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It is shown that the magnetic-moment sum rule suggested by Drell and Hearn can be deriyed from the
commutation relations between charge densities. We also derive another exact sum rule for the isovector
magnetic moment in terms of cross sections:
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Where 01i~ (~)~ (cr1ip(v)g) and 4refg (v)~ (os' (v)g) are the tOtal CrOSS SeCtiOnS fOr the abSOrptiOn Of a Cir-

cularly polarized isovector photon by a proton polarized with its spin parallel (antiparallel) to the photon
spin in the I= ~~ and I= +~ channels, respectively. This sum rule is derived from the commutation relation
between space and time components of vector current densities.
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HK purpose of this article is to notice that the
magnetic-moment sum rule suggested by Drell

and Hearn' is also a consequence of commutation rela-
tions between vector charge densities, and to propose
another sum Yule for the isovector magnetic moment in

terms of experiment. tally measurable quantities. The
latter sum rule is derived from the commutation relation
between space and time components of vector current
densities.

The equal-time confutation relation between charge
densities

LVo'(xr), Vos (xs)j=sf so Vo"(xr) 8(xr —xs), (1)

or its Fourier transform,

&V (qot) Vo'(sir)&=sf ssVo" (qr+sls), (2)

gives various dynamical information on strongly inter-
acting particles. 2

one obtains, for instance, by applying the Fubini-
Furlan-Adler method, l the sum nQe derived by Cabibbo
and Radicati and several other people4:

and or/s (v) and o.
s/ s(v) are the total cross sections for

the absorption of the isovector photon with the labora-
tory energy v in the I=-,'and I=-,' channels, respec-
tively. It is likely that the sum rule Eq. (3) is satisfied
fairly well if one includes the contributions from the
electric dipole transition near the threshold and the
second higher resonance as well as the (3-3) resonance. '

It is to be recalled, however, that this sum rule is the
one resulting from the part antisymlnetric with respect
to isospin (unitary spin) in the commutation relations
Eq. (2). Likewise, we can make use of the symmetric
part of Eq. (2) to get another sum rule for the magnetic
moment. Let us choose i= j= I3)+srV3ISI, namely the
electromagnetic charge densities; take the matrix ele-
ment of Eq. (2) between one-proton states with spin up,
for instance, and dijferentiate both sides of Eq. (2) with
respect to q&, and q», putting g&

——q2 —+0 after the
differentiation. Obviously, the right-hand side of Eq. (2)
is purely antisyrnmetric with respect to isospin indices
and therefore there is no contribution from this side.

In the limit of infinite momentum in the s direction,
one picks up a term proportional to the square of the
proton anomalous magnetic moment as the one-particle-
state contribution. The continuum part can be ex-
pressed in terms of total cross sections, and thus we are
led to the following sum rule:

where (rs)v, v is the isovector Dirac charge radius, /slav

is the isovector anomalous magnetic moment, cr is 1/137, (/s~ p s

+
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where the ov (cr~) is the total cross section for the
absorption of a circularly polarized photon by a proton
polarized with its spin parallel (antiparallel) to the
photon spin. The sum rule Eq. (4) is identical to the one
pointed out by Drell and Hearn, ' which is a consequence
of the unsubtracted dispersion relation for the spin-
Qip part of the forward Compton scattering amplitude
with no arbitrary constant. It is, of course, not surpris-
ing that one can reproduce the sum rule by making use

' F.J. Gilman and H. J.Schnitzer, Phys. Rev. 150, 1362 (1966).
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of a commutation relation between charge densities. It
is gratifying, however, that such a simple derivation can
be given within the framework of the current commuta-
tion relations. We remark in passing that the sum rule
Eq. (4) is derived from Eq. (2) which is, in turn, based
on the assumption that the electromagnetic current is
of minimal type. Otherwise we would have a symmetric
term in the right-hand side of Eq. (2) and this would
give rise to an additional contribution to the sum rule.
This point, together with nonminimal sects on other
sum rules, will be discussed in a separate paper.

We can extend our arguments to the commutator
between space and time components of vector current
densities. Their Fourier transforms V '(qt) and Vs/(qs)
obey the commutation rules

[V-'(a ),V '(q )j=if"V-"(» +e )
+ (contributions from the Schwinger term), (5)

where 0,=x, y, and z.
We choose i= }1}+i{2},j=I1}—i}2},and n=x, take

the matrix element of Eq. (5) between one-proton states
with spin up and diGerentiate it with respect to q2„.
Following then the similar procedure by which Eqs. (3)
and (4) are derived, one arrives at a sum rule

([2ot/s (v) —os/s (v)jv
4x'n 0

IJT—[2o t/s" (v) —o s/s (v)]g}dv= —, (6)2m'

provided the integral of the left-hand side is convergent.
Here, pz ~ is the total vector magnetic moment and the
cross sections are those with- isovector photons. Since
the commutation relations used here are those between
"good" and "bad" components in the terminology of
the current algebra at infinite momentum, ' in deriving
the above sum rule, we have to keep terms of the order
of 1/E and equate their coefficients. There is no con-
tribution from the one-particle state to the sum rule.
The Schwinger term' also will not contribute since we
are concerned here only with spin-dependent terms. We
will not discuss the convergence problem of the integral
that stands on the left-hand side of Eq. (6). We only
note that it is possible that this integral is in fact con-

6 The concepts of the good and the bad components are found,
for example, in R. Dashen and M. Gell-Mann, Phys. Rev. Letters
17, 340 (1966), and Ref. 3; S. Fubini, G. Segrb, and J. D.
Walecka, Ann. Phys. (N.Y.) (to be published).

7 J. Schwinger, Phys. Rev. Letters 3, 296 (1959); Phys. Rev.
130, 406 (1963).

8 This is the reason why we differentiate Eq. (5) with respect
to g&„. Were we to differentiate Eq. (5) with respect to q2„ then
we would pick up a possible contribution from the Schwinger
ferm, arrjving at a sum rule which looks manifestly divergent.

vergent as a whole, since the difference of the cross
sections is taken twice with respect to spin and isospin
[2ol/2(v) —as/2(v) ~ 0 at v~~ by the Pomeranchuk
theorem).

At present, the comparison of the sum rule with
experiment is necessarily of qualitative nature. Con-
tributions from the (3-3) and the second resonance are
tentatively estimated as follows'.

—0.083/m +0.240/m =/rr "/2r/s,

which leads to @~~=2.i. This is to be compared with
the experimental value 4.7. Clearly, one expects an
appreciable amount of contributions from higher reso-
nances, most of which are I=-,' states and presumably
contribute as positive to the integral. "Thus, there is
some chance that the sum rule is in fact satisfied. We
should, however, wait for more accurate experiments
covering higher energy regions in order to test this
sum rule.

The significance of the sum rule given here will be that
it is derived from the -commutation relations between
"good" and "bad" components. Although several sum
rules derived from "good" components have achieved
great success, little is known about the sum rules
derived from "bad" components and their convergence
problem. For instance, Okubo" obtained a sum rule
from the commutator between "bad" components,
which involves a less convergent integral than Eq. (6)
and it is not clear whether such an integral is finite or
not. It is hoped that the experimental test of the sum
rule Eq. (6) will shed more light on the structure of the
current algebra.
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