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Weak-Interaction Predictions of R(11)*
D. W. JoszPH AND L. L. SMALLEYf'

Physics Department, Uek ersity of Nebraska, Iincoln, Nebraska

(Received 31 May 1966)

Further consideration is given to R (11)as a possible alternative to SU (6); in particular, we look for pre-
dictions concerning weak-interaction currents. Because of indeterminacy in the de6nition of the physical
baryons, a further condition is needed to obtain a signi6cant prediction; time-reversal invariance furnishes
such a condition. The prediction 3/'+d =9/8 then results for the parameters describing the axial-vector
octet. Combination of this result with the experimental value of y„/p yields (Gz/Gv) „=1.17, in com-
plete agreement with the experimental value 1.18+0.02.
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~1TH the increasing popularity of SU(6), the
question arises whether some other group may

not give equally good predictions. If one assumes that
such an alternative group must contain LSU(3)/Zs]
QXR(3), and not mix different trialities or statistics in
the same irreducible representation, then the simplest
possibility (the one with the fewest generators) turns
out' to be R(11).This group does require the existence
of as yet unobserved spin-zero mesons and a second
octet of -',+ baryons'; but there is now evidence at least
for the octet of baryons. ' Therefore, further investiga-
tion of this group seems warranted; we present here a
determination of the weak-current and magnetic-
moment predictions.

II. BARYON CURRENTS

The octet of stable baryons is assigned to the 32-
dimensional spinor representation 32 of R(11), which
decomposes into two spin--', SU(3) octets. As usual, we
assume that the baryon currents associated with weak
and electromagnetic interactions belong to the regular
representation 55 which occurs in the direct product
of the baryon representation with its conjugate. Since
32 is self-conjugate, this means we are interested in the
direct product decomposition

that (8,1) contains the time components of the vector
weak-current and charge-current operators while (8,3)
contains the space components of the axial-vector
weak. -current and magnetic-moment operators in corre-
sponding positions with respect to SU(3) s

The highest weight L01000] occurring in 55 maps
into the highest weight f03, 0] in the SU(3)QxR(3)
submultiplet (10,1). The baryonic current operator
corresponding to this weight, that is, the top of the 55
appearing in (2.1), is

55~.»= (10»)~. = (v's)(xL™:*n-+-+*n++~-'*y-
+R+o*y+]+xspa '-*n '+I ' *~'

+--"*y-'+=-+"*y+']}, (2 3)

where x—=exp(2s. i/3) and the lower & signs denote spin
projections. The 6rst (unprimed) and second (primed)
baryon octets correspond to the two distinct "spinor"
octet representations of R(8). With respect to SU(3),
these octets become indistinguishable, and the physical
octets will be assumed to be linear combinations of them.

The only weight in 55 which maps into the highest
weight (1 1, 2] of the submultiplet (8,3) is L100—12]; application of appropriate lowering operators
to (2.3) (and a change of phase) yields the corresponding
operator

32Qx32=462, +330.+165.+55,+11,+1.. (2.1) (8,3)„.,= (g1/24)(v2~ -*(x,'o+xA„')
+v2~ '-*(X,'+x'A, )+(1—x)~ 'seX,+

+(1—x')es s"Z+'+—%3ix '—*n++V3ix:*n+'
+v2(xx o*+A *)P,'+VX(xsx 'o*+A '*)y,),

(2 4)

(Here s and a denote symmetric and antisyrmnetric
parts of the product, respectively. ) Note that the
regular representation occurs only once Las it does for
SU(6)], so that simple predictions may be possible.
The decomposition of 55 in terms of SU(3)QxR(3)
multiplets is

55 ~ (10,1)+(10,1)+(8,1)+(8,3)+ (1,3) . (2.2)

where A=—(gas)A.+ (g-,')Z'.
There are 4 weights in 55 which map into the highest

weight (1 1, 0] of the submultiplet (S,l).The combina-
L
—10100]+xL10 —110]+x'I101 —10]

the corresponding operators cannot be raised by SU(3)
or R(3) raising operators, and so it must be the operator
at the top of (8,1).LThe fourth operator, corresponding
to [10 0 0 0], belongs to (8,3).] Evaluating these
operators by again applying R(11) lowering operators

In analogy to the Gell-Mann scheme we shall assume

*This research has been supported in part by the National
Science Foundation.

t NASA Predoctoral Trainee.
D. Joseph, Phys. Rev. 139, 31406 (1965).' See, e.g., R. H. Dalitz, in Proceedings of the Midwest Con-

ference on Theoretical. Physics, 1966 (Indiana University, to be
published); E. %'. Anderson, et al., Phys. Rev. Letters 16,
(1966).

855 g This is what we expect if the regular representation of R(11)
contains the nonrelativistic limits of these operators.
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to (2.3), we obtain

III. PHYSICAL BARYON STATES

The only distinction between the two sets of baryons
above (which will be denoted by B and B') is that they
correspond to different representations of R(8)QxR(3),
a subgroup of R(11) containing [SU(3)/Zp]QxR(3).
That is, there is no additive quantum number in R(11)
which distinguishes between them; they diGer only by
belonging to different eigenvalues of the R(8) Casimir
operators. Since there seems to be little evidence for
R(8) symmetry in particle physics at the present time,
we have no a priori reason for supposing the physical
baryons to be identided with either one of these octets
rather than with a linear combination of them. There-
fore we shall assume that the low-lying physical octet
of baryons 8 and a second octet of physical spin--,'
baryons 8' are related to the "mathematical" baryons
B and B' as follows:

where

B=nB+pB'

a'=~B+sB',

l~l'+ III'=1= lvl'+ I&I'

e*y+P*b=0.

(3 1)

(3.2)

Incidentally, we may note that the case +=8=1,
P=&=0 is ruled out by the observation from (2.4) that
axial-vector weak currents occurring in the (8,3) would
then not lead to decay of members of the 8 octet, but
only connect the 8 octet to the (presumably heavier) 8'
octet.

As a simple mechanism for the breaking of R(11)
symmetry we might consider an SU(3)QXR(3)-invariant
interaction of the form

P,=g,B*B'+H.c. (3.3)

Concerning the other SU(3)QxR(3)-invariant interac-
tions among the B and the B', we may note that

e,=g, (B*B+B'*B')

leads to no symmetry breaking, since it merely re-
normalizes the masses equally, while

Bp=g, (B*B—B'*B') (3 5)

+As+-*(x+p—A„)—v2(x '*—A *)y
v2(g p* A *)p +pp p@y„++ p*g + .

—X:*n —X;*n,]+[']}, (2.S)

where the second bracket contains terms like those
shown but with primes on all baryons.

present that B3 is much less important than B~.
Evaluation of Pp+P|, where Hp is the R(11)-invariant
part of the Hamiltonian, between "mathematical"
states

I B) and
I
B') at rest leads to the Hermitian mass

matrix
mp gx)M'=
gg* mpi

(3.6)

Diagonalization of (3.6) leads to the eigenvectors
(physical baryon states)

(3.7)

with eigenvalues (masses)

and
m=mp —Iggl,

m'=mp+ lg~l.
(3.8)

In (3.7), $=—gi*/ lg| I, while p and p' are arbitrary phase
factors.

In general, one might expect time-reversal invariance
to force the o6-diagonal elements of a mass matrix
such as (3.6) to be real. Here, however, the situation is
unusual in that we have two identical octets; time-
reversal can mix corresponding members of the two
octets without observable consequences. The existence
of a time-reversal transformation under which (3.6)
is invariant for complex g& is most easily demonstrated
by Grst delning the transformation for the physical
baryons 8 and 8'. For these, no mixing of the octets is
permissible, since they have diBerent masses. We
assume an antilinear transformation of the usual form:

pl pl
(3 9)

$=1P8, (3.12)

where T means the transpose, so that (3.10) and the
antilinearity of the time-reversal operation lead to

where o p acts on the spin indices and t and t' are phase
factors. If we write Q for the column formed by placing
8 over 8', then (3.9) can be abbreviated to

(3.10)

where Z is a diagonal matrix with elements f' and l'
Equations (3.1) can be rewritten

(3.11)

where P is formed from B and B' and 11 is the unitary
matrix which diagonalizes the mass matrix. Also, then,
we have

depends on R(8) Casimir operators (to distinguish the
octet associated with the positive coupling constant).
Thus we can ignore H2, and we shall assume for the

where
Si=1VSr——zp8,

&p=—lVZo pll*.
(3.13)
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We note that Z2 is unitary. '

&2t&2= &Pat = &.
Also,

(3.14)

and
(8,),=Za,Z*~,*S=ZZ*~,a,*8= 8—, (3.15)

(Sr)r =Z2Z2*8 =QtZa gU*1PZ*am*118= —8. (3.16)

Thus the transformation de6ned by (3.10) or (3.13),
with complex conjugation of c numbers for antilinearity,
has all the properties that can be required of time
reversal. Invariance of the Hamiltonian under this
transformation corresponds to the condition KZ2tMZdt
=M on the mass matrix M, where E denotes complex
conjugation. It is easily veri&ed that this last condition
is satisfied:

KZ2tMZIK =EQro.pg*UMlltzo 20*K
=KlPa 2Z~MoZa21I*K

=ElFMoU"K=KM*K=M, (3.17)

where M~ is the diagonal matrix with real elements m
and m'. Note that we have not made use of the special
form (3.6) for the mass matrix; Eq. (3.17) holds equally
well for the general Hamiltonian Ho+H, +B2+H3.

Although time-reversal invariance leads to no restric-
tions when applied to the baryon Hamiltonian, it does
lead to a restriction when applied to the interaction of
the baryons with mesons. Since the usual vector and
pseudoscalar mesons belong to the 55, we might expect
them to couple to baryon combinations such as those in
(2.3), (2.4), and (2.5). Actually, parity and orbital-
angular-momentum considerations modify the spin-
independent interactions which could be written down
immediately (in fact, W-spin and S-spin meson multi-
plets turn out to be quite different); however, it seems
reasonable to assume that some meson combination
(i.e., something which interacts strongly) will couple to
each of the baryonic 55 combinations. The assumption
of time-reversal invariance then restricts the manner in
which the terms in these combinations can change phase
under time reversal; while an over-all change of phase
of a combination such as (2.4) may be permissible (it
could possibly be absorbed by the meson factor),
different changes of phase by the different terms is not.

We shall assume a time-reversal transformation of
the form (3.9) acting on the physical baryons B and B',
in order to demonstrate that our results do not depend
on any assumptions concerning the time-reversal

XPy*+X*n5*=f*l'(Xn*8+X*P*y) (3.20)

and its complex conjugate. Returning to (2.4), we see
that there are terms with X= V3i —(the Z @term-s) and
terms with X=V2x' (the -A terms); substituting these
values for X into (3.20) and combining the two equations

Pv*= (~*l-') *~ (3.21)

Combining this with (3.2) yields the restrictions

(3.22)
lnl= Ipl = lel = l~l =v'o,

7=+i(H'*)"n and ~= ~i(H'*p)"'

Substitution into (3.1) leads to

B=~(d!)(B-P')
B'=n'(v'2) (B+P') (3.23)

where g=V2n, g'=+i(2''*)'"n, and $= P/n (n—ote
all have unit magnitude).

Thus, since IB) BIO), etc.,4 we see from (3.7) and
(3.23) that time-reversal invariance for the baryonic
55 yields the same result as assuming the symmetry-
breaking interactions H&, and neglecting H, LEqs.
(3.3) and (3.5)].

Substituting from (3.23) into (2.3), (2.4), and (2.5)
now yields the following expressions in terms of the
physical baryons, where we have set l'= f' for simplicity:

transformation for the (presumably unobservable)
"mathematicaP baryons B and B'. Directing our
attention erst to the expression (2.4), we see that it is
made up of terms of the form

~ B'*B+~*B*B'
= (~n*P+ I *nP*)B*B+(~~'S+~ *~6*)B'*B'

+ (XPV*+Vn5*)B*B'+(An*8+'A*Pop)B'*B, (3.18)

where (of course) X varies from term to term, and we
have used the inverse of (3.1). Under time reversal,
(3.18) transforms into

(Xn*P+ VnP*)B*B+(X~*S+X*~bo)B'+B'

+ t *l'(zn's+x*p*v)B*B'
+g'*(XPp*+X*nb*)B'*B, (3.19)

where we have omitted the 0.2's since they have the
same effect on all the terms here. We note that the
coeflicients of B*B and B'*B' do not change; so the
same must be true of the remaining coefficients. This
yields the equation

55„,o ——(10,1),.o
= —(v'~s' ){L==*~-+=-'*p-+="+*~++=+'*p+]+L']

—V3I Z ' *~ +Z "*P +Z+' *m++Z "*P ]+&3LI]), (3.24)

(S,B)~,o
——(I/+24) f I

VZ Re($):*Z+o+V2 Re(x)):*A~+%3Im(x)) o*Z++—K3 Im($):*e+
+@2Re(xp)Z o*p++v2 Re($)A *p+]—L']+I V2 Im($) ' *Z+o+v2 Im(x)) '—*A+

—V3 Re(x&) ' *Z+++V3 Re($)Z ' *n++42 Im(x&)Z "*p++V2 Im($)A '*p+]+L']), (3.25)

We adopt the convention that 8 contains the operators which create Particles, in order that one-particle states and their corre-
sponding fields shall have the same transformation properties.
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(8,1)„.,- (1/+24) f[v2=-=*(z '—A )+vz=-+-*(z,o—A+)+N(A *—z o*)p
+v2(A, *—z+")p++ =- '*z +y=-+o*z++—z=*~ —z;*n+]+[']). (3.26)

The symbol ['] denotes an expression just like the
preceding one except that unprimed baryons have been
primed and vice versa. Note that all coefficients are
real, owing in part to our choice of over-all phase
factors in writing down (2.3), (2.4), and (2.5).

(3.25) and (3.26), we see that

(8,3)= fP'x+dtDt+

(8 I)=foFo+
where

(4,2)

IV. COMPARISON WITH EXPERIMENT

It has become customary to express SU(3) octet
combinations in terms of the quantities F (antisym-
metric) and D (symmetric) defined by Gell-Mann. '
We define analogous expressions Ii& and D& for spin-1
combinations, and Iio for spin-zero; the top vectors of
these (corresponding to the SU(3) weight [1 1]) are

Fg t,o=2[A *Pp— *A+—Z o*P++":*Zoo]
+V2[ o*Z++—Z:*e+],

D~~"= (o)[A-*P++"-:*A++Z '*P++-=:*Z+']
+v2[. '~Z+++Z:*e ]

and

Fo o,o ——%2{[A *P —:*A—Z '*P +™:*Z']
+[~])+([=--'*z--z=* -]+[~]),

(4 1)

where A=—(goo)A+(g~)Zo, the lower subscripts + or
denote spin projections, and [++] indicates a

repetition of the preceding backetted expression but
with positive spin indices. ' Comparing (4.1) with

and
f=f /f. = —(V'.') I-("~-),

d= di/ fo=———,'VZ Re(8&) .
(4 4)

Thus R(11), together with time-reversal invariance,
yields a relationship between f and d:

E(11): 3f'+d'= 9/8 (4 5)

This is, of course, a weaker prediction than the corre-
sponding result from SU(6)

f~= -(o) Im(&'&)

dt ———-,'v3' Re(x't)

fo= 1/v'24

and the dots now denote terms involving primed
physical baryons. The result that (8,1) is purely F-type
is, of course, what we must have if it is to contain the
nonrelativistic limits of vector currents. Since it is
customary to express the strengths of the axial-vector
(8,3) currents relatively to those of the vector (8,1)
currents, we define

I.O—
SU(6): f= o, d= i. - (4 6)

0.8—

0.6—

X; ~net
0su(6)

Note that the values (4.6) do not satisfy (4.5); thus
the prediction of R(11) is diferent from, as well as
weaker than, that of SU(6).

The Cabibbo —Gell-Mann theory of weak interactions
yields a number of predictions in terms of f and d; the
one which has been most accurately tested exper-
imentally is~

0.4— (G~/Gv). ,=f+d. (4 &)

h~pev

0,2 0.4 0.6 0.8 |.0
n+pev

l.2

FIG. 1. Comparison of the SU(6) and R(11) predictions with
experiment. The experimental limits indicated by solid lines are
obtained from leptonic-decay rates as in Ref. 7, but by using the
more recent data of Ref. 8;points A and 8 represent the consistent
values found in Ref. 7 on the basis of the earlier data. The dashed
line is obtained from the experimental value of p,„/p„.

~M. Gell-Mann and Y. ¹'eman, The Eightfold Way (W. A.
Benjamin, Inc., New York, 1964), pp. 51, 52.' We have dined A with the opposite sign from that used in
Ref. 5. Note that A * has the opposite spin projection from A,
and so on.

TABLE I. Comparison of predictions with experiment.

Ratio

~p/u
(Gg/Gv) -o

—1.50
1.67

R(11)

(Input)
1.17

Experiment

—1.46
1.18~0.02

' W. Willis et al. , Phys. Rev. Letters 13, 291 (1964).

If we assume that the magnetic-moment operator also
belongs to (8,3), with the same SU(3) identification as
the charge operator, then various predictions for
magnetic moments result; for example, for the nucleons,

I ~/I = o(1+3fld). — (4.8)

The predictions from (4.5)—(4.8) are compared with
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experimental values ' in Table I.The comparison in the
case of SU(6) is already well-known: excellent for the
magnetic-moment ratio, bad for (G~/Gv) ~. While

R(11) makes only one prediction, this one number is in
excellent agreement with experiment.

Since the predictions of SU(6) and R(11) beyond
those of SU(3) are really just the numbers f and d, it
is the latter which should be compared with experiment.
In Fig. 1 we have plotted the limits of f and d resulting
from the experimental limits on various leptonic-decay
rates, s as was done in Ref. 7, along with the ratio f/d
from measurements of nucleon magnetic moments. ' It
is seen that the leptonic-decay rates favor solution A
of Ref. 7 even more strongly than before (and this
solution need hardly be shifted at all), while solution 8
is now very unlikely. The interpretation of magnetic
moments in terms of f and d is somewhat less direct
since the magnetic coupling to the electromagnetic
field differs from the electric coupling by an unknown
dimensional parameter; however, present experimental
data are reasonably consistent with the SU(3) predic-
tions isz+=iss and Iss=sis; and the f/d ratio deter-
mined from ass/Is„ is in excellent agreement with the
leptonic-decay data, as Fig. 1 shows. Thus it is reason-
able to suppose that the coordinates of a point close to

(f=0 44, d=0..74) are the correct values which

should be reproduced by any higher symmetry such as
SU(6) or R(11).As Fig. 1 shows, the point in the fd-
plane predicted by SU(6) is so far away as to indicate
a rather large degree of synUnetry breaking. On the
other hand, the prediction based on R(11), while it is
weaker (being a curve rather than a point), is entirely
consistent with the experimental data.

V. SUMMARY

When R(11) symmetry is broken down to that of

SU(3)QxR(3) a degeneracy occurs since the baryon
multiplet 32 decomposes into two identical SU(3)
QxR(3) spin-s octets. This does not occur in the case
of SU(6), where the baryon multiplet 56 decomposes
into a spin- —', octet and a spin-2 decuplet. Because of
the resulting indeterminacy in identifying the physical
baryons, R(11) by itself yields almost no predictions
concerning the parameters f and d describing the
nonrelativistic limit of the axial-vector current octet;
in fact, any point on or vithi' the ellipse in Fig. 1 is
allowed. However, f and d are restricted to values on

the ellipse by either of two assumptions:

(i) that R(11) symmetry is broken down to just that
of SU(3)QxR(3) in the simplest way, i.e., that Hs
[defined in (3.5), which respects also R(8)QxR(3)
symmetry' is much less important than Pt [de6ned
in (3.3)$; or

' A. H. Rosenfeld, Rev. Mod. Phys. B7, 633 (1965).
' This value for Gz/Gv is quoted by S. L. Adler, Phys. Rev.

Letters 14, 1051 (1965).

(ii) that the baryonic 55-piet of currents must be
of such a form as to allow a time-reversal invariant
coupling to a mesonic 55-piet of currents.

This restriction on f and d is entirely consistent with
experimental observations of leptonic decay rates; by
contrast, the values of f and d predicted by SU(6)
are not.

Earlier, ' it appeared that the low-lying baryons
strongly favored SU(6) over R(11), since the most
appropriate R(11)representation has the decomposition
32 ~ (8,2)+ (8,2), requiring a second spin-rs octet
which had not been observed. Now, however, there is
fairly good evidence for the zero-strangeness member of
such a second octet, ' split from the nucleons by about
470 MeV [compared to 300 MeV for the corresponding
splitting in the SU(6) multiplet 56j. As yet quarks
remain undiscovered"; if they really do not exist, then
that is a point in favor of R(11). On the other hand,
R(11) does predict 2 decuplets of spin-zero mesons
which have not been observed; but yet, one cannot
really say that their existence in appropriate mass
ranges has been ruled out by experiment. Thus, in
view of the favorable f drelation-ship derived above,
it seems that R(11) is still in the running as an alterna-
tive to SU(6).

APPENDIX A: MAPPING [SU(3)/Ss]QXR(3)
INTO R(11)

Table II defines the mappings we have used. The
labels on the Dynkin diagrams" refer to simple positive
roots, which correspond to diagonal (commuting)
generators of the Lie algebras. For SU(3) there are two
simple positive roots and hence two commuting
generators, H~ and B~, the corresponding raising and
lowering operators are denoted by E~& and E+&. Basis
vectors are labeled by the eigenvalues 2 and 8 of H&
and +~, often written as the pair [A 8j and called a
"weight"; the operators E~g and E+~ then take us
from one basis vector to another. There is a unique
highest weight in any irreducible representation; and
in fact the highest weight can be used as a label for the
representations. For example, the highest weight [11j
corresponds uniquely to the octet representation of
SU(3). Figure 2 (a) gives the basis vectors for this repre-
sentation, and the normalized raising and lowering
operators which connect the various states. This is the
representation to which the generators belong (i.e.,
the "regular" representation) as Fig. 2(b) indicates;
it is also the one to which the baryons belong, as
shown in Fig. 2(c).e

' However, one might argue that the successes of the quarkd'l (as p-- t d. 'g., by R. H D.l t. R.f. 2)
indirect indication of their existence."E 3 Dynkin, American Mathetnatjcgl +0cigty gggnglgtzpng
Series 2 (American Mathematical Society, Providence, Rhode
Island, 1957), VoL 6 pp. 319—362 /English transl. of Trud
Moskov. Mat. 01%. , 39 (1962)g.
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TABLE II. I abels and mappings.

De6nition of labels
Group
Algebra

Dynkin diagram

Weight

Mappmgs
SU(3)/Zii into R(8)

R(3)
BI

0
tn

[mg

SU(3)
Ag

0—0
A 8

[A 8]

R(8)
D4

0
0—0 —0
u b c d

[o b c dg

R(8) Ox R(3) into R(11)

R(11)
B6

0—0—0—0=0
n P

[~ P v

Eg =E,+xF.,+HEd
E'B Ea+b+Ec+b+Ed+b=[R.+R.+&d, &i,g
Hg =H~+H, +Hd

Hg=H +3Hb+H, +Hg

E,=E
Eb —EP

d fi 6= 2[~~T~vZR [RiA'2ZE.=E, ' "

H =H
Hb=HP
H, =H„
Hd =H ~+2H6+FI,

From Table II we see that R(11) has five commuting
generators, and hence its weights consist of the five
eigenvalues of these operators. Figure 3 gives the weight
diagram for the 32-dimensional "spinor" representation.
Under restriction to the subgroup R(8)QxR(3), this
representation splits into two distinct octets with spin

specifically, the weight L00001) maps into the
R(8) weight L0001], the top of one of the R(8)
octets, while L0010 —1j maps into L0010j, the
top of a second R.(8) octet. When R(8) is re-
stricted to SU(3)/Za, these both map into the
greatest weight L11$ of the SU(3) octet. Figure 4
gives the assignment of the baryons to 32 which
results from combining the SU(3) identification of the
baryons given in Pigs. 2(a) and 2(c) with the mapping

of the generators of SU(3)QXR(3) into those of R(11)
given by Table II. Lwote that while other equivalent
mappings could have been chosen, this one exhibits the
spin dependence most directly, since the third compo-
nent of spin is just -', the eigenvalue of the R(3) operator
H„=H..$

We now look for the 55 which occurs in the product
32Qx32 of the baryon multiplet with its conjugate.
The weight diagram for 55 is shown in Fig. 5. Since
weights are additive in direct products, we look for
all pairs of weights in 32Qx32 which add up to the
greatest weight L0 1000) in 55. From Fig. 3 we find
eight such pairs; the particular combination of these
which cannot be raised with R(11) operators (cf. Fig.
3), and hence must represent the top vector of 55, is

-0 0 0 0 1 -0 0 0 -0 0 -0 1 —1 0
55i.,——

0 1 0 0 —1 0 1 0 —1

-0 1 0 0 —1 -0 1 0 —i. 1 -0 1 —1

1 —1 0 0

1 —1 -0 0

1 0

0 0 0 0 1 0 0 0 —1 0 0 1 0 1 —1 0
(A1)

The upper weight in each pair of brackets is from"the form B*B,using the particle assignments from Fig. 4
6rst representation in the product and the lower is and its "conjugate, " and normalizing, we obtain Fq.
from the second. Recalling that the product is of the (2.3). The identification of the top of the 55 with the

fA
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FIG. 2. The octet representa-
tion of SU{3) and the assign-
ments of the generators and
baryons to this representation.
Note that

& = (VBa+(v".)~',
in {c).

(a) (b) (c)
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6vefold degenerate. Sloping lines
indicate the actions of the raising
and lowering operators, as in Fig, 3,
except that in some cases here a
normalizing factor g~ is needed.
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loooool

and
@A +a+X+r+ SX FS+V+o+S+o 1

&B=3&-+&r+sFs+7+~s+ ~ &s].
(A3)

be obtained from (A1) by use of appropriate E(11)
lowering operators; and the top of (8,3) is just that com-
bination of these vectors which cannot be raised by the
SU(3) operators

Q= a&A+ s&B (33)

(where the dots represent terms involving the second
octet of physical baryons).

The charge operator Q is easily expressed in terms of
H& and HB by comparing the eigenvalues of those
operators, given in Fig. 2(a), with the charges of the
baryons, from Fig. 2(c); the result is

(Cf. Table II.) That is, we set

{ttl —101003+bi 10 —1103
~B

+c[101—10]} 0,
which yields

Since the charge (g) and magnetic-moment (OR)
currents are to belong to the (8,1) and (8,3), respec-
tively, we must have

(A4) (=e'fA(Q)+ = e'foPsFs(&A)+P's(&B)3

b/a= x and c/u= x', (A5) and

where x=—exp(2s.i/3). Normalizing and identifying
weights with baryons yields (2.5).

APPENDIX B: ELECTROMAGNETIC AND
WEAK-CURRENT OPERATORS

We now introduce a new notation to distinguish the
different F and D baryonic currents; we shall, for
example, write F~(X,) for the antisymmetric combina-
tion with spin J and third component M which occupies
the same position in an SU(3) weight diagram as the
generator I, l

see Fig. 2(b)j.So the expressions defined
in (4.1) will be denoted as follows:

F1 top=F1 (+A+B) yi

D1 top D1 (+A+B) y

Fo t.p=Fo(&A+B);

and Eqs. (4.2) correspond to

(&&3)top= fi&1'(EA+B)+dtD1'(EA+B)+ '

(8,1)t.,=foFo(1A+B)+

5R= e"{frF1'(Q)+drD1'(Q)}+
= e"{ftLP'1'(&A)+P'1'(&B)j

+d1LsD1 (+A)+ sD1 (+B)j+ ' ' '
1

(&4)

where e' and e" are scale factors. The necessary baryon
combinations can be obtained by noting (31) and
lowering expressions (4.1).The result is

( If /~) {[g +op ++p op

+L~3+" } (&5)
and

Oit = (e"/9V2)

X{L9f(~ +*~ +—~=*~=—"-=*=-=+p *p )
+di(3p *p —6N *st —6 sa o+3
+3Z +*X ++3K:*Z:+SZ s*Z '—4A *Z '

—4Z s*& —4A *A )j+l++$+ }, (36)

where L++] denotes a repetition of the preceding
bracketed expression but with positive''spin indices.
Clearly the expression for g is consistent. From (86) we
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can immediately read oG the ratio

Py/P~= —(3fi+dl)/2dl ~ (8/)

which is equivalent to (4.8) since f=f1—/ fp and d= di—/ fp.

For R(11), we can substitute f and d from (4.4) to
obtain

p„/p„= Re())/Re(x'();

thus this magnetic-moment ratio depends only on the
phase of $.

The non-strangeness-changing weak currents, with
SU(3) quantum numbers of the m.+ mesons, correspond
to the operators E~A, with weights [%2%1].Noting
that the vector current gv (in the nonrelativistic limit)
is to belong to (8,1) and the axial-vector current gA
to (8,3), and lowering (4.1) [recall (81)] to obtain the
appropriate baryonic combinations, we find

gv= ofopo(EA)+
of {—[I *p +&2Z o*Z ++%2Z:*Z o

+=:*=-']+I++]}+,(89)

$A = ofi+1 (EA)+odlD1 (EA)+ ' ' '

= —ofi{[oo *p +HZ '*Z ++v2Z:*Z '+
+[~]}—odi{[n *p —(V2/3)(Z '*—2A *)Z +

+(V2/3)Z:*(Z '—2A )—:*']
+[++]}+ . (810)

(Note that gA is defined to be the component of the
axial current with zero spin projection. As usual we
assume the same scale factor o for gv and gA. ) To
interpret these expressions in terms of the conventional
coupling constants Gg and Gy, we note that vector and
axial-vector currents have the following nonrelativistic

GA&p+le'~pell+& &p+luAIN+&

Gv&p+l4'elN+& &p+I Svl~+&
(812)

Together with (89) and (810) this yields the relation

(GA/GV). y= (fi+di)/fo= f+d.
For R(11),use of (4.4) leads to

(GA/G )-.= (V'l) fm(*k)

(813)

(814)

The strangeness-changing weak currents X~,~ trans-
form under SU(3) like E+~A+B&, i.e., like E+ mesons;
thus, from (81) and (4.1),

Xv ofpFO(EA+B)+ ' ' '

= of {[ V2(Z '*—A *)P +V2 *(Z '—A )
—Z:*I-+=-'*Z-+]+[++]}+ . (813)

XA = oflF1 (EA+8)+ od1D1 (EA+B)+
= of {[—v2(Z '*—A *)p +%2.:p(Z '—A )

—Z:*op-+=-'*Z-+]+L++]}
+odi{[(v2/3)(Z '*+A *)p
+(v2/3):*(Z '+A )+Z:*11+" '*Z +]

+L++]}+ (816)

limits:

Gyijy„1P-+ Gvgtg (space components vanish)

GA&VoVA'~ GAP'& 4 (811)
(time component vanishes),

where p denotes the "large" components in the represen-
tation yp=ooQXI, yo ——io,Qxoo, and ohio= —oiQXI. Thus,
for example, the ratio of axial-vector to vector ampli-
tudes in neutron decay is given by


