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Triplet models of hadrons are studied according to the criterion of saturation, namely, that the lowest-
lying baryons contain exactly three triplets. Two main types of saturation are discussed: Pauli saturation,
which depends on antisymmetrization of wave functions, and Coulomb saturation, which relies on the
scheme of forces among the particles. The quark, quark-plus-singlet-core, two-triplet, three-triplet, and
paraquark models are surveyed, and, using the saturation mechanisms discussed in the text, all of the
models are made to satisfy the saturation criterion with the sole notable exception of the quark model,

which fails.

1. INTRODUCTION

HE suggestion' that one or more fundamental

unitary triplets can provide an explanation for
the observed regularities of low-lying hadronic states
received support from the SU(6) classification?® of
these states. Since most of the successes?=¢ of this classi-
fication can be understood simply in terms of models in
which the hadrons are composites of nonrelativistic
triplets, it seems worthwhile to explore the consequences
of the existence of triplets as real objects. In this direc-
tion, Thirring,” and Lipkin and Scheck® have found
results, in agreement with experiment, which go beyond
SU(6) and appear to depend on the existence of real
triplets.

There are three striking facts which provide criteria
for such models: (1) a strong form of saturation whereby
N=|n,—n:| =0, 3, only, for low-lying single-centered
systems, where 7, (n7) is the number of triplet (anti-
triplet) particles®; (2) the lowest-lying baryons occur
in the symmetric 56 of SU(6) rather than in an anti-
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symmetric SU(6) configuration'®; (3) the SU(6) pre-
diction of —3 for the ratio of the proton and neutron
magnetic moments® is accurate to within 397.

In the present article, we assume a nonrelativistic
composite picture for the hadrons, and ignore the serious
open dynamical problems connected with composite
models of hadrons, such as the compatibility of strong
binding with nonrelativistic triplet motion! and the co-
existence of triplet and hadronic cloud structure. The
question of saturation depends on the dominant SU(6)-
invariant effects rather than on the weaker SU(6)-
violating ones, and therefore we assume that the basic
objects belong to low-dimensional irreducible represen-
tations of SU(6), in particular to 6, 6*, and 1, and that
the forces between the basic objects are SU(6)-invari-
ant. There are only two different SU (6)-invariant forces
between a pair of objects which are each in the 6; these
forces can be taken to be one, ¥ (21), which acts only
between an SU(6) symmetric pair in the 21, and a sec-
ond, V(15), which acts only between an SU(6) anti-
symmetric pair in the 1S. Similarly, for three-body
forces between triples of objects, each in the 6, there
are four invariant forces, V(56), V(70), V(70)’, and
V(20), acting between triples in the associated repre-
sentations, etc.

These forces are of exchange character, so that the
theorem'? that the nodeless wave function has the
lowest energy is not relevant. To see this, consider a

1 The antisymmetric SU(6) states would be analogous to the
ground states of the lightest nuclei. See discussion of type 1b.
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case of the one-dimensional Sturm-Liouville problem, the nth

eigenfunction divides the fundamental domain into precisely »
parts by means of its nodal points (see p. 454).
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TaBLE I. Types of saturation.

Pauli saturation

a-absolute
b-known quantum numbers

{a—with a core

1. internal {

2. orbital
3. accidental

b-without a core

Coulomb saturation

: a-additive quantum number
4. generalized charge {b-nonadditive quantum number
. hard core

. accidental

S

pair of particles interacting via a space exchange po-
tential which is repulsive in even space states and at-
tractive in odd ones. Here any bound states which occur
will have at least one node.

2. TYPES OF SATURATION

Now we discuss some mechanisms of saturation. They
fall into two categories which we call “Pauli saturation”
and “Coulomb saturation.” Pauli saturation is the
mechanism which operates when a given set of states is
filled by the maximum number of Fermi or para-Fermi
particles which can enter. Coulomb saturation operates
when the number at which saturation occurs is deter-
mined by the scheme of forces among the particles,
rather than by the permutation symmetry of the state.
Table I lists the types of saturation which we will
describe. These types are not disjoint.

Type 1: Internal saturation occurs when states
labeled by internal quantum numbers are filled. Type
1a: A direct way to achieve saturation at three is to
introduce a new three-valued internal quantum num-
ber'® so that there are three sets of triplets, or altogether,
nine fundamental particles. If the triplets are fermions,
then requiring an antisymmetric three-particle wave
function in the new quantum number leads to a sym-
metric wave function in the other quantum numbers,
and for a symmetric three-particle S state the 56
follows. For the known hadron states, this threefold
degenerate quark model is qualitatively the same as the
order-three para-Fermi quark model,** as can be seen
from Green’s ansatz. However, these two models differ
in the number of different quarks: The paraquark model
has only three. Type 1b: Filling of states labeled by
known internal quantum numbers is the familiar type
which operates in atomic and nuclear physics, for
example, the two-electron SU (2) singlet for the atom, or
the four-nucleon SU(4) singlet for the « particle. The
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Publishing Company, Amsterdam, 1966), pp. 133-142; M. Y.
Han and Y. Nambu, Phys. Rev. 139, B1006 (1965); N. N.
Bogolyubov et al., Dubna Reports D1968, D2015, D2141, 1965
(unpublished), cited in A. Pais, Ref. 4.
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analog of these for SU(6) would be a six-particle
singlet. Type 2a: Orbital saturation occurs at 2/4-1
for fermions in an orbital / shell around a core. Type 2b:
Without a core, the / shell saturates at 2/4-2, since the
wave function for % particles depends on only z—1
independent relative coordinates, and the coordinates
of one of the particles may be used kinematically to
play the role of a core. Simple examples are: for sym-
metric .S waves, 1; for antisymmetric P waves, I,
r1p XT3, T2 XT3 Ty, for 2, 3, and 4 particles, respec-
tively. We took particle 1 as the core particle; however,
these last three functions are totally antisymmetric
under all permutations of particles because of the linear
dependence of the relative coordinates. Here, as well as
later in this article, we omit a function of the scalar
products which is symmetric under particle permuta-
tions and which decreases exponentially for large
magnitude of any relative coordinate vector. Because
of this factor, the pairs are not in pure relative / waves,
so our analysis applies only to the dominant terms. Note
that 11X ra3- r3; vanishes identically, so that there is no
L=0 antisymmetric state of three particles in the same
P shell. Type 3: Pauli-accidental saturation occurs
when the antisymmetric wave functions are formed
with particles in different principal quantum states.
For example, # fermions can be put into .S states with
principal quantum numbers 1S, 25, ---, #S5.'* Some
potentials might lead to saturation in such a state, but
we call this case accidental because detailed study of the
relevant bound-state equation is needed to decide
whether saturation occurs.

Type 4: In Coulomb saturation by a generalized
charge, there are forces depending on discrete quantum
numbers whose eigenvalues characterize, @ priori, the
lowest lying compound systems. Type 4a: The additive
case includes Coulomb forces: a particle with charge Ze
will not bind strongly more than Z particles with charge
—e, regardless of their statistics. For some two-triplet
models of baryons,'® “charm” replaces charge and the
zero-charm states are the saturated systems. Type 4b:
A nonadditive quantum number can also characterize
saturation, for example, the Casimir operator C, in a
three-triplet model.’® Type 5: Simple geometry shows
that finite-range hard-core potentials lead to saturation.
For example, if a particle of type 4 attracts particles of
type B via a finite-range potential and the B particles
repel each other with a hard-core potential, then there
is-an upper limit to the number of B particles which
can be bound to 4. Type 6: We include in the Coulomb-

15 Tt can be shown, provided the potential is regular at the origin,
that baryons constructed in this way in the quark model have a
wave function at the origin which is of degree 6, (ri?®—ras?)
X (re?—rs1?) (r3:2—r12?), or greater.

16'Y, Nambu, in Symmeiry Principles at High Energy, edited by
B. Kurgunoglu, A. Perlmutter, and I. Sakmar (W. H. Freeman
and Company, San Francisco, 1965), pp. 274-283; Y. Nambu,
Ref. 13; H. Bacry, J. Nuyts, and L. Van Hove, Phys. Letters 9,
279 (1964); 12, 285 (1965); Nuovo Cimento 35, 510 (1965);
l%l.gggn Hove, Progr. Theoret. Phys. (Kyoto) Suppl., p. 14
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accidental category those systems with forces which
lead to saturation, but for which the number at which
saturation occurs cannot be found ¢ priori. An example
of this category is obtained if in the discussion of type 5
above wereplace the A B and BB potentials by attractive
and repulsive Yukawa potentials, respectively. The
Pauli and Coulomb mechanisms can combine to produce
saturation; for example, the neutrality of atoms is
due to Coulomb saturation, while chemical inertness of
the (neutral) rare gases is due to Pauli saturation.

We remind the reader that the problem of saturation
is removed if no triplets are present and the funda-
mental symmetry of particles is SU(3)/Z;. However,
it is not clear how to account for the successes of SU(6)
with this group.

3. SURVEY OF MODELS

We will now apply simple symmetry and energy agru-
ments to a number of models and see if they saturate
via one of the mechanisms described above.

A. Quark Model

The quark model'*78 is the most economical, and the
easiest to study. Among the three quark states, the
symmetric 56 representation will be lowest if the two-
body potential is attractive in the 21 state and re-
pulsive in the 15. The Pauli principle requires an anti-
symmetric space wave function. The lowest available
orbital shell is the P shell which saturates with four
particles rather than three, and which does not have
an antisymmetric L=0 three-particle wave function.
(See discussion of type 2b above.) There is an antisym-
metric L=1 three-particle P-shell wave function, but
L=1 will upset the proton/neutron magnetic-moment
ratio, and the L=1 coupled to the S=3%, $ of the 56 no
longer produces a true 56.1°* Accidental saturation could
occur as under the discussion of type 3 above.

From the standpoint of energy, consider the phenome-
nological mass formula

M(N)=NMAIN(N-1)U, 1<N<4,

where M, is the quark mass, and U includes the effect
of two-body potentials as well as kinetic-energy changes
due to binding. From M (3) <M (1), we find U< —2M,,
and M (4) <0, so saturation occurs at 4 rather than 3.2

17Y. Nambu in Ref. 16; T. S. Kuo and L. M. Radicati, Phys.
Rev. 139, B746 (1965); L. A. Radicati, Cargese Lectures, 1965
(to be published); G. Morpurgo, Physics 2, 95 (1965); R. H.
Dalitz in Ref. 4; and A. N. Mitra, Phys. Rev. 142, 1119 (1966).

18 K. Kinoshita and Y. Kinoshita, Progr. Theoret. Phys. (Kyoto)
35, 330 (1966) have also studied saturation in the quark model
and have found similar conclusions.

19 These objects apply to the model of A. N. Mitra, Ref. 18.

2 This conclusion no longer holds if one uses the formula

MN)=NMA3NN-DU:+N WV -1)(V-2)Us, 1SN<4,
which may crudely account for the effects of three-body potentials.
Now saturation can occur at three, provided U,<—§M, and

Us>4%M,; i.e., attractive two-body forces to bind three quarks
into baryons and repulsive three-body forces to effect saturation
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Thus both symmetry and energy arguments indicate
that the quark model fails.!

Further restrictions are obtained by applying the
saturation requirement to the mesons which in the quark
model are ¢¢ bound states in the 35 representation. For
example, the ¢gd system in the 120 representation has
three attractive pairs since both ¢¢ pairs are in the 35
and the gg pair is in the symmetric 21. Such a state
would lie too low unless the potentials are chosen
properly : for example, a repulsive ggg three-body force,
or a ¢qg hard core which prevents the ¢g force from
forming two bonds.

B. Quark-plus-Singlet-Core Model

The model with one triplet and an SU(6) singlet
core??® avoids some difficulties of the quark model.
There is an antisymmetric three-particle L=0 state,
whose wave function is r; X r;- r; (where r; is the distance
of particle j to the core), which saturates the P shell.
(See discussion of type 2a above.) One can make this
state lie lowest and make more complicated single-
centered systems unbound if the forces between quarks
(¢) and cores (c) are: attractive in the P wave for c—g,
attractive in 21 and repulsive in 15 for ¢—g, and
repulsive for c—c¢. Thus it allows saturation.?

C. Two-Triplet Model

The two-triplet model'®¢ can be made to saturate
using type 4a. Let the triplets®® be #; and ¢, with masses
M, and M,, and charms C; and C,. Coulomb-like forces
among them give the mass formula

M{ai} =Z M4 ColCaiV=2 ma+3C?V, a;=1,2,

i>j i

where the effective mass mo=M ,—C.2V and the total
charm C=3;Cq;. If maKV then “neutral” systems
with C=0 will lie lowest, and for these systems

at three. Kuo and Radicati, Ref. 17, introduce instead three-body
forces, attractive in the 56, which bind three quarks into baryons
but lead to four-quark states that are much more tightly bound.
In particular, their Vj; -Eq. (14), p. B748, has the value 6V
(V <0) for the symmetric and antisymmetric three-quark states
and 24V for the corresponding four-quark states. Thus their
model does not saturate at three.

2 We are not convinced by the arguments for saturation given in
G. Morpurgo, Phys. Letters 20, 684 (1966).

2 F, Giirsey, T. D. Lee, and M. Nauenburg, Phys. Rev. 135,
B467 (1964), Appendix IV, model II. Only a neutral core and
fractionally charged quarks will give the observed magnetic-
moment ratio, as shown by M. A. B. Bég and A. Pais, Phys. Rev.
137, B1514 (1965).

#P. G. O. Freund and B. W. Lee, Phys. Rev. Letters 13, 592
(1964). The singlet core in this model is the internally saturated
6-particle S-shell antisymmetric SU (6) singlet. It is arbitrary to
assume, as in this model, that the next shell should saturate via
orbital (P-shell) saturation, and have a totally symmetric SU (6)
wave function. ’

2; }gowever the core-core interaction would upset the results of
Ref. 8.

2 Here we follow Nambu, Ref. 13. In the model of Van Hove,
Ref. 16, §~t1, T~t,, and supercharge~—charm.
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M =3 ;m,, We expect more complicated systems to be
multiple-centered, in analogy with collections of neutral
atoms. The assignment Ci=2, Co=—1 leads to (1fsl2)
for the lowest baryons. Let r; and r, be the distances of
the #’s from the #;. For the 56, the Pauli principle
requires antisymmetry in r; and r,. However, there is
no antisymmetric .S state with both #’s in the same
orbital shell relative to #1. The lowest degree antisym-
metric wave function with the #’s in the same orbital
shell is r;X 1y, which has L=1. However, the antisym-
metrized 1S5, 2S5 wave function ri?—r;* has the same
degree, and if the forces are attractive (repulsive) for a
pair in the 21 (15) the 56 can be the lowest three-
particle state. An analogous situation occurs in ortho-
helium for which the electron spin state is symmetric:
the lowest state is the 1S, 25 with 1S, 2P nearby, and
the 2P, 2P state, analogous to r;Xr, above, lies much
higher. Thus this model can saturate properly.”

D. Paraquark and Three-Triplet Models

The order three-paraquark! and three-triplet’® models
yield the same baryon states; in particular, both models
require a symmetric three-particle joint orbital and
SU(6) wave function (see discussion of type la above).
Paraquarks must have fractional charge, and among the
three-paraquark states only the symmetric one is an
effective fermion. If the Green components of the para-
quark model are taken to be independent fields and are
Klein transformed, then, as far as the known hadrons
are concerned, the paraquark model can be considered
a special case of the three-triplet model. Using the (three-
valued) SU(3)” degree of freedom, one can make pairs
of particles in the antisymmetric SU(3)" state attract
and pairs in the symmetric one repel,’® so that satura-
tion will occur at three and the orbital-SU(6) wave
function will be symmetric.?” By proper choice of such
forces, more complicated single-centered systems can
be made unbound.

The states produced by low orbital excitation in the
paraquark model have been tabulated™; these same

26 The proton/neutron magnetic-moment ratio is not determined
uniquely here; however, the experimental value can be gotten
with a reasonable value of the free parameter. See Van Hove,
Ref. 16.

27 This can be done directly in the paraquark model.
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states are also relevant for orbital excitation in the
three-Fermi-triplet model.28-

In the model of Han and Nambu,® an octet of gauge
fields couples to the SU(3)"” generators 3\, of the
triplets and leads to the mass formula

8 N
MN)=NM~+3:g2> > N/ON'D

w=l4, j=1
i<j
=N'}’}’Lt+%g2C2,

where m;=M;—3g’Cy (C20=4%) is the effective mass,
and

8 N

=1L [ZMOF
=1 n=1

is the quadratic Casimir operator for SU(3)”. If
mKg?, the lowest-lying states will be those for which
C,=0 [i.e., the singlets of SU(3)”, all of which have
SU(3) triality 07, which here play the role of “neutral”
systems. Note, however, that C, is not an additive
quantum number. Thus this model makes essential
use of saturation mechanism 4b.

In conclusion, although we have shown how several
models can be made to satisfy the saturation criteria,
it remains a challenge to show how, if at all, these
criteria can be satisfied in the quark model.?
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28 Dalitz, Ref. 4, suggested that a universal short-range repulsion
between baryons might result from overlapping wave functions in
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overlapping wave functions, without suitable dynamics, will
give such a repulsion. Proper choice of forces in the models which
saturate, ie., core-core repulsion, #;—!; repulsion, or repulsion in
SU@3)” symmetnc pairs, will give such a repulsion.
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