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A classical system of n electric and n~ magnetic point charges is considered. The field equations (Maxwell-
Lorentz equations, suitably generalized) and the particle equations are obtained by postulating duality
invariance and coherence with the theory of only electric point charges. The particle equations together
with the solutions of the field equations yield the (generalized) Lorentz-Dirac equations including radiation
reaction. The question is then raised whether this system of equations can be derived from an action prin-
ciple, as is the case for only electric or only magnetic charges. It is shown that the particle equations can be
derived only from a nonlocal action integral. If an electric and a magnetic point charge are allowed to meet
(crossing of world lines), they must do so with equal velocity (in magnitude and direction) at the instant of
crossing. An action integral from which the Geld equations can be derived is not dificult to obtain, but it is
proven that no action integral exists from which both the particle equations and the field equations can be
derived. ¹vertheless, there exist a local symmetric energy tensor and a corresponding angular momentum
tensor which yield ten conservation laws when the field and particle equations hold.

I. INTRODUCTION

'HE ingenious suggestion by Dirac' that the
existence of a magnetic monopole would lead to a

quantization of electric charge gave rise to a consider-
able literature on the subject. ' After recent failure to
detect such a particle this literature has turned partially
negative, trying to cast doubt on the existence of such a
theory. A notable exception is the recent work by
Schwinger. ' The latter's work makes the present failure
to observe the monopole less serious, since his quanti-
zation leads to a quantization4 O.*n=e' instead of
Dirac's e'/4. Here n=e'/4z, n*=e*'/4z, and e and e*

are the electric and magnetic fundamental charges.
If the classical electron radius and the classical mono-
pole radius are about equal, the ratio of the monopole
mass m* to the electron mass m is found to be

m*/m-cr*/n= (rs/n)'

according to Schwinger's quantization. This is four
times larger than the ratio in Dirac's quantization,
yielding m* 9.6 SeV for n=i. The present experi-
mental limit is only a fraction of this.

All the negative papers' ' are studies in quantum
field theory or 8-matrix theory and a,re consequently
subject to the same criticism as these theories them-
selves at the present state of the art. It is therefore
not unreasonable to raise this question on the classical
level where the situa, tion is fully understood and where
there are no divergences and no renormalizations for
point-particle electrodynamics. '

+ Work supported in part by the National Science Foundation.' P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931);
Phys. Rev. 74, 817 (1948).

~ A summary up to 1959 can be found in H. Bradner and W. M.
Isbell, Phys. Rev. 114, 603 (1959).

3 J. S. Schwinger, Phys. Rev. 144, 1087 (1966).
4 We use Heaviside-Lorentz units with A=c=1 and a signature

+2 of Minkowski space.
5 D. Zwanziger, Phys. Rev, 137, B647 (1965).
S. Weinberg, Phys. Rev. 138, B988 (1965).

7 C. R. Hagen, Phys. Rev. 140, B804 (1965).
F. Rohrlich, CIasmcal Charged I'articles (Addison-Wesley

Publishing Company, Inc., Reading, Massachusetts, 1965).
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It is our philosophical belief that quantum electro-
dynamics has a demonstrable classical limit (never
proven) and that consequently the nonexistence of a
classical theory of magnetic point charges would imply
the nonexistence of the corresponding quantum electro-
dynamics. Conversely, the existence of a classical theory
does not necessarily ensure a corresponding quantized
theory.

Specifically, we wish to consider a system of e
electric point charges es (4= 1, ~ ~, I) and Ne magnetic
point charges e|* (l=1, , 1e) in interaction with
each other by means of the electromagnetic Geld they
produce arid subject to incident radiation Ii; as well as
possibly an externally controlled Geld F t,. This theory
is to be Lorentz-invariant and, as long as electric and
magnetic charges do not occur on the same particle,
also I'-, C-, and T- invariant.

The construction of the theory proceeds in two
steps. The first is the establishment of the basic Geld

equations and particle equations. This part is easy,
especially if one postulates a certain invariance (duality
invariance, Eqs. (2.5) and (2.6)) and coherence to the
classical theory of point charges, in order to resolve
various ambiguities of definitions and sign choices. Sy
"coherence" we mean that the theory should reduce to
the usual theory in the limit of all e*=0; it also means
that the Geld of a single positive magnetic charge
approximates that of the positive pole of a magnetic
dipole. This is done in Secs. 2 and 3.

The second step in the theory construction consists
in ensuing its Lorentz-invariance properties by pro-
viding the infinitesimal generators of that group and the
associated conservation laws. This can be done most
easily by exhibiting a Lorentz-invariant action integral
whose Euler-Lagrange equations are the fundamental
equations obtained in step one. Noether's theorem will

then provide the generators and the conservation laws.
This is studied in Secs. 4 and 5.

The result of our investigation is that within the
framework which we have set ourselves no action

ii04



CLASSI CAL THEORY OF MAGNETI C MONO POLES

integral exists that would provide both the Geld
equations and the equations of motion. This conclusion
casts severe doubt on the consistency of the theory of
magnetic charges with the Lorentz group. However,
this problem is resolved in Sec. 6, where the Lorentz
invariance of the theory is proven.

v E=p

PxH —E=j,
as vrell as the homogeneous equations

V H=o and VXE+H=o.

(2.1)

(2.2)

These latter equations will no longer hold if magnetic
charge densities p* and current densities j*are present.

We now assume that positive magnetic charges are
sources of H while negative ones are sinks. This assump-
tion permits one to construct a magnetic dipole as a
combination of a positive and a negative monopole so
that it would be indistinguishable from that produced
by a suitable electric current. This determines the
signs on the right side of the following equations:

v H=p',

vXE+8= —J*.
(2 3)

(2 4)

The system (2.1) to (2.4) is invariant under either one
of the following two substitutions (duality invariance):

2. THE FIELD EQUATIONS

The Maxwell-Lorentz equations specify the Gelds E
and H produced by the electric source-current density j
and electric source-charge density p. They consist of
the inhomogeneous equations4

The four-dimensional Levi-Civita symbol is defined to
vanish unless all indices differ) 60],Q3 1 ~'"', and
is completely antisymmetric.

The invariance characterized by (2.5) and by (2.6)
can novr be expressed by

(A) F~ Fg)
FD~ —F

j'~ j
(B) F -+ Pn-

Iig) —+ F

(2.5')

(2.6')

We note that for both substitutions

jP +-+ —j+Pz. (2.11)

Here
F„„*=B»„+A»„o. (2.12')

A„„=—8»A„«t„A»—, B„„=B»B„B„B». (—2.13)

If one restricts these potentials by the Lorentz condition

B„A»=0, B„B»=0, (2.14)

the field equations (2.7) and (2.8) reduce to

Since we no longer have homogeneous field equations,
potentials can no longer be introduced by expressing F
as the curl (in four-space). This is well known but does
not prevent one from introducing potentials altogether,
as was pointed out by Cabbibo and I'errari. ' One can
define two four-vectors A& and 8& by

(2.12)
so that

(A) E-+ —H
H-+E

(2.5)

~ ~V+ 0+p jp y

~"B"=&B»=+7»*

(2.15)

(2.16)

In this way we can speak of the Geld Ii as consisting of
two parts which superpose linearly:

e~ —+e

(B) E-+ H
H-+ —E P=P&+P&, P&»"=A»"

&
F&»"—= BD»" (2 17)——

(2 6)e-+ e*
e*~ —e

The A Geld has its source in the electric current j, the
9 Geld in the magnetic current j*.This vrill make the
follovring consideration a great deal easier to carry
through than would otherwise be the case.

Here vre anticipate the point-charge assumption which
implies that j and p contain a factor e while j* and. p*
contain a factor e*.

In order to vrrite these equations in manifestly co-
variant form we define Z;=«;;»P'», P.;=F",j»
j«, »= (p~,j*) and find

3. THE PARTICLE EQUATIONS

g Ptnlv jV

«1»F«»"=+j«".

Here 8+I'" is just the dual of Ii&":

P IIV =Pg)PV
7

P IlV ~ gilVCLPP

(2 g) In order to obtain the analogous equation for a magnetic
charge we assume that the substitutions (A) and (B),
Pqs. (Z.5) and (Z.6), which /eave the geld eqlations
inmriant also leave the part~cle equations invariant.

9 N. Cabbibo and F.. Ferrari, Nuovo Cimento 23, 1147 (1962).

(2.9)

(2.10)

The Lorentz-force equation for an electrically charged
particle in an external Geld is

(2.7) mv= e(E+vX8) . (3.1)
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Only the special substitution (2.11) is actually neces-
sary for Eq. (3.1).Thus, one finds

m~u=e*(H —u)(E) . (3.2)

The manifestly covariant form of these equations is
(the dot now refers to differentiation with respect to
pmper time)

particle equations and the field equations (2.15) and
(2.16) must be completed by the specification of the
point currents

j t"{x)= et,. 8 \ % st)—t}Ir"dt", (3.9)

mi)I'= eF~"e„

m*u~= —e*F+~"e„Fy

(3.3)

(3.4)
j,e(g) = p j&*e(x), j&'e(x) =e&* b(x y&)u—&&dr.

k 1

(3.10)
where F" is the dual according to (2.9).

The connection between the particle equations and
the 6eld equations is obtained when the charges e
and e* act as sources of a 6eld. For this purpose one
needs the associated currents of these point charges,

je(x) =e b(x z)t}ed—t, (3.5)

j~"(x)=e~ 8(x y)u"d—t (3.6)

The world lines of e and e* are here denoted by st'(t)
and y)'(t), respectively.

In order that the particle equations (3.3) and (3.4)
be generally valid, the force on the right side of these
equations must be caused by the external 6eM as well
as the 6eld due to the other particles in the system
(mutual e-e and e-e* interactions). It must also
contain the partides self-interaction, which gives rise
to the radiation reaction force. There is no static
self-interaction because the masses m and as~ are by
de6nition the physical rest masses of the particles
and the theory will be so constructed that such an
interaction cannot arise. '

Let us therefore now envision a system consisting of a
6nite number of electric and magnetic point charges
ek and eg* and. the electromagnetic 6elds produced by
them, all under the influence of an incident radiation
field F;„(given at t= —oo) and an externally controlled
6eld F,x«. This systexn is an open system because of the
presence of F, «. %hen F, «=0 the system is closed.

In this general case of many particles, the 6eld F
at a point on the world line of a particle of charge e
consists of 6ve diGerent parts:

P=P.*t+P +F..i(+F~;.t"'"+Fe,.t. (3.7)

The external (contmlled) and the incident (radiation)
6eld are both assumed as given without knowledge of
their sources. F„lg is the 6eld produced by e, but only
the radiation reaction part, i.e., the free 6eld

(3.8)

vrill contribute to the particle equation. ' F~,„«o'"" is
the (retarded) field of all other electric charges in the
system; Fs is the (retarded) field of all magnetic
charges in the system. The interrelation between the

In analogy to (3.7) the field Frt at a point on the
world line of a magnetic point charge e* can be written
as the sum of the following 6ve parts:

p p D+.p D+F. D+p . D+p D,other (3 11)

with obvious meanings analogous to (3.5). We note
that the total field (3.11) is e()t the dual of (3./) but
di8ers by self-6eM contributions and by the mutual
interaction between electric and magnetic charges. In
particular, e acts on e* by means of F~~ produced by e,
while e~ acts on e by means of Fg produced by e*.

The generalization of the Lorentz-Dirac equation
to a system of e electric and e*magnetic point charges
is now easy to write down. Ke introduce the notation

F=P,. + (P —Pe ) (3.12)

where the superscript s indicates "self-held, " and 6nd

~k~k &kFeff, k

Feff,)r=pext+F(t) +Z F(t)
leak

{3.13)

~k*+k"=—&k*F8@k"" Nv ~

+P F(t) ' (3 14)

(3.15)

p 4 p 4+p (9)+p p t &B,ret

&8k

+p p A, ret (3 16)
L~l

The subscrjpt I parenthes1s 1n(4cates the source
particle of the 6eld.

The physical system of e electric and N~ magnetic
point charges is now completely speci6ed by the differ-

ential equations (3.13) to (3.16) for the particle,
(2.15) and (2.16) for the fields, by the current —world-

line relations (3.9) and {3.10), and by suitable asymp-
totic conditions which specify the state of the system
in the distant past and/or future.

The above equations are best exempli6ed by the
particular case of a system consisting of only one charge
e and one charge e . This will be of special interest to
us since it is the simplest system which contains all the
relevant complications introduced by having both
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eF(&&""r&„=eF; ""(&„+(es/6s)(f&" —.
f& it~(»'), (3.21)

—e*F(2)I'"I„=—e*F;,~I""I„

+ (ea"/6') (u"—u u u&) . (3.22)

Note that the radiation reaction terms in these two
equations have the same sign (as must be the case
physically) because the minus sign on the right of
(3.18) and the minus sign by which (2.7) and (2.8)
di6er compensate each other.

We must now recall that these particle equations are
really rot the equations of motion since they contain
higher derivatives than the second in the particle
positions. The equations of motion are obtained from
the generalized Lorentz-Dirac equations (3.17) through
(3.22) by taking into account the asymptotic postulate
of the theory which specifies free particles in the limit

~

t
~

—+ ac. One then obtains integro-differential equations
as in the case of electric charges only. "

electric and magnetic point charges present,

m8~= e(cF', rs"+F(~&~" B—D, re(&"j(&„(3.17)

m*u" = e—*(F, r, r&""+F (s&s"+&r&,„r,""ju„(3.18)

Here we used (2.17).We note that

F(x&""=F(n""+-,'(~re~""—~so."")1 (3.19)

F(,&&
v F(~ &&g v+ (Bret"v B~—a~I v) (3.20)

The index s is here unnecessary, since there is only one
held A and only one 6eld B.

The characteristic features of the Lorentz-Dirac
equation become explicit when the Lienard-Wiechert
solutions of (2.15) and (2.16) with the sources (3.5)
and (3.6) are substituted:

Since Ii; is a free 6eld it can certainly be derived as
the curl of a potential, A; &. The equations

m8"= eE(y)""8) )

m*u" =—e*~(2)""Nv )

(4 1)

which are (3.17) and (3.18) with F, r,
——0 and with

omission of the mutual interaction, can then easily be
obtained from the following variational principle:

I„=—m (—s'I's„')'('dX —m* ( y'I'y„—')'"d),

+e s„'2"dX—e* y„'B"dX(. (4.2)

Here the prime indicates differentiation with respect
to X, and Al" and Bf' are the potentials of E(~) and F(2) '.

E(y)""=8"A"—8"A~

F(2)""= 8"B"—8"B" (4.3)

Eventually, by means of the asymptotic conditions
these will have to be shown to be of the form

ci"=xi(~"+s (urer, " A,a~")—
B"=B;"+-', (B,.r,

"—B,a ),
(4.4)

where

BsA "—(&"A ~=F s" BsB " 8"B ~=F s"—(45)

The next problem is to add suitable terms to I~
LEq. (4.2)j so that (4.1) is extended to (3.17) and
(3.18) with F,„&——0. Such a term for the charge e, say,
must necessarily be of the form

4. CONSTRUCTION OF A VARIATIONAL
PMNCIPLE FOR THE PARTICLE

EQUATIONS
e s„'V"dX ) (4.6)

The question now arises whether the fundamental
equations of the theory, viz. , the 6eld equations and
the particle equations connected by the current equa-
tions can be derived from a variational principle. To
this end it is again sufhcient to consider the two-
particle system consisting of a change e of mass m and
a charge e* of mass m*, electric and magnetic, respec-
tively. Also, the presence of an external 6eld is quite
irrelevant to this question and we shall therefore
assume F, &

——0 in this section, i.e., we assume that
we are dealing with a closed system.

In these considerations we shall of course be guided
by the variational principle for a system of electric
point charges only, "since the present formulation must
reduce to it when the magnetic charges are removed.

"F. Rohrlich, Ann. Phys. (N.Y.) 13, 399 (1961); see also
Ref. 8."F. Rohrlich, Phys. Rev. Letters 12, 375 (1964); see also
Ref. 8.

which cannot be identified with eB~I""~„, because B~f""

cannot be written in the form of a curl. Indeed, if it
could,

&tv+ pe ~x+gvB xp= gaB ecxpv (4.7)

would have to vanish identically which contradicts
(2.16) whenever j„*/0.

This argument shows that a loca/ Lagrangian does
not exist. However, one can proceed by means of the
following nonlocal ansatz. We dehne the four-vector

Bn~(x) =

since only the vector s„' is available for the interaction
of e with other fields or particles, if one does not want
higher than second-order equations. But (4.6) yields
a term

e(B'AV"

—(&"Vs)(&„
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where the four-vector f(x,$) depends on the Geld point
x as well as on the parameter $. The latter is charac-
terized by

The path in (4.14) is not permitted to meet electric
point charges.

The result of these considerations is that the non-
local, path-dependent action integral

lim P(x,$) =space-like infinity.
(-+—ao

(4.9)
I= —m ( z—'"z„')'i'dh m—* ( y'4y—„')'"dh

This parametrization was used by DeVhtt" and is
also implied in the work of Mandelstam. "

The path from x to space-like in6nity which is
traversed by i as ( varies from 0 to —~ is defined to
avoid all singularities e . Since BDI" is not singular at
the electric charges, their presence on the path is
irrelevant.

By differentiation of (4.8) one finds

8"B~" 8"B "=B—""+

But this integral vanishes because the integration path
by deinition never meets a magnetic charge, "

8"Bg)"—8"Bg)"=Bg)"" (4.11)

X (jvBn«P+ g~BDzv+ g8B~v~)

The parenthesis inside the integral can be expressed
in terms of j*by means of (4.7) and (2.16). Therefore,

Qljz+~v Qvg p

Pe z„'dh(A~ B&„—.,~)

—e~ y„'dh (B"+A g& „.p) (4.16)

0

lim —ee e ""' j,*(t')d(ii„,
$o -+0

(4.17)

will yield the local particle equations (3.17) and (3.18)
of the two-particle system e-e*.

The following difhculty now arises. It is conceivable
that during the time development of the system the
two charges e and e* pass each other arbitrarily closely.
As point particles, their world lines can intersect. But
BzP(z) is given by the path integral (4.8) which starts
at x= s where the charge e is located. If at some instant
of time this is also the location of e*, we violate the
condition under which (4.11) was derived, viz. , that
there never be an e~ on this path.

The difBculty can be resolved as follows. If e* is on
the path of the integral (4.10) it will no longer vanish
and will give an extra term to the right side of the
particle equation (3.17). In the limit as e~ is met closer
and closer to /=0 one finds for this contribution

This is exactly what one needs for the action integral.
Ke can assume it to contain a term

where
&a= ~i a ( f 0~=

—e z„'dh BDI'(z), (4.12)
On expressing j,* in terms of u, one sees that (4.17)
will vanish provided ~ &"'N„v,=0 or, since zt„and v„are
unit vectors,

and obtain a term —eB~I'"e„on the right side of the
particle equation for e. Similarly, a term of the form

—e* y„'dh Ai)~(y), (4.13)

where A& is dered by

( )= A (i)8, f Bi d$, (4.14)

will lead to

"S.S. De%'itt, Phys. Rev. 125, 2189 (1962).
~ S.Mandelstam, Ann. Phys. (N.Y.}19, 1 (1962},
"The nonlocal expression (4.g) permits us therefore to specify

exactly under what conditions (4.11) holds without contradicting
the existence of a nonvanishing j„*via (4.7} and (2.16}:8&» is
never to be used at points x where j„*&0

at the instant of coincidence of the two charges. Thus,
we can still be assured of the correct particle equations
even in the case of crossing world lines provided that
at the instant of crossing the two ve1ocity four-vectors
of e and e* are equal. Their world lines must therefore
have a common tangent at the point of intersection.
Physically, the two particles must both be at rest in
some instantaneous inertial system at the instant of
intersection. "

We conclude this section with the observation that
the derivation of the particle equations from the
variational principle (4.16) made use, and therefore
presupposes, the 6eld equations. These must therefore
be derived from I before the particle equations.

"A condition equivalent to (4.18) was Grst derived by a
different method by D. Rosenbaum (private communication).
I am indebted to Dr. Rosenbaum for informing me of his work.
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S. FAILURE OF A VARDON. TIONAL PRINCIPLE
FOR THE COMPLETE THEORY

A variational principle for the full theory of electric
and magnetic point charges requires a derivation of the
Geld equations as well as the particle equations from
an action integral. Since we have seen that the particle
equations can be derived only by giving a very special
nonlocal action integral, it remains to be proven that
one can adjoin to this action integral suitable Geld
terms which, upon variation of the fields (or potentials),
will then yield the desired Geld equations. We shall now
show that this is not possible.

The interaction terms in I, Eq. (4.16), can be written

j„(x)d'ALA~(x) —B&~(x))

I 1+- A&~"A„„i'—B~ A„ i'.
2

"
2

(5.7)

bA& will now yield the correct field equation, but we
must also consider the variation bA&. Since (5.1)
contains A&& we use the identity

A&~"A„„D=—A~"A„, (5.6)

and vary A&&. This yields the Geld equation, following
(5.4), —j„*—8"A„„=O

which is an incorrect equation. To remedy this we need
another term in I which contains A„„~ and whose
source is j„*,viz. 8„„,so that we must have the two
fieM terms

j„'d4xpB~(x)+A&~(x)5. (5.1)

Variation of A„~ now yields

—j,*—B~(A„„—B„„)=0 (5.8)

The index "ret" can be omitted for the present purpose.
Given these terms in the action integral, we are

forced to deal with four independent four-vector
potentials (for the purpose of variation). This is
(not surprisingly) twice as many as in the case of
electric monopoles only. Of course, their curls combine
to one single field observable by an electric charge,

1
Bg)""A„„.

2
(5.9)

which is correct according to (2.16) provided we can
eventually show that 8» is a free field.

Next we must vary BI" and, since B&I' occurs in
(5.1), we write the second term in (5.7) as

F~"= 8~A" 82~ (B~B—~ a—BI,~)—(5.2)
Its variation yields

—j.+8~A„,=0 (5.10)

If I is to contain no higher than Grst derivatives of
these potentials, then relativistic invariance restricts
the field term to integrals bilinear in the Geld or their
duals constructed from them: 8» 8&" ADI'" B~I"".

Let us recall the prototype of the variations to be
carried out. A variation HAGI' on

j G"d'x ——
2

G~"IJ„,de, (5.3)

where GI'" is the curl of G& yields

j„+B~H„„=0. (5.4)

Consider now the Geld term containing A&". The
variation 8A& will yield a Geld equation in which j„,the
factor of A& in (5.1), will be the source of the field
multiplying A&" in the field term. This field is A&"

according to (2.15). )Equivalently, we could take
F„„, following (2.7), but the argument is the same
either way. ]Therefore, we must have a field term

A~"A „+4m.
2

(5 5)

and an analogous one observable by a magnetic charge,

F, "=8 B" 8"B"+(8A—" 8"A —"). (5.2')

1
A~"B„„L'de

2
(5 11)

to obtain the correct equation under 88„~.The varia-
tion of A&& in the equivalent term

A "8 dx
2

(5.12)

will then yield
—j„+—8"8»=0

which is again of incorrect sign, contradicting (2.16).
Thus, there is no consistent term that can be ad-

joined to the interaction term (5.1) to yield the correct
field equations.

In order to avoid misunderstanding it should be
emphasized that a variational principle can easily be

which has the wrong sign, contradicting (2.15). There-
fore, the original assumption of having A&" occur in
the field term cannot be maintained.

Since an analogous argument can be made starting
with 81'", we conclude that only A„„and B„„ortheir
duals can occur. Now B„„must be multiplied by the
field produced by j„, the factor of B„~ in (5.1), so
that we must have
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constructed which is consistent and which yields the
desired ficld equations. But such a principle cannot be
amended to yield also the correct particle equations.
In fact, the action integral

j (g)d ~Ay+ j *(g)de B»(g)

F»(z)P, (x)d'x (5.13)
2

6. THE COHSERVATIOÃ LAWS

The nonexistence of an action integral which gives
the differential equations of the theory seems to cast
doubt on the existence of the conservation laws as-
sociated with Lorentz invariance, and thus also on the
Lorentz invariance of the theory. If the theory is to
be invariant under the inhomogeneous Lorentz group
then it must be possible to exhibit a symmetric energy
tensor and an antisymmetric angular-momentum tensor
both of which have vanishing divergence as a conse-
quence of the field equations and the particle equations
of the theory. This can indeed be done.

Consider the symmetric tensor

QH» —
QH l4V+ IQ»+ QH» (6 1)

e ""= mf il(x z)v'e— —

—m* 8 (x y) I"I"d—r, (6.2)

(5.14)

yields the inhomogeneous Geld equations (2.7) and
(2.8) under the variations of A & and Bi', and it yields the
homogeneous equations

a„F»=0 and a F&»=0 (5.15)

under the variations of AI' and 8&.

where F is deGned as in (3.12) by

F=P,. +, (P„, P., ) (3.12')

A+=12(A„t,+A,e ) (6.8)

with B+ being analogous. The total Geld is F=F+p~
and P+ A+ ——B+o—as deGned in (5.14).

In order to prove (6.5) one notes Grst that

Igv Pvp j P~vp J (6.9)

& e~e ""=—& 8~ s""

Therefore, the tensor

(6.12)

Qli »= Qli »+ iL e+»+ e+&»1
+,'$0~ a» e~-a,»j (6—13)

is also divergence free. But this tensor is symmetric
under the duality substitution:

(A) A-+B, AD-+BI)

8 —+ —A, 8D~ —AD

8~ —8 q 8 ~8

8 O~»»= A+&»—j *—B+&»g„(6.10)

as a consequence of the field equations. Combining this
with the divergence of O~» and using (3.5) and (3.6)
yields the desired result (6.5) provided the particle
equations (6.6) and (6.7) are satisGed.

The energy tensor (6.1) is not symmetricunder
duality substitutions such as (2.5') and (2.6'). However,
lt can bc sylnmctrizcd ln this rcspcct as follows. Onc
notes that

9 ""=F"P —o"+P o" F D"+ g»FD P e+ (63 )

satisfies the same divergence relation as 8+1'", viz. ,

(6.11)

Furthermore, the "duaV' to (6.4),

Qli&e» —A il~B o~+B+&i~A +~

+ 'g»A+~~B e+-o (6.4')
satlsfics

Q~+I"=FBI +i'+p g~p l+1~ilip aep (6.3) or (6.14)

g Q~» —0 (6.5)

Q~g)s»=A+a" B +"+B " A ~"+', rj""A+g) eB e+. (6.4)-
It is a matter of straightforward computation to prove
that

(8) A -+ —B, Ai) -+ —B~
8-+A, BD-+ Ag)

'V ~ N~ t8 ~ fS

as a consequence of the field equations (2.7), (2.8),
(2 15), and (2.16) and of the particle equations (3.7)
and (3.18) with F, ,=O. The latter can for this purpose
be conveniently written in the form

mbi'= e (F»" B+o»)e„—
m*xi'= e*(FD""+A ii»)N—

(6.15)J»~= Xi"0~ "~ X"Q~ "—~—
6.6

satisGes
(6.7) (6.16)g Jpvc —0

which is a generalization of (2.5') and (2.6').
Having established the existence of a conserved

symmetric energy tensor, it is trivial to give the con-
served angular-momentum tensor. :
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of
The ten conserved quantities are the four components

I'": —0""Ndsa (6.17)

and the six components of

Jp p— JIIvtxd30 ~
CL p

(6.18)

the integrations being over a space-like surface. P&

and J&" are a four-vector and an antisytnmetric tensor,
since the integrals are independent of 0..

'7. DISCUSSION

In Secs. 2 and 3 the basic diBerential equations for

any electrodynamic system consisting of a finite
number of electric and magnetic point charges were

given. These equations are formally Lorentz covariance
but they do not sufhce for the theory to be Lorentz
invariant: It must be possible to ensure the ten conser-

vation laws associated with Lorentz invariance. To
this end it was attempted in Secs. 4 and 5 to construct
an action integral which implies the equations of the
theory and which would also give the conservation
laws. This attempt failed and it was proven that an
action integral which provides ut/ the basic equations
of the theory does not exist."

An action integral that leads to the particle equa-
tions was constructed in Sec. 4. It is necessarily non-

local. But it is completely general. While only the system
e-e was considered explicitly, the action integral

(4.16) can easily be extended to describe arbitrary
numbers e and n* of electric and magnetic point
charges. The generalization proceeds as in the case of
electrically charged particles' by a Fokker-type term
for the interaction between the e& and similarly between
the eg*.

"Clearly, the relative sign of the integrals in (5.1) is crucial.
If this sign is changed to conform with the relative signs in
(5.13) a suitable 6eld term cue of course be found; but then the
relative sign of the mass terms in (4.16) must also be changed
in order to assure the correct particle equations. An action integral
with mass terms of opposite signs however does not have the
correct limit as the interaction vanishes and violates the positive
definiteness of energy of a physically meaningful system.

A peculiar problem arises when two world lines
belonging to one electric and one magnetic charge
intersect. Whether this problem needs to be faced at all
is not entirely clear. One can argue that if there are
indeed initial conditions which lead to such inter-
sections (which is not obvious), an infinitesimal modifi-
cation will avoid it. Alternatively, one can point to the
inapplicability of the classical theory for very small
distances: One can endow each particle with very strong,
very short-range repulsive forces so that particles never
approach each other closer than the classical electron
radius, say. But if world lines do intersect then, as
was shown in Sec. 4, they must do so with equal
velocity (in magnitude and direction) at the instant of
intersection.

One can construct an action integral that leads to
field equations of the theory, as was seen in Sec. 5. But
there is no action integral that yields both the field
equations and the particle equations. This means that
the standard approach to conservation laws via
Noether's theorem is not possible in this theory. While
this does not rule out other means, the compatibility
of the basic equations with the conservation laws
corresponding to Lorentz invariance is certainly
brought into question.

This question is resolved by giving the ten generators
of the Lorentz group explicitly: A symmetric tensor
0&" and an antisymmetric tensor J&" = —J""~are given
in Sec. 6. These quantities are divergence free and local
and yield conserved PI' and J&".

Finally it should be noted that the present investi-
gation is easily modified to the description of a system
of particles each of which carries an electric as well as a
magnetic charge. One must then give up invariance
under space reversal. The action integral must again
be nonlocal to permit the particle equations. The
difhculties which prevent the existence of an action
integral for all basic equations persist also for this
physical system. But Lorentz invariance can again be
proven by exhibiting the ten conservation laws
explicitly.
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