

=5. The SU(3) content of this is a
singlet plus an octet. The observed nonet of particles
with the same spin-parity may be put in this repre-
sentation. The general mass formulas (41) and (42)
reduce in this case to

Ms=Mo+ss[I(I+1) ~Y' 1]M ~ (43)

Mr(1 ~ 8)=as&2M', Mg=3IIp. (44)

We apply Eqs. (43) and (44) to vector mesons. Diago-
nalizing the mass matrix we get [particle label= particle
(mass)']

CO= P ~ (45)

Mv, (8~ 27) =-,'([(2—I)'—s' Fs]
X[(3+I)'—-', I"])"'M'. (50)

If a boson 27-piet is ever observed, then the empirical
masses can be used to test Eqs. (47)-(50).

V. CONCLUDING REMARKS

We have constructed a class of representations of
SW(3) consisting of a sequence of zero-triality SU(3)
representations, each occurring once. We have a mass
formula for this class of representations. When re-
stricted to the lowest nontrivial representation, this
formula correctly explains co-p mixing and provides
justification of "Okubo ansatz. " We have also listed
results for the next higher representation in case a
boson 27-piet is ever observed.

Techniques similar to those used in this paper may
be used to obtain other classes of representations of
SW(3), SL(3,C), and TsXSU(3). For instance, we can
compute isobar spectrum of scalar, SU(3)-symmetric
strong-coupling theory [group TsXSU(3)]. By explicit
calculation using conventional methods, Dullemond'
has reported the isobar spectrum of this theory to con-
sist of 8, 10, 10*, 27, 35, 35', , etc. A representation
of this type may be obtained if in Eq. (11) we admit,
instead, the transitions (m",e)-+ (m&2,@&1), (m,w)~ (m&1,n&2). However, in this case it seems im-
possible to have a representation containing only a
single 27. The spectrum is given by 8, 10, 10*, 27(2),
35, 35~, 64(2). The multiplicity of each representation
is shown in the bracket. It is possible that these two
27-plets, degenerate in mass to start with, split owing
to representation mixing so that one of them is pushed
high up, which might explain why the second 27 has
not been noticed in actual calculations.
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