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If baryons are baryon-meson bound states, their electromagnetic (EM) mass splittings result from (i)
long-range EM forces between their constituents; (ii) EM mass splittings of their constituents; (iii) charge-
dependent corrections (short-range) to the strong forces. The model implies many self-consistency con-
ditions, some of which we exploit to estimate the total baryon magnetic moments in terms of the orbital
g values of the mesons, and the baryon EM splittings in terms of Coulomb and magnetic energies and of the
observed meson EM splittings. The baryons are treated as static, and e6ects of type (iii) are assumed not
to be crucial. Though our assumptions may constitute a poor model of reality, the results of the model follow
immediately from its physics, and should be a reliable qualitative guide to the output of correct but more
sophisticated calculations based on similar physical ideas. Comparison with experiment shows that it is
essential to include strange particles even when considering the nucleons, and that the motion is not es-
sentially relativistic. Agreement is satisfactory for splittings and for the isovector moment, and less so for the
isoscalar moments. We make some comments on alternative approaches to these problems.

1. INTRODVCTION

HREE new ideas have recently been applied to
the old problem of the electromagnetic (EM)

mass splittings whose classical representative is the
neutron-proton mass difference' 8E. First, that it is
not enough to include only the directly obvious EM
effects, i.e., the direct differences in KM Geld energies,
the so-called "driving" terms; but that one should take
into account also indirect effects such as, for instance,
the inQuence of the EM mass splittings themselves on
the self-energies due to the strong interactions. We
shall call such effects "feedback. "Because of the strong
interactions, this idea entails the second, that the
splittings of the various isomultiplets should not be
considered in isolation from each other. Third, that the
observed particles might not be elementary, but, in the
spirit of bootstrap theory, bound states of each other';
then their splittings are due partly to those of their
constituents, and partly to EM contributions to the
binding forces.

The Grst two ideas draw strength from the variety
of the observed signs and magnitudes of the splittings,
combined with the validity of the Coleman-Glashow

' A fourth clue, less of an explanation than a consistency check. ,
lies in the remarkable work of N. Cottingham I Ann. Phys. (N. Y.)
25, 424 (1963)g. He expresses hE in terms of certain integrais over
the observed electron-nucleon scattering cross sections. His repre-
sentation holds independently of the detailed origins of Mf; but
it should not yield the true result until it incorporates data at
energies high enough to produce, in the laboratory, the inter-
mediate states that are in fact responsible for 8N. With present
data the integrals appear to converge well, but to a wrong (nega-
tive) value; this is legitimate cause for pessimism about most
currently popular approaches, including those considered in the
present paper.

2 Here we shall not consider the possibility that they are made
of quarks. If they are, the problem merely transfers to the quarks,
and one has to explain the splitting of the quark isodoublet.
Cottingham's results (Ref. 1) are compatible with the quark
model. The evidence has been analyzed by us from this point of
view, Nuovo Cimento (to be published).

formula' deduced from SU(3) symmetry: 6Z = (6&+6 )
(for definitions see Sec. 4.3). Unless this is an accident,
a calculation even of 8X is suspect if it ignores strange
particles. The most recent exploration taking extensive
account of SU(3) is that of Wojtaszeir. , Marshak, and
Riazuddin. ' The first idea by itself has been applied to
8E by Pagels. ' To avoid confusion one should bear in
mind that the Grst two ideas are independent of the
third, which is due to Dashen and Frautschi; its vicis-
situdes have motivated the present paper. Here we
shall be concerned only with the bound-state model;
although it works with the same ingredients as the
elementary-particle approach, we emphasize that it
can combine them very differently.

It is convenient to distinguish from the outset be-
tween long-range and short-range effects. Being carried
directly by the KM Geld, all the driving terms are
basically long range; as such we can handle them with
some confidence even when the solution of the under-
lying strong-binding problem is only assumed to exist
without being available in detail. Here we are helped
further by experimental information about the EM
form factors. By contrast, there are feedback terms both
of short and of long range. If the baryons are baryon-
meson bound states, then the EM mass shifts of their
actual constituents could be regarded as long-range
effects and are fairly easy to take into account. On the
other hand, once the driving terms upset charge inde-
pendence, the strong forces themselves suffer charge-
dependent corrections, which are short range. To
visualize this we construct, as a useful schematic analog,
a Schrodinger equation with an energy- (i.e., eigenvalue-)

'S. Coleman and S. I. Glashow, Phys. Rev. Letters 6, 423
(196i).

4 J. H. Wojtaszek, R. E. Marshak, and Riazuddin, Phys. Rev.
136, B1053 (1964).

'H. R. Pagels, Phys. Rev. 144, 1261 (1966). See also H. M.
Fried and T. N. Trnong, Phys. Rev. Letters 16, 559 (1966);
Phys. Rev. (to be published).

'R. F. Dashen and S. C. Frautschi, Phys. Rev. 135, 81190
(1964).
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(~IBvl~)
gE=
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1—Q IBV(E,,)/BEIP) j

(1.2)

The denominator in (1.2) embodies the short-range
feedback, since the range of BV/BE is comparable to
tha, t of V: for instance, when baryon exchange con-
tributes to V, the baryon EM mass shifts and coupling
constant corrections contribute to BV/BE. In the fol-
lowing we shall use the language of this model wherever
it does not risk confusion. '

The short-range sects are demonstrably dificult to
estimate; to do so reliably, one needs to know not only
the "perturbation" BV/BE, but also the wave function
at small distances. There have been several papers on
this problem, ~" particularly in the pion-nucleon sys-
tem; not only the magnitude, but even the sign of
(BV/BE) still seem to be controversial. Perhaps this is
not surprising, since no calculation as yet has managed
simultaneously both to produce the nucleon as a pion-
nucleon bound state and to account in any realistic
manner for the (T=—',, butts) phase shift. ts'e By contrast,
the driving term in the numerator of (1.2) is easy to
estimate if BV(r) varies slowly compared to f; we shall
see that in fact it is not very far from BV(0).

A further distinction to keep in mind is that between,
as we shall call them, sign reversals of the driving and
the feedback type. To see what is implied, take for
reference the classical expectation, based on the Cou-
lomb energy, that in an isomultiplet the charged
member is heavier than the neutral. By sign reversal
we mean that in some multiplets the opposite is ob-
served. For example, thinking of the proton as an

7 Even on the elementary-particle picture, 8V/8E has an analog
in the charge-dependent corrections to the strong self-energies
(Refs. 4,5).' R.F.Dashen and S.C.Frautschi, Phys. Rev. 137,B1318(1965).„
137, B1331 (1965).

9 G. L. Shaw and D. Y. Wong, Phys. Rev. 147, 1028 (1966)."R.F. Sawyer, Phys. Rev. 142, 991 (1966)."H. Goldberg, Cornell reports, 1966 (unpublished)."J.E. Paton, Nuovo Cimento 43, A100 (1966).
"C.Lovelace, Proc. Roy. Soc. (London) A289, 547 (1966).
t4 C. Peyrou, in Proeeedhsgs of the Oxford Internatiolat Cort

ferewce ol ELementary I'articles, 1965 (Rutherford High Energy
Laboratory, Harwell, England, 1966).

dependent potential; this dependence reQects the usual
self-consistency requirement on the bootstrap model.
The unperturbed equation is

L
—~'+V(E, )jib()=EIt() (1 1)

(For the purpose in hand we ignore the question of the
reduced mass. ) Now add to V a perturbation BV(r)
representing the driving terms and therefore inde-
pendent of the eigenva1ue, which changes from E to
E+BE. Then it follows straightforwardly that to first
order bE is given by

BV(E,r)
BE=(al «()+» l~),

aE

elertterttary particle with spin and Pauli moment, it is
conceivable tt priori that the Coulomb repulsion could
be overcompensated by the attraction between the
parallel current loops resulting from the rotation of a
more or less homogeneous charge distribution. "If this
were to happen we should call it a sign reversal of the
driving type. Whether it does happen depends on the
spatial distribution of charge and magnetization; in
fact the observed form factors show that the Coulomb
energy easily dominates and there is no such reversal. "'

In principle it is also possible that (BV/BE) is positive
and exceeds unity; if so, then (1.2) shows that BE and
(BV) have opposite signs, contrary to expectations based
on ordinary Schrodinger theory. We should call this a
sign-reversal of the (short-range) feedback type; long-
range feedback can of course help or hinder it. In various
contexts, Pagels and Fried and Truong, ' and Goldberg, "
have suggested that this mechanism does or might
operate. In our view, feedback-type reversal is im-
plausible for elementary particles. Feedback would
disappear in the logically not impossible limit in which
the strong couplings are switched off; as their strength
increases from zero, the ratio BE/(BV) could change
sign, in this way, only by becoming infinite at some
stage, which seems repugnant on physical grounds. On
the other hand, in the bootstrap model the self-con-
sistency requirement makes it nonsense to vary the
coupling strengths, and this argument against short-
range feedback-type reversal does not apply. The
differences between the two types are further illustrated
just below Eq. (4.14).

Apart from the attempt to disentangle the general
issues discussed above, our aim is to explore in a
qualitative but physically reasonable manner those
implications of the bootstrap model for the baryon octet
which do not depend on short-range feedback. By
"physically reasonable" we mean that the signs and
orders of magnitude of specific effects should be cor-
rectly and clearly linked to specific causes. We ignore
the short-range e6ects simply because we know of no
convincing way to include them. Our excuse for pro-
ceeding at all is that even this oversimplified situation
has sometimes been mishandled in more sophisticated
calculations. Hence it might be useful to have a model,
if only a partial one, whose mathematics are transparent
enough for the physics to show, so that more realistic
and therefore much more complicated calculations can
be charted by comparison. Correspondingly we shall
try to be ca,reful in stating the physics; this must be
our apology for the relatively large number of words.

For the reasons stated we take seriously only the
SU(3)-symmetric case, incorporating the baryon octet

's R. P. Feynman and G. Speisman, Phys. Rev. 94, 500 (1954);
K. Huang, zMd. 101, 1173 (1956).

"M. Cini, E. Ferrari, and R. Gatto, Phys. Rev. Letters 2, 7
(1954).

"In Cottingham's expressions (Ref. 1) these terms make up
the "elastic contributions. "
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8 and the pseudoscalar octet I' which would seem to be
a minimum set. Moreover we accept the meson masses
from experiment and include them with the driving
terms; thus at best we deal with only one-half of the
full problem of the KM mass shifts. "

The dynamical model is discussed in Sec. 2, where we
pretend for simplicity that only pions and nucleons
exist, reducing SU(3) to the isotopic SU(2) symmetry.
One and the same elementary method yieMs both the
magnetic moments and the EM mass splittings; in fact,
the moments guide us in further specifying the model
by rejecting certain relativistic complications that one
might have expected u priori The .driving terms, single-
photon exchange between baryon and meson, are dis-
cussed in detail in Appendix A. The SU(2) model is
easily stretched to include any number of E*'s as well
as the E; Sec. 3 and Appendix B consider this extension
in detail. All the SU(2) results are equally unsatis-
factory in yielding the wrong sign of bE; this is ex-
pected, and merely underlines the need to include
strange particles. Section 4 gives the results of the
SU(3) calculations, and Sec. 5 contains comments and
conclusions.

2. THE MODEL

For simplicity we ignore strange particles in this sec-
tion and consider only pions and nucleons.

Even granted that the nucleon is a pion-nucleon
bound state, there remains the problem of using this
idea to calculate the EM properties. The original
attempt to do so' " used the 1V/D approach via the
partial-wave amplitude A, where the nucleon is identi-
6ed with a pole of A =N/D due to a zero of D, this pole
being then shifted by EM sects. In principle, the
driving term of such a calculation is the true change
W. of A which results from switching on photon ex-
change between E and x. This method seems too
laborious to be correctly implemented in practice, not
primarily because of difhculties in ascertaining the un-
perturbed D function, but because it is not even
qualitatively adequate" ""to replace W. by the single-
photon-exchange amplitude itself. The trouble is ag-
gravated by the difhculty of dealing correctly with the
infrared-divergent expressions which enter at inter-
mediate stages of the calculation. "

But the essential physics of the bootstrap hypothesis
(apart from short-range feedback), can be incorporated

' For this we make no apology: We can just about conceive of
a reasonable dynamical calculation in the near future which
might yield the baryons as baryon-meson bound states, but not
at all of one yielding the mesons as baryon-antibaryon systems.

'9 R. F. Dashen, Phys. Rev. 135, 81196 (1964)."G.Barton, Phys. Rev. 146, 1149 (1966). The inadequacy, in
general, of the first approximation in the Dashen-Frautschi
method (independently of other, infrared-divergent, difhculties)
shows up in Eq. (2.9) of this paper and in the subsequent
drscussson.

» Y. S. Kim, Phys. Rev. 142, 1150 (1966); Y. S. Kim and
K.[V.(Vasavada, this issue, Phys. Rev. 150, 1236 (1966).

into a simple mode1 which suffers from none of the dis-
advantages of the more ambitious 1V/D approach; in
particular it does not need to specify details of the
strong interactions. What adds spice to the problem is
that the nucleon is itself one of its own constituents;
thus, one is led to exploit certain obvious self-consistency
requirements.

We adopt the static (no-recoil) approximation for
the nucleons; (later, when mesons as heavy as the E
and the ti enter, we shall re-examine its adequacy).
Thus, the bound state contains a (physical) pion orbit-
ing around a stationary (physical) nucleon in a P&~s

state; we symbolize such a system by
~
E~). Since by

definition its properties are those of the nucleon, we
write boldly

-S+
S 3 7j 3 Sx ~

Within the framework of the usual vector spaces of
quantum mechanics such an equation is, of course,
meaningless. The meaning that tentatively we do attach
to it derives from the bootstrap hypothesis: The matrix
elements of observables taken between two states both
appearing on the left are to equal the matrix elements
between the corresponding states, both appearing on
the right. No meaning is attached to "mixed" matrix
elements in which the bra, say, is taken from the left
and the ket from the right. As we shall see below, in
practice the procedure for exploiting (2.1) is quite clear.

The isotopic Clebsch-Gordan coefficients on the right
of (2.1) are dictated for members of an isodoublet.
Thus, everything about the vectors on the right is
determined except the radial pion wave function, which
depends speci6cally on the strong binding forces.

The radial uncertainty entails another, whether in
this context the pion should be treated as relativistic.
Though (2.1) clearly implies that the pion's binding
energy equals its rest mass, this does not bear directly
on its speed; by the uncertainty principle the latter
can be low if the interaction region is wide enough. The
procedure obvious at first sight might be to subject the
pion to a Klein-Gordon equation with the unknown
strong potential treated either as a Lorentz scalar or as
the time-component of a four-vector; this was the
viewpoint taken in Ref. 20. But in fact the customary
method uses a dispersion relation in the total energy,
and its potential-theory analog is in some important
respects closer to an ordinary Schrodinger equation,
especially with respect to the treatment of perturba-
tions. To see this, let or be the pion energy, and note
that although from the viewpoint of the left-hand cut
the value co=0 is a distinguished one, as it is in the
Klein-Gordon equation, from the viewpoint of the
possible location of the bound-state pole it is not. In
other words an X/D calculation with appropriate
forces can equally easily yield a bound state whose mass
my is less than the nucleon mass m~, or greater. This
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where pa and py, by definition, are the total isoscalar
and isovector moments which are to be calculated (the
observed values are also quoted):

8 e
vs=(v&+p )=0.&g; ~r=(~,—v )=470

28$pf 2m+

(2.3)

~/2 and T are the isotopic spin operators for nucleon
and pion, e the Pauli matrix for the nucleon spin, and
L the orbital angular momentum. (Note explicitly that
exchange moments are being ignored. ) We use natural
units, k=1=c.

First we take the expectation value of po(op) for a
spin-up nucleon as represented by the vectors on the
left of (2.1), which yields p,„and u„by definition; then
with the state vectors on the right, using standard
vector addition for the P&~2 state. Finally we equate the
results, 6nding

t'={sl:—e nj+sl:—3 -+3(e/m-)j},
t -= {sL—ai.—s(e/m-) j+SL—

3 -3}

These are just two simultaneous linear equations for p~
and p, the inhomogeneous terms being proportional
the pion's orbital g factor. The solutions are

ps=0, pv=e/2m =6.7(e/2m~), (2 5)

to be compared with (2.3).
Note the following points: (i) The nucleon mass

disappears completely from the equations once we can
neglect m /ms ', the natural unit for expressing the
total moment is e/2m . (ii) The unwelcome results

pal=0 rejects the pure isovector nature of the pion
current. (iii) If the motion were treated by the Klein-
Gordon equation, the orbital g values would be re-

property is shared in a natural way by the Schrodinger
but not as readily by the Klein-Gordon equation. There
may be genuine physical diKculties that arise if m&& nz&,

but they are disregarded by the usual 1V/D equation,
and we ignore them now because we want to make our
model as similar as possible to the usual E/D procedure.
Moreover, the Klein-Gordon equation involves un-
avoidable and in this context probably unphysical
ambiguities as to the magnetic effects" (both moments
and energies). For all these reasons we use a nonrela-
tivistic model, and shall merely note where its pre-
dictions deviate from relativistic expectations. In every
case, comparison with experiment favors the nonrela-
tivistic alternative.

We are now in a position to exploit the model, and
start with the magnetic moments. The moment opera-
tor is

p(op) = 2 (ps+ropy)e+ (e/2m )TOL, (2.2)

duced. ""A similar result is known in the relativistic
corrections to the Zeeman eBect. The measured value
clearly cannot tolerate any great reduction.

To obtain the EM mass splittings, we take the ex-
pectation value of the EM perturbation to second order
in e. Using the vectors on the left of (2.1) we obtain,
by definition, the EM selfmasses 5p and bn. Using the
vectors on the right, we get the following types of
contribution: (i) from bp and brt; (ii) from the pion
EM self-energies bs.+=Sr and bs.o', and (iii) from the
direct EM forces between nucleon and pion.

In common with all other workers, we assume that
single-photon exchange dominates the EM force (iii).
The details are considered in Appendix A; they depend
on the form factors. The important difference between
the first approximation here and in the X/D perturba-
tion method is that we take photon exchange to deter-
mine only the perturbing poteutia/, while in the X/D
method an attempt was made to substitute it for the
change 5A of the amplitude itself.

The direct EM forces are of two kinds. The Coulomb
(electrostatic) interaction acts only between the p and

in the first component of the neutron; being at-
tractive it makes a negative contribution —C&0 which
is defined by

(ps l
(electrostatic potential) l

ps. )= —C. (2.6)

The potential here would be —a/r if the form factors
were unity.

There is also a hyperfine-structure (hfs)-type cou-
pling" between the magnetic field of the orbiting
charged pions and the moments of the nucleons, better
thought of as a current-current coupling. Since in a
Pj~~ state spin and orbital angular momentum are anti-
parallel, the associated current loops are parallel, so
that the magnetic force is attractive both in the

l
ps. )

component of the neutron and in the le.+) component
of the proton. We define, with M&0,

(ps l (hfs potential)
l ps )= —

eppes/m,

(2.7)(Is+
l (hfs potential) l

ms+) =+ AM/m .
If the form factors were unity, the hfs potential

would be (pe/m, ) (o.L)r~.
Equating the expectation values of the order e'

perturbation, we find

5P= Pl 5P+b~'g+-', Lbu+b~++et „3I/m.g}, (2.S)

bn= {asl bp+bs+ —C—ep~/m j+~eLbe+kr']}. (2.9)
We are interested only in the difference 5X= (bl —5p)
= (I—p), whose observed value is +1.3 MeV. Sub-
tracting (2.8) from (2.9) we get

5X={—-',5E—-', C—-', e(p~+tl, )M/m }, (2.10)

5N ={ gC sepsM/m. }. — — (2.11)
"This result is well known in the relativistic corrections to the

Zeeman effect (Ref. 23). It is commented on in Ref. 20.
"See ior instance H. A. Bethe and E. E. Salpeter, Qguntgm

Mechwsics of Owe- and Two-Etectf oe Atoms (Springer-Verlag, Ber-
lin, 1957).
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The right-hand side of (2.11) is unavoidably negative;
this merely shows that, as anticipated, the SU(2)
syrnrnetry is too simple. Of course one should ask
whether it could be salvaged by including, besides S,
other SU(2) particles" such as the N*'s. What one has
in mind is to calculate both the E and the E*splittings,
not to infer the one from the observed value of the
other. This extension is considered in Sec. 3, where we
And that in the absence of short-range feedback-type
reversal not even the extended SU(2)-symmetric model
can reproduce the observed sign of SE.

The driving terms C and M are considered in Ap-
pendix A, where we hnd that the magnetic contributions
are roughly a 20% effect, essentially because pe is
fairly small. With a realistic attitude to the level of
accuracy of the model we neglect this, and adopt the
value

C=1.9 MeV, (2.12)

which, by way of compensation, is a slight overestimate.
In the SU(3)-symmetric case we shall need to recon-
sider the magnetic eGects.

The cancellation of the boson mass diBerence from
(2.10) is peculiar to SU(2); it occurs because 5s.
= (s+—m') is a second-rank isotensor while RV is an
isovector. Similarly, the reason why only p, 8 occurs in
8E is that the pion current is pure isovector; hence,
only that part of photon exchange violates charge
independence in which the photon couples to the iso-
scalar component of the nucleon current. "

The way in which magnetic and Coulomb energies
combine illustrates vividly the differences between the
elementary-particle and the bound-state approach. In
the former the two energies have opposite signs; in the
latter they have the same sign. In both cases the
Coulomb energy tends to make 5X negative, on the
elementary particle picture through the electrostatic
repntsion between the different parts of the proton, and.

on the bound-state picture through the attractiorI, be-
tween the p and m constituents of the neutron. By
contrast, on the elementary-particle picture the mag-
netic energy tends to make the proton lighter through
the attraction between its predominantly parallel cur-
rent loops"; but on the bound-state picture it makes
the megtroe lighter through the attraction between the
parallel currents resulting from the antiparallel rota-
tions of its two oppositely charged constituents p and n. .

3. DIGRESSION ON THE EXTENDED
SU(2)-SYMMETRIC MODEL

3.1 Introduction

~ D. Morgan (private communication).

It is a commonplace of mÃ bootstrap attempts that
S and X~ exchange forces are of comparable im-

portance; this suggests that S and E* may be of
comparable importance also in the direct channel. In

other words, one should not neglect the possibility that
E is a bound state just as much of %* and+ as it is of
E and m ', the fact that the T=-', partial wave in E~
scattering is very strongly inelastic" "lends some sup-

port to this hypothesis. "Correspondingly the E*may
contain lNes) as well as le). In our model we repre-

sent such a situation by writing

lN)=nlNn (N))+ (1—a')'tmlN*m (N)), (3.1)

l
N*)= (1—P')"'le. (N*))+Pl N*m (N*)). (3.2)

Here, l Nm (N)), for instance, represents the states (2.1);
the labels in brackets show the quantum numbers (in-
cluding isospin) to which the constituents are coupled.
The coeKcients ot and P depend on the dynamics; from
our viewpoint they are at this stage adjustable
parameters.

All components are I' states, but diBer in their
radial wave functions; for instance in (3.1) and (3.2)
the first component of (3.2) is a continuum state, and
all others are bound. Moreover one knows from analyses
of the phase shifts"" that the strong forces in the g
and E* channels are quite different. Therefore the
Coulomb expectation values C will be diGerent. But
because the electrostatic potential has long range, and
is likely to be smooth even at small distances (see
Appendix A), we expect all the C's to be fairly close.
Since we are looking only for qualitative conclusions
we shall adopt a common value of C for all components.
(For instance, we take —2C as the Coulomb energy of
the N*++n. component. ) Certainly they can differ
neither in sign nor in order of magnitude; and the con-
sequences of taking them equal are so clearcut that
only incredibly drastic changes in the C's could upset
them.

3.2 Magnetic Moments

Using the methods of Sec. 2 the moments are got
from (3.1) and (3.2) by a straightforward but laborious
calculation" making repeated use of the Wigner-Eckart
theorem. The isoscalar moments again vanish, and one
obtains simultaneous equations for the three isovector
quantities, namely the X and 1V* isovector moments pz
and v, and the E~E* transition moment ). These
are defined by (2.3) and by

(N*,t„,=sip 2( pe) l

ore*,t, , s, =-,')=-,'vtg, (3.3)

(N*,t„ss I po (op) lN, t3,s8) =X, (3.4)

where t3 and sa are the third components of isospin and

"E. J. Squires (private communication)."J.Hamilton, in Proceedings of the Seminar orI, United Field
Theories (Max-Plan ck-Institut, Munich, 1965). See also A.
Donnachie and J. Hamilton, Ann. Phys. (N. Y.) 31, 410 (1965);
and Phys. Rev. 138, 8678 (1965).

"The results have been obtained independently by M. R.
Wallace, University of Sussex, M.Sc. thesis, 1966 (unpublished).
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TABLE I. The coeKcients in Erl. (3.6l.

1
2
3

9—e2
4~ (1 p2) 1/2

-(1-O')

As;
2

—160,(1—~2)'/2

9 1 (1 ~P,)1/2 (1 p2)1/2 5~P
-(8/5)&(1-e')'/'

—(25/3) (1—cP)—(10/3)P (1—~')'"
3 —(121/75l ti'

2+6o,2
2~(1 P2)1/2+SP {1 g)1/2
2 —(42/25)P2

spin. Writing

py= g]) X= Kg) V= K3) (3.5)

4. THE SU(3)-SYMMETRIC MODEL

4.1 Introduction

the equations are

A,,tt, = (e/2m, )B;; (3.6)

the dummy-suQix convention is used. The coefficients
A;, and 8, are given in Table I. Experimentally, v is
unknown and'8

Xexy= 1.18py. (3.7)

A numerical exploration of the solutions of (3.6) with
a liberal variation of n and p reveals that X and ttv do
not, simultaneously, assume their experimental values.
But of course the most serious failure is the prediction
Pa=0.

independently of ot and P. In the absence of strange
particles the result (3.8) depends only on the assump-
tions that short-range feedback is negligible and that
all the C's are equal; it remains true even when one
introduces any number of E*resonances with arbitrary
values of the coefficients of the type n and P. Appendix
3 proves this general statement. Though the constancy
of the C's is admittedly only an approximation, we
think this result is acceptable evidence for the following
statement:

If strange particles are excluded from the calculation,
the observed sign of bltI can be reproduced by theory only

if there is a sign reversal due to sh-ort range feedback. -

"It has been argued that ) should be compared not to pII, but
to the value of the isovector nucleon magnetic form factor at a
momentum-transfer value corresponding to that actually needed
in the S -+ X* photoproduction. Then the experimental ratio of
X to pz is even greater, and the inability of the theory to reproduce
is more striking R. H. Dalitz and D. G. Sutherland, Phys. Rev.
146, 1180 (1966) .

3.3 Mass Splittings

Since E* has T=~3, its EM splitting contains an
isotensor component which is affected by 8x. The iso-
tensor splittings are easily disentangled from the iso-
vector ones since the former depend only on the mag-
nitude but not on the sign of t3. We concern ourselves
only with the vector splittings, i.e., with two inde-
pendent quantities. By applying our method to (3.1)
and (3.2) one easily 6nds

3E=Ee'—X*+=-', (S* —iV*++)= —C/2, (3.8)

Formally, the basic equation (2.1) is generalized" to
SU(3) simply by coupling the baryons B and the
pseudoscalars P to an octet

I B).This may be a mixture
of the symmetric (D-type) and. antisynnnetric (F-type)
states; hence, we introduce a parameter o. which we
treat as adjustable and de6ne so that the IB)'s are
proportional to

(1+~) I BP&n+ (3/Q5) (1 a) I
B—P&r, (4.1)

where
I BP&n r are normalized to unity and the factor

3/+5 is inserted for convenience in the numerical work.
For instance, '0

—1 (1—2a)
I p&=&(~) I p~'& I«—+& +—

I pn&
v2

(2—~) CX

IAX+&+ —Ibex+& —~ IZ+Xs&
v2

1 (1—2n)
In&=N(n) Ip~-) ——In~o& + In~&

W2 g6
(2—n) G

I
AK'&+ ——

I
Z'E'&+ tr

I
Z-E+&

v2
(4.3)

where 1V(n) is a normalization constant,

X(n) = L3/(7 —4n+7n') jt". (4.4)

But in view of the observed SU(3)-violating "medium-
strong" (MS) mass differences within B and P, one
must consider carefully to what extent this generaliza-
tion is valid.

As regards the magnetic moments, SU(3) violation
cannot be neglected even if the wave functions on the
right of (4.2) and (4.3), etc., are undisturbed by MS
eBects. The inhomogeneous terms in the equations for
the moments involve the meson orbital g values e/2m
and e/2 mwtrhose ratio differs by the factor mtr/m
=3.54 from its SU(3) value of 1. The isovector mo-
ments draw contributions both from x's and E's, and

te See for instance M. Gell-Mann and Y. Ne'eman, The Eeghtfotd
9'ay (W. A. Benjamin, Inc., New York, 1964)."We use the phase conventions, and the tables, of P. McNamee
and I". Chilton, Rev. Mod. Phys. 36, 1005 (1964).
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u Priori any SU(3) relations between them are worth-
less. The isoscalar moments depend on I/2m~ alone
since only the E current has an isoscalar component;
thus, the SU(3) relations involving them remain valid,
but all isoscalar moments will turn out very much
smaller than the isovector ones, and too small compared
to experiment. This is a serious dilemma for the theory;
an analogous problem is bound to occur, for the same
reason mz&&m, on any picture of the dynamics, and
we have no solution to o8er. A second complication
ensues because E and g are not light enough compared
to the baryons to neglect the inhuence of baryon motion
on the orbital g values. We have repeated all the mo-
ment calculations, allowing for this by replacing ep/2m '
with"

+5.0

+4. 0

+3.0

+2. 0

+1.0

I I I I I I I I

(corr)

8y 52g e~PE I

2m/(&/+md) 2m/(my+ mp)
(4 5)

I I I I

-Q. 1

-Q. 2

-0.3

+0.8 s (EXP&

+0.6

+Q.4

where e~, eg are the charges and mp, mg the masses of
the meson and the baryon in each component. It turns
out that the change has no appreciable eGect on the
calculated moments; this can be seen from Figs. 1 and 2.
In particular the isoscalar moments remain much too
small.

Next, the MS mass differences could change the
values of the coefficients on the right of (4.2), etc., or
distort the radial wave functions differently in the

-1.0 +1.0

FIG. 2. The nucleon isovector moment in nucleon rnagnetons. The
"corrected" curve results from the g value of Kq. (4.5).

4.2 Magnetic Moments

several components, or both. We propose to ignore
these complications, for two reasons. Empirically, the
validity of the Coleman-Glashow rule' suggests either
that the effects of SU(3) impurities, separately, are
very small, or that they conspire to cancel by some
fantastic coincidence. Theoretically, the inner region
contains most of the wave function because of the
centrifugal barrier, and it is shielded by the barrier
from the sects of the MS splittings. Dalitz has shown
that even for the decuplet the shielding is very ef-
fective"; in the deeper lying octet it must be more so.

As regards the EM splittings, we shall therefore re-
tain a common value of C for all components; but we
must reconsider whether the magnetic energies can
still be neglected. In SU(2) symmetry this was just
possible, but only because the observed value of pa is
fairly small. Now the contributions to (bVsr) of the
component states containing an orbiting E meson
carry a factor m~ ' instead of m ', whence we need
not worry about them. Moreover that part of the
magnetic isovector splitting which involves m ' de-
pends only on the isoscalar moments, and, experi-
mentally, pz as well as pa seems fairly small. This
leaves only the isotensor Z splitting, whose magnetic
part combines the (large) isovector moments with an
orbiting +, and is not negligible. We shall correct for
this; it turns out eventually that the correction is
quantitively but not qualitatively important. (See
Fig. 4.)

+0.2
Q

s t s s & I I

Proceeding exactly as in Sec. 2, we obtain two sets of
simultaneous equations, one set for the isoscalar and

-1.0

FIG. i. The isosca)ar moments in nucleon magnetons. The
"corrected" curves result from the g value of Eq. (4.5).

3'R. H. Dalitz, Proc. Roy. Soc. (London) A288, 183 (1965).
Sy contrast, Hamilton (Ref. 26) has stressed the difIIculties of
reconciling the validity of pure SU(3) predictions with the dy-
namics, when the MS mass diBerences are taken into account.
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TABLE II. The coefficients in Eq. (4.11).L(a) = (7 4a—+7a ).

L+6'(1—2~)' —~s

2 cP
3 —)0,(2—o,)
4 0

CP —)cx(2—a)
L+~z(1—n)2+g(1+o;)2 —$(1—e )—k(1—~')
1 —As(1 —2a)

0 ~6 (2—0.)'—$a' 2
1 (1+&) (1—~)'+k(1+~)'—k(1—2a) k (1—a') f (1—a')
I-+4 (a—2)'—H' —5+4 (1—2a)'

another for the isovector moments; the latter include
the Zsh. transition moment tt(ZA). As explained in
Sec. 4.1, the SU(3) relations among the isoscalar
moments remain valid, and we use them to eliminate
two of four. To do this, recall the standard SU(3)
result for the Pauli moments, ' " identified as such by
primes:

t '(&') =t '(P), tt'(A)=tt'(n)/2,

t '(~') = —t '(~)/2, t '(=') =t '(~),
t"(~)=—[i'(P)+l '(~)], t '(=" )=—[t '(P)+l'(~)],

tt'(ZA) = 43tt'(n—)/2 (4.6)

Neglecting the relatively small eGect of the MS baryon
splittings, (4.6) leads to the following isoscalar relations
between the total moments:

ttv plotted against n in Fig. 2. (To our surprise, we
found, after completing the calculations, that the rule
py —p, g

—p4=0 does survive in spite of the ~-E mass
difference. )

The figures also show the result got with the orbital
g value (4.5). The features anticipated in Sec. 4.1 are
evident.

4.3 EM Mass Sylittings

The method of Sec. 2 again applies straightforwardly.
In order to keep in closer touch with the measured
numbers, we prefer this method to decomposing the
mass splitting into its SU(3)-irreducible tensor com-
ponents. ' We obtain simultaneous linear equations for
the four isovector quantities defined by

I—p= 3tV= bi ——1.29,
[t (~')+t (~')+t (~ )]=—3t (A), (47)

[t (=-')+t (=--)]=—[t (P)+t (rt)]+2t (A). (4.8)

With the definition (2.3) of t44t, we are finally led to

Z-—a+= br= 7.90+0.09,
0=5 =52=6.5 ~1.0,

ASS�(ZA)=3s,

(4.12)

(26—14n+23ns) 4(1—n —2ns) tts

(1—n') 2(7 6n+8n') —tt(A)

e (2—2n+Sn')

mx —(1—n')
(4.9)

"N. Cabibbo and R Gatto, Nuovo Cimento 21, 872 (19Ci)."R. L. Cool et al. D'hys. Rev. 127, 2223 (1962)j find 44(A)
=—1.5&0.3;W. Kernan et at. P'hys. Rev. 129, 870 (1963)j find
0.0+0.6; S. Anderson and F. S. Crawford D'hys. Rev. Letters 13,
167 (1964) find —139+0.72; P. Rosselet f Helv. Phys. Acta 38,
691 (1965) 6nds —0.60+0.34; all in units of e/2mN.

The solutions are plotted against o. in Fig. 1. Experi-
mentally, tt(A) = (0; —0.6; —1.39; —1.5}e/2msr, de-
pending on one's choice of experiment. "The discrepancy
with the data, due to the large E'mass, is evident.

In the isovector equations no simplifications like
(4.7) and (4.8) would be expected to remain valid for
unequal m and E masses. Defining

[t (P)—t (~)]=t v=t i, 2v3t (&A) =t s,'
(4.10)

[t (E+)—t (~ )]=t s, [t (=')—t (=. )]=t 4,

one finds the equations

G;;(n)tt, =H;(n)/4tttr+J;( )/ nt; tt(4.11)

the coeKcients G;;, B;,J; are given in Table II, and

where the numbers are the measured values in MeV.
The equations satisfy, identically, the Coleman-Glashow
rule' 3Z= (3tV+3"), which we use to eliminate 3Z. [If
magnetic energies had had to be included, this would
no longer be possible in view of the SU(3)-violating
isovector moments. $ The driving terms contain C, for
which we use the value 1.9 MeV (see Appendix A), and
the two isovector boson masses 3K=(Ks—E+)=3.9
MeV and the 4)mrs transition mass 3(rtir). For the latter
we adopt the SU(3) relation

5(414r) = —(i)It+fir)/K3= —5 MeV. (4.13)

This step, taken faute de mieux, is somewhat con-
troversial because of the MS rt-ir mass difference; 3(rtir)
depends on the value of the (necessarily common)
mass for. which it is evaluated, '4 and it is not really
clear how this value should be chosen.

The resulting equations are

W;4 (n)3;= X;(n)C+F;(n)3E+Z;(n)3(4)ir) . (4.14)

The coeKcients W;;, X;, I';, and Z; are given in Table
III. The solutions for 5S, 5Z, and 5 are plotted against
o. in Fig. 3. We also show the result for bX when the
boson driving terms are neglected (i.e., F and Z set
equal to zero), in order to illustrate the remarks made

"B.Barrett and G. Barton, Phys. Rev. 133, B466 (1964).
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TsnLE III. The coeScients in Eq. (4.14).

1
2
3

(8—2a+2a2)—3
(1+2a—2a2)

W;g
2

3a
(2—2a+8a2)
(2—2a —a~)

—a(2 —e)—(1—2a)—g(7 —4a+7a2)

Xs

—3 (1+a')
3(1+a )
(1—4a+a')

(2—2a —a')
(1+2a—2a2)
(1-4-+~)

2'�(—1+2a)
2v3a( —2+a)
0

in Sec. 5 below about a possible relativistic suppression
of such effects.

The difference between possible feedback-type and
driving-type sign reversals shows clearly in the struc-
ture of (4.14). Feedback-type reversal would result if
det(W) were negative; driving-type reversal depends
on the coefficients X;, V;, and Z;. With the long-range
feedback used here, det(W) is positive; naturally we
cannot rule out the possibility that with short-range
feedback included it might change sign.

For the solitary isotensor splitting

4 0

2 ~ 0

(c)

I & « i

IZED= (Z++Z —2Ze) = 1.8&0.1

we obtain the formula

(4.15)

0

L3C(3—4~+3~ )—2&~(1—4~+~ )g$gT— (4.16)
8(1—o.+o.') -1.0 +1.0

+20

+15

FIG. 4. SZ~ in MeV. (a): from Eq. (4.16) with C=1.9 MeV;
(b): from Eq. (4.17) with t"=1.37 MeV and ep,~/m =0.87
MeV; (c): as in (b), but dropping 821. Horizontal line shows the
experimental value.

if magnetic energies are neglected. With C=1.9 MeV,
(4.16) is plotted in Fig. 4. Including the magnetic
contributions, we find

elf
3C(3—4o+3o.')+3 (ps+—pg-) (1—n)'

+15

+10
e3E

+3 L~'(~,—~ )+(~=- —~z-)j

0 —2g~(1 —4o,+o') (8(1—a+o') } '. (4.17)

+6

+4

-2 . - t)N (C only)

Here we use our calculated values for the isovector
moments, and, as explained in Appendix A, C= SVc(0)
X(f)/f(0) =1.37 Mev, and ep~M/m =5V~(0)(g)/g(0)
=0.865 MeV. The result is plotted in Fig. 4. For
comparison we have also plotted the result which fol-
lows when bs is dropped from (4.17).

5. CONCLUSIONS

-1.0
I I s I ~ 1 I I

+1.0

Fzo, 3. The isovector splittings in MeV. The lower curve for
h~V results from neglecting the second and third terms on the right
of Eq. (4.1.4). Horizontal lines show experimental values.

In assessing the consequences of the model one must
bear in mind that we are looking only for qualitative
indications, and that for the reasons stated we are
resigned to not explaining the isoscalar moments. Thus,
we look not for a unique value, but only for a neighbor-
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hood, of 0,, where the calculated values approach the
observed ones. Then the preferred range of values for
the mixing parameter n is roughly 0&n&1, which is
compatible with suggestions from other sources. ~'

Within this range agreement with the data is reason-
able. To what extent this supports the model, and the
approximations made within it, must be a matter of
taste. ' ' As in the Introduction, we would claim only
that the signs and orders of magnitude of the calculated
results do follow straightforwardly from the underlying
physics of the model, and that more sophisticated
calculations based on similar physical assumptions must
lead, if they are carried out correctly, to similar
conclusions.

In the preferred range of n, we note that the effects
of the two kinds of driving terms on the large splittings
bZ and 5™reinforce each other, while they tend to
cancel in 5X. Therefore the historically crucial fact
that 8X is actually positive in si ge is almost accidental;
what is signihcant is that it is considerably smaller in
magmitgde than SZ and 5 .

Also, it is the case that if the boson EM splittings are
dropped from the driving terms, then one cannot repro-
duce the observed sign of 5S.To illustrate this, we have
plotted in Fig. 3 the solution of (4.14) with C alone in
the driving terms, i.e., with F=O=Z. (Since all iso-
vector splittings are then simply proportional to C,
uncertainties about the magnitude of C do not affect
their signs. The other two could at least have their
observed signs even without the boson driving terms. )
This remark is important because the boson contribu-
tions might indeed be suppressed if the problem was
essentially relativistic; a similar suppression can operate
in certain dispersion-theory calculations because of
kinematic factors. We conclude that if for any reason
the boson EM splittings do not enter a calculation,
then even with strange particles one cannot hope to
reproduce all the observed signs except by invoking
some very delicately balanced sign reversals due to
short-range feedback. To accept such an explanation
one would need firm faith in one's methods for dealing
with details of the strong interactions. Again, it would
seem to be a matter of taste whether, at the present
time, one prefers to look for such an explanation; or
whether one accepts, as we have done for the purpose
of this discussion, the possibility that the problem is not
essentially relativistic; or whether one abandons alto-
gether the attempt to use the bootstrap model for
explaining the baryon mass splittings.

and for preprints of their papers; Dr. N. Cottingham,
Dr. N. Dombey, and Professor E. J. Squires for stimu-
lating conversations; Dr. L. M. Delves and Professor
G. N. Ward for their mathematical advice on eigenvalue
equations of the type (1.1);D. Newell for taking charge
of the programming; and the Science Research Council
for a grant to the second-named author.

APPENDIX A

(A2)

How to begin with field theory or a dispersion repre-
sentation and to end up with a potential usable in a
Schrodinger equation, is a very delicate problem. But
luckily there exists a consensus on what to do when the
interaction in question is (i) weak and (ii) mediated by
the exchange of a single particle other than one of the
interacting particles themselves. Then one dehnes the
equivalent potential 8V by taking this single particle
exchange diagram, which is essentially a function of
the momentum transfer alone, and equating it to the
first Born approximation to scattering by bV, i.e., to
the Fourier transform of bV. One must face the problem
that both particles are on their mass shells in the
scattering amplitude, but not when one deals with the
effects of bV on a bound state. In electrodynamics
there is also the related problem of chosing a gauge
for the exchanged photon. The correct choice is the
Landau gauge; it leads to the potential in the Breit
equation which successfully reproduces, for instance,
the fine structure of positronium. " In our case bV is
a pion-nucleon (eventually a P B) potential -due to
photon exchange; in the nonrelativistic limit for the
nucleons the effective differences between the gauges
disappears. The resultant SV, using the Feynman gauge,
has already been considered elsewhere. ' "Naturally it
involves the pion and nucleon form factors, i.e., the
6nite spatial extension of their charge distributions. "
For simplicity we adopt the same form factor, F(K'),
for both, and indeed for all the 8's and I"s, making no
distinction between Dirac and Pauli, or charge and
magnetic form factors; these latter differences become
unimportant for very heavy nucleons. In the spirit of
our model, we treat the pions as nonrelativistic.

With these simplifications, consider as our reference
system the state

~

ps. ). The electrostatic potential be-
tween p and s. becomes"

AVE = nf(r), — (Ai)

f(r) = (2/s. ) dE F'(K') sin(Kr)/Er.
'

ACKNOWLEDGMENTS

We welcome this opportunity to thank Dr. H. Gold-

berg and Dr. H. R. Pagels for valuable correspondence

The magnetic (hfs-type) potential is

8Vsr = —(2p~e/m ) (s. L)g(r),
g(r)=r 'df/dr.

(A3)

"Our definition of ~ differs from that of others. Most authors
favor an F/D ratio close to g, which corresponds to a=0.336.
See for instance J. C. Helder and J.J. de Swart, Phys. Letters 21,
109 (j.966).

"The connection between form factors and the spatial charge
distribution is discussed, for instance, in G. Barton, Introdlction
to Dispersion Techniques in Field Theory (W'. A. Benjamin, Inc. ,
New York, 1965).
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(These 8V's differ slightly from those defined in Ref.
20.) Here, tsv is the total magnetic moment of the
proton, tsv= 2.79e/2srssr, s =rr/2 its spin, and L the orbi-
tal angular momentum. In the F~~s state, (s L)= —1,
whence

h Vsr ——(2ts„e/rrs )g(r); (A4)

since g(r) is negative, 5Vsr is attractive.
To estimate the expectation values (5Vc& and (5Vsr&

one should know something about the radial wave-
functions. This is particularly needful if F(K') remains
finite at infiiiity, for then 5V& and 8V~ have components
behaving like r ' and r ', respectively, at small dis-
tances. But fortunately the dependence on the radial
wavefunctions becomes less sensitive if we take ad-
vantage of the observed fact that F(~) is very small
and probably zero, '~ and if we are careful to construct
the best possible approximation to the potentials at
small distances by using an expression for F(K') which
is adequate up to large values of K'. Such a parametriza-
tion seems to be

(2.11) becomes

(~()»V (0)
=0.2.

I v (f(r)& ~Vc(0)
(A11)

As explained in the text, the value of (IVY& used in the
isovector calculations is taken from (A9), being a slight
overestimate in part-compensation for neglecting the
magnetic energies. But when correcting the calculation
of 5Zr for magnetic energies, we have used &5Va&

=8Vc(0)(f&/f(0) and (bVM&=8Vpr(0)(g&/g(0).

pl~;pl'=1, (B2)

APPENDIX 3
We prove the statement following Eq. (3.8). Denote

by l err(i)& the normalized state containing a pion and
a (pion-nucleon) isobar lb) coupled. together to give the
quantum numbers of the isobar li&. In the spirit of
Sec. 2, we write, for each i,

li&=Ps rr, plkrr(i)&, (Ii1)

Defining

we find

F(K') =a4/(a'+K')',
a=6m =840 MeV.

x=ar,

(AS)

(A6)

where the a;I, are numerical coeKcients that depend on
the dynamics. Note that they need not, of course, form
a unitary matrix; but in the special case of two isobars

l i& and
l j) with identical quantum numbers we do have

Ps n;p*crss 5;, [wh——en Jv (i)=J (j)5 (83)

f(r) = (a/48x) {48—s [48+33x+9x'+x'5},
f(0)=Sa/16;

g(r) = —(a'/48m')(48 —e [48+48x+24x'+7x'+x'5),

g (0)= —a'/48. (A8)

(A7)

5Va(0) =—1.9 MeV, 5VM(0) = —1.9 MeV. (A9)

To get a rough idea of the effects on the expectation
values of the different ranges of f and g, we have calcu-
lated numerically the expectation values with wave-
functions for the 1p state in an infinitely deep square
well of radius 1/rrs; while this is larger than any realistic
range for the xX force, the latter is not of course in-

finitely deep. Then one finds

For a P state with its wave function well concentrated
by the centrifugal barrier, "an appealing fi.rst approxima-
tion might be to adopt (5Vc&=5Vc(0), (5Vss&=hV3r(0);
then (AS)-(A8) give

On our model, the operator for the driving term is
simply

Tp ,'(1+Tpn)C, -
when T and Tn are the isospin operators for pions and
baryons. We are interested only in the isovector
component,

Tp C/2,

and drop the rest. Let the operator for the isovector
mass splitting be 5, and define its reduced matrix ele-
ments as usuaPS by

&s vl&lj, v&=&il lhl l j&C(t;,1,t;lvo, .), (aS)

where t, is the isospin of l i& and v its third component.
Naturally, (il l5l l j) can be nonzero only if li& and

l j)
have the same spin and parity. We shall need the
orthonormality condition

Q„C(tp, 1,t;its, v —ts, )C(tp, 1,tsl»" » ")=br, r (Ii6)

and the formula
&f(r)) &a(r)&=0.72, — =0.456.
f(0) g(0)

(A10)
C(t, 1,tl v, 0,v) =

[t(t+1)5'"
Using (A9) and (A10), the ratio of the magnetic to the
Coulomb term, (both attractive), on the right of Eq.

'~ For experimental information about the form factors, see,
for instance, F. M. Pipkin, in Proceedewgs of the Oxford Iwter-
rrattorral Colfereace ors EterIsewtary Partsctes (Rutherford High
Energy Laboratory, Harwell, England, 1966).

The crucial first step is to note that the driving term,
(B4), is electrostatic, and cannot change the nature of
the isobar. Therefore, it is diagonal in the following

"M. E. Rose, E/ementary Theory of Angular Momentum {John
Wiley Bz Sons, Inc., New York, 1957).
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sense:

&ksr(s), vl Ts Ilw(j), v&

=Q„C(ts,i,t; Its, v —ts, v)C(t~, i&t; Its, v —is, v)

X(je,islt, ts&(w, v—y, l2"s lw; v —ts)

=41Q„C(4,1,t; Its, v —p, , v) C(t ii, t; I is, v—is, v) (v —is) .
(BS)

Taking expectation values as in Secs. 2 and 3, and
noting (85), (37), and (88), we 6nd at once

&sl I&I I j&C(t;,i,t;I v, 0,v) =2 ~;.*~;1
k, l

xP c(ts, i, t; Its, v —is, v)c(tl, i,t;Its, v —is, v)

&&(&~l l61 It&C(«, i,t.l.,0,.)+-',C6. ( —.)) (»)
On the right, the term containing (C/2)5siv simplifies

by virtue of (36) and (83), and one gets

(il lbl I j&C(t;,i,t,
l v,0,v) =-,'Cvs, ;

+2 rris rrii 2 C(tsyi~tiltsy v is~ v)C(tbi~ts'Its& v» ")
k, l, p

X&(kl I3I It&C(ti, i, tells, 0,ts) —-', Cishsi). (810)

This is a set of simultaneous inhomogeneous linear

equations for the (s I I II I j)whose solution is unique. By
inspection, the solution is given by

& II6llj&C(t, i,t'I 0, )=-:C3' (fo ll, j) (311)

To check, notice that by virtue of (311), the first term

on the right of (310) equals the left-hand side, and the

second term on the right vanishes because the contents

of the curly brackets vanish; here again one relies

on (87).
Evaluating the mass difference between substates of

I i& with equal and. opposite values of v (to which the

tensor splitting does not contribute), we 6nd from (35),
(37), and (311),

P(s,vlbls, v&
—&i,

—vl6li, —v&J=Cv, Q.E.D., (812)

independently of i, and independently of the dynamical

coefjicients a;;. The results (2.11) (with M=O) and

(3.8) are special cases of (812).
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A class of representations of the nonchiral SU(3) Ox SU(3) is worked out. These consist of a sequence of
self-conjugate representations of SU(3), starting always with a singlet and witll each SU(3) representation
occurring once. An analog of the GeH-Mann-Okubo mass formula, valid for these representations of SU(3)
Qx SU (3), is obtained. When applied to the lowest nontrivial representation, this formula correctly explains

~+ jinxing, thus providing a justiacation of Okubo s ansatz. Possible use of the next higher representation
is indicated. From the same construction, the corresponding unitary irreducible representations of SI.(3,C)
and Te&SU I',3) are simultaneously obtained.

L INTRODUCTION
'

N this paper we describe the explicit construction of
~ - a class of irreducible representations of the nonchiral
SU(3) Qx SU(3) and discuss their possible experimental
relevance. ' Let G; and F, denote the in6nitesimal
generators of the two commuting SU(3)'s. We now
de6ne a third SU(3) whose in6nitesimal generators are
G,+F;.The special representations we have in mind are
those in which this last SU(3) is diagonal and which
consist of a 6nite sequence of self-conjugate repre-
sentations of this SU(3), starting always with a singlet
and with each representation occurring once. These

*On leave of absence from Center for Advanced Studies in
Theoretical Physics and Astrophysics, University of Delhi,
Delhi-!, India.' J. Schwinger, Phys. Rev. Letters 12, 237 (1964); A. Salem
and J. C. %'ard, Phys. Rev. D6, 3763 (1964}.

representations are characterized by a single parameter
which can take up odd integral values, and which is
essentially a measure of the dimensionality of the
representation.

Our construction also yields the corresponding
representations of the noncompact SL(3,C). In this
case, the diagonal SU(3) can be identi6ed with the
maximum compact subgroup. The single parameter that
labels the irreducible representations can now take up
real, odd-integral values or purely imaginary values. In
the former case we get Gnite-dimensional nonunitary
IcplcselltR'tlolls (unjtary tllck) I11 t.hc la't'tcr case wc

get in6nite-dimensional unitary representations. For
the sake of completeness we also describe a similar
representation of Ts)t,'SU(3)—the semidirect product
of SU(3) with eight mutually commuting translations
I:.see Eq. (38)J.


