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We examine the hypothesis that every particle of mass m is subject to a Brownian motion with diffusion
coefficient A/2' and no friction. The in6uence of an external field is expressed by means of Newton's law
F=dna, as in the Ornstein-Uhlenbeck theory of macroscopic Brownian motion with friction. The hypothesis
leads in a natural way to the Schrodinger equation, but the physical interpretation is entirely classical.
Particles have continuous trajectories and the wave function is not a complete description of the state.
Despite this opposition to quantum mechanics, an examination of the measurement process suggests that,
within a limited framework, the two theories are equivalent.

I. INTRODUCTION

E shall attempt to show in this paper that the
~

~

~

~

radical departure from classical physics produced

by the introduction of quantum mechanics forty years
ago was unnecessary. An entirely classical derivation
and interpretation of the Schrodinger equation will be
given, following a line of thought which is a natural
development of reasoning used in statistical mechanics
and in the theory of Brownian motion.

Consider an electron in an external Geld. The electron
is regarded as a point particle of mass m in the sense
of Newtonian mechanics. Our basic assumption is that
any particle of mass m constantly undergoes a Brownian
motion with diGusion coefficient inversely proportional
to rrs. We write the diffusion coefFicient as i's/2m and
later identify A with Planck's constant divided by 2m.

As in the theory of macroscopic Brownian motion, the
inQuence of the external force is expressed by means of
Newton's law F=ma, where a is the mean acceleration
of the particle. The chief difference is that in the study
of macroscopic Brownian motion in a Quid, friction
plays an important role. For the electron we must as-
sume that there is no friction in order to preserve
Galilean covariance. The kinematical description of
Brownian motion with zero friction is the same as the
description used in the Einstein-Smoluchowski theory
(the approximate theory of macroscopic Brownian
motion in the limiting case of in6nite friction).

The picture which emerges is the following. If we

have, for example, a hydrogen atom in the ground state,
the electron is in dynamical equilibrium between the
random force causing the Brownian motion and the
attractive Coulomb force of the nucleus. Its trajectory
is very irregular. Most of the time the electron is near
the nucleus, sometimes it goes farther away, but it
always shows a general tendency to move toward the
nucleus, and this is true no matter which direction we
take for time. This behavior is quite analogous to that

*This work was supported in part by the National Science
Foundation.

A. Einstein, Iwsestigatiols oN the Theory of the i3roweN'aN

Movement, translated by A. D. Cowper (Methuen and Company,
Ltd. , London, 1926); M. v. Smoluchowski, Abhandlungen uber
die Bromesche Bewegung und vermandte Erscheinungen (Akade-
mische Verlagsgesellschaft, Leipzig, 1923).
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of a particle in a colloidal suspension, in dynamical
equilibrium between osmotic forces and gravity. How-
ever, the electron in the hydrogen atom has other states
of dynamical equilibrium, at the usual discrete energy
levels of the atom.

The equations of motion which we derive are non-
linear, but if the wave function f is introduced, in a
way simply related to the kinematical description of the
motion, we 6nd that f satisfies the Schrodinger equa-
tion. Every solution of the Schrodinger equation arises
in this way.

Our theory is by no means a causal theory, but proba-
bilistic concepts enter in a classical way. The descrip-
tion of atomic processes is by means of classical ideas
of motion in space-time, and so is contrary to quantum
mechanics. However, we show that for observations
which may be reduced to position measurements, the
two theories give the same predictions. This, and a dis-
cussion of von Neumann's theorem' on the impossibility
of hidden variables, is contained in Sec. IV. The same
argument shows that some features of our description
are incapable of observation. It is well known' that
macroscopic Brownian motion imposes limits on the
precision of measurements if the measuring instruments
are subject to it. If, as we are assuming, every system
is subject to a Brownian motion, this implies an absolute
limit restricting some measurements.

The discussion in this paper is restricted to the non-
relativistic mechanics of particles without spin, in the
presence of external fields.

Our work has close connections with some previous
work on classical interpretations of the Schrodinger
equation. A comparison with other hidden-variable
theories is contained in Sec. V.

II. STOCHASTIC MECHANICS

Stochastic processes occur in a number of classical
physical theories. ' Statistical mechanics is based on a

' J. von Neumann, Mathematica/ Foundations of Quantum
3IIechariics, translated by R. T.Beyer (Princeton University Press,
Princeton, New Jersey, 1955).

s R.B.Barnes and S.Si/verman, Rev. Mod. Phys. 6, 162 (1934l.
4 A more detailed account of this subject is contained in lecture

notes by the author, Dynamical Theories of Brownian Notion
(Princeton University Press, Princeton, New Jersey, to be
published).
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stationary stochastic process, the measure-preserving
Bow in phase space. The Einstein-Smoluchowski'
theory of Brownian motion involves a Markoff process
in coordinate space, and the more refined 0rnstcin-
Uhlenbeck. ' theory of Brownian motion is expressed in
terms of a MarkoG process in phase space.

Let x(t) be a stochastic process (for example, the
x coordinate of a particle at time t}. It is well known
that for many important processes x(t) is not dif-
ferentiable. This is the case for the Wiener process, 6

which is the process occurring in Einstein s theory of
BlownlRn motioD. Thc SRITlc difhculty occuls with the
velocity in the Ornstein-Uhlenbcck theory. To discuss
the kinematics of stochastic processes, therefore, wc
need R substltutc for thc dcllvRtlvc.

We define the mean forward derivative Dx(t) by

x(t+re) —x(t)
D*(t)= lim E,

ht~o+

where El denotes the conditional expectation (average)
given the state of the system at time t. Thus Dx(t) is
aga, in a stochastic process. The symbol 0+ means that
At tends to 0 through positive values. Similarity, wc
deQne the mean backward derivative D~x(t) by

~(t) —x(t—st)
D,x(t)= lim E, ~ (2)

a&~o+

If g(t) is differentiable, then of course Dx(t)=D+x(t)
=dec/dt, but in general D*x(t) is not the same as Dse(t).

where E denotes expectation (average), k is Boltz-
mann's constant, and T is the absolute temperature.
The dB(t) are independent of all of the x(s), v(s) with
s& t (see Boob's discussion' ). There is dearly an asym-
metry in time here: we may also write the Langevin
equations with (4b) replaced by

dv(t) =Pv(t)dt+K(x(t))dt+dSe(t), (6}

where the dS~(t) are independent of all of the x(s), v(s)
with s+$.

H we apply our deQnitions (1) and (2), we Qnd

Dx(t) =Dex(t) =v(t),

since x(t) is differentiable with dx/dt= v(t)
By (5), dB(t) is of the order dt'~', so that B(t), and

consequently v(t), is not differentiable. However,
DS(t) =0, since B(t+lU) —B(t) for ht) 0, is independent
of the pair x(t), v(t) (the state of the system at time t),
and has expectation 0. Since D is a linear operation,
(4b) implies that

Dv(t) = —Pv (t)+K(x(t)) .

Similarly, we Qnd from (6) that

D*v(t) =Pv(t)+K(x(t)).

In the case of a free particle (K=0), we see that
Dv(t) = D~v(t) = ——Pv(t). Because of the damping
effect of friction, the velocity has a general trend toward
0, no matter which direction of time we take.

It follows from (8) and (9) that

The Ornstein-Uhlenbeck Theory -,'DD.x(t)+-', D.Dx(t) =K(x(t)) . (10)

As Rn example~ consider thc 01nstcln-Uhlcnbcck
theory of Brownian motion with friction in the presence
of a potential V. We denote by x(t) the position of the
Brownian pal'tlcle at 'tlIne t, by v(t) lts velocity, by t5
its mass, and by

K= —(1/srs) grad V, (3)

the acceleration of the particle produced by 'V. %'e

assume that the system is in equilibrium, having the
Maxwell-Boltzmann distribution. We let slsp be the
friction cocfEcicnt. Then the Langevin equations are

dx(t) =v(t)dt, («)
dv(t) = —Pv(t)dt+K(x(t))dt+dB(t). (4b)

Here B is a Wiener process representing the residual
random impacts. The dS(t) are Gaussian with mean 0,
mutually independent, and

EdS(t)'= 6(pk 2'/sw)dt, (5)
~ See S. Chandrasekhar, G. E. Uhlenbeck, and L. S. Ornstein,

Ming Chen Wang and G. K. UMenbeck, and J. L. Doob, I
Sdecred I'upers Oe Noise used Stochesric I'rocesses, edited by N.
%'ax (Dover Publications, Inc., New York, 1954).

~ The Wiener process is discussed under the name "Brownian
motion" in J. L. Boob, Stoehostse Processes Qohn Wiley k Sons,
inc., ¹wYork, 1953).

%c define thc mean second dcllvatlvc of a stochastic
process to be

e(t) =ssDD.x(t)+-',D.Dx(t). (11)

If x(t) is a position vector, we call Dx(t) the mean for-
ward velocity, D~x(t) the mean backward velocity, and
a(t) the mean acceleration.

Thus we see that in the Ornstein-Uhlenbeck theory,
Newton's law F= essa holds if F is the external force and
a is the mean acceleration.

¹~eematics of Markoff Processes

For a time scale large compared to the relaxation
time P ', the macroscopic Brownian motion of a free
particle in a Quid is adequately described by the Wiener
process w(t) The dw(t) ar.e Gaussian with mean 0,
mutually independent, and

Edw;(t)dw;(t) =2l besdt, (12)

where I is the diffusion coeQIcient k T/snp. (We write l

instead of D to avoid confusion~with mean forward
derivatives. ) In general, if there are external forces or
currents in the containing Quid, the position x(t) of the
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BrownlRn pRrtlcle satlsfles

dx(t) =b(x(t), t)dt+dw(t), (13)

where w is as before and b is a vector-valued function
on space-time. This is the description used in the ap-
proximate theory of Brownian motion due to Einstein
and Smoluchowski, Rnd is the limiting case of the Orn-
stein-Uhlenbeck theory for large P. The dw(t) are
independent of the x(s) with s(t, so by (1) b is themean
forward velocity:

The distrlbutlon pd s4 ls lnvarlRnt on space-time. For
this reason, i (8/at+b V+ vh) and ( 8—/at b—«V+ vh)

are adjoints of each other with respect to pd'x dh. That
187

p '(8/at+b v+ vh)+p= 8/—at be—v+ vd (24)

where the superscript + denotes the Lagrange adjoint
(with respect to d'x dt). If we compute the left-hand
side of (24) and use the forward Fokker-Planck equa-
tion (17), we find

(14)Dx{t)=b(x(t), t) . be= b—2v(gradp/p)

u= v(g«dp/p),

u= —',(b—b.) .

(25)
This description is asymmetrical in time. We may also
wrltC

(15) where we definedx(t) =b»(x(t), t)dt+dwe(t),

where %~ has the same properties Rs % except, that thc
dwe(t) are independent of the x(s) with s& t. Thus

Dex(t) =b.(x(t),t) (16)

is the mean backward velocity.
We wish to study this type of process in some detail,

as we shall use this kinematical description for the mo-
tion of an electron.

Let p(x, t) be the probability density of x(t). Then p
sati86es thc forward Fokkel-PIRnck equRtlon

0=div(up) —vip= divLup —v gradp j, (2g)

which also follows from (26).
By (26),

u= v grad lnp.ap/at= —div(bp)+ v8 p, (17)

According to Einstein'8 theory' of Brownian motion,
(26) is the velocity acquired by a Brownian particle,
in equilibrium with respect to an external force, to
balance the osmotic force. For this reason, we call u
the osmotic velocity. Notice that by subtracting (17)
fioiii (18) we obtaiii

where 6=—V', and the backward Fokker-Planck
equation

8p/at= div(b. p)—v~ p. — (1S)

The average of (17) and (18) yields the equation of
contlnulty

Using the equation of continuity (19), we may compute
au/at:

au/at= —v grad(divv) —grad(v. u). (30)

If we apply (22) to be and (23) to b, and recall the
definition (11) of the mean accelei'ation a, we find

8p/at= —div(vp), 1 8a=- —(b+b.)+-,'(b V)b.+-,'(b'V)b
2 81 —-,'vD (b—b*) . (31)

av/at a—(v V)v+(u V)u+vau

v=-', (b+b.).
Wc call v the current velocity. By (20) and (27), b= v+u and b*=v—u, so that (31)

Let f be a function of x and t. To compute Df(x(t) t)~ is equivalent to
expand f in a Taylor series up to terms of order two in
dx(t):

8
df(x(t) t)=—(x(t) t)dt+dx(t) Vf(x{t) t)

8$
(Pf

+~2 Q dx, (t)dg;(t) (x(t),t), {21)

plus terms of higher order. By (13), we may replace
the dx;(t) by dw;(t) in the last term. When we take the
average Lgiven x(t)], we may replace dx(t) Vf(x(t),t)
by b(x(t),t).Vf(x(t), t), since dw(t) is independent of
x(t) and has mean 0. Using (12), we obtain

Df(x(t), t) = (8/at+b V+ vA) f(x(t),t).

In the same way we obtain

Def(x(t), t)= (8/at+&'V —vh)f(x(t), t). (23)

III. THE HYPOTHESIS OF UNIVERSAL
BROWNIAN MOTION

Wc wish to examine thc hypothesis thRt particles ln
empty space, or let us say the ether, are subject to
Brownian motion. Macroscopic bodies do not appear
to exhibit such behavior, so we shall assume that the
diffusion cocS.cient u is inversely proportional to the
mass. We set

v= ti/2m.

Thc constRnt A has tbc dlIncnslons of Rctlon; wc shRll
see later that it can be identified with Planck's constant
divided by 2m.

'7 K. Nelson, Duke Math. J.25, 6/i (1958).
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The Real Time-independent Schrodinger Equation

Let us seek some special solutions of (34) in the case
that the force comes from a potential, F= —gradV.
Suppose Qrst that v=0. This implies, by (19) and (26),
that p and u are independent of t and that the solution
is stationary. In this case (34a) says that Bu/Bt= 0 and
(34b) becomes

u Vu+ (gg/2ggg)hu= (1/ggg) grad V. (35)

By (29), u is a gradient, so that (u V)u=-', grad u' and
du= grad(divu). Thus (35) becomes

or

grad(-'a'+ diva =—gradi,
2m m

(36)

ug+
2m

1
Chvu= —V——E,

rg m
(37)

We cannot attribute any friction to the ether, for
then we could distinguish absolute rest from uniform
motion. This means that the Brownian motion will not
be smooth, and velocities will not exist. Hence we cannot
describe the state of a particle by a point in phase space.
As in the Einstein-Smoluchowski theory, the motion
will be described by a Markoff process in coordinate
space, as in the previous section but with d

= h/2gdg.

The mean acceleration a has no dynamical signifi-
cance in the Einstein-Smoluchowski theory. That theory
applies in the limit of large friction, so that an external
force F does not accelerate a particle but merely imparts
a velocity F/gggP to it. In our theory the dynamics will
be given by Newton's law F=ma. In other words, to
study Brownian motion in a medium with zero friction
we adopt the kinematics of the Einstein-Smoluchowski
theory but use Newtonian dynamics as in the Ornstein-
Uhlenbeck theory.

Consider, then, a particle of mass m in an external
force F. The particle performs a Markoff process, so
its stage at time tg is given by a point x(tg) in coordinate
space. However, to know the particle's motion we also
need to know what the Markoff process is. That is, we
need to know b(x, t) and ba(x, t), or, equivalently,
u(x, t) and v(x, t) for all f,. But u and v satisfy (30) and
(32) and the term a in (32) is known; it is F/gdg. Thus
u and v satisfy

gu/Bt = —(gg/2gdg) grad(divv) —grad(v u), (34a)

jv/Bt= (1/m)F —(v V)v+(u V)u+(t'g/2ggg)hu (34b. )

Consequently, if u(x, tg) and v(x, tg) are known and we
can solve the Cauchy problem for the coupled nonlinear
partial differential equations (34), then the Markoff
process will be completely known. Thus the state of a
particle at time tg is described by its position x(fp) at
time to, the osmotic velocity u at time to, and the current
velocity v at time tg. Notice that u(x, tg) and. v(x, 4) must
be given for all values of x and not just for x(tg).

where E is a constant with the dimensions of energy. If
we multiply by mp and integrate, we obtain

-mugpdgx —— (u gradp)d'x= Vpd'x —E. (38)
2 2

By (26), the left-hand side is —J'~ggggu'pdgx, so that

1
E= -mu'pdgx+ Vpd'x

2
(39)

Thus E is the average value of -', gggu'+ V, and so may be
interpreted as the mean energy of the particle. Notice
that in this case b= —ha= u, so we could replace u by
b or ba in computing the mean kinetic energy. [If we
compute the mean of g2ggg(dx/dt)g there is the additional
infinite term gm(dw/dt)g. Since this does not depend on
the potential V, differences of energy levels will not be
affected, and we can neglect it. In any case, the poten-
tial V contains an arbitrary additive constant. )

The equation (37) is nonlinear, but it is equivalent to
a linear equation by a change of dependent variable. By
(29),

E=-', lnp

is the potential of mu/h. Let

(4o)

(41)

Then |fd is real and p=p. It is immediately seen that
(37) is equivalent to the time-independent Schrodinger
equation

[—(h'/2ggg) 6+V—E)$=0 (42)

for real f. Thus for the hydrogen atom the hypothesis
of Brownian motion leads to the correct energy levels
for bound states of the atom, and interprets them as
states of dynamical equilibrium. This is discussed
further in Sec. V.

Bv/Bt= —(v V)v —gradP, (43)

which is the Euler equation of motion for a nonviscous
incompressible Quid of unit density, if p is the pressure.
Thus this situation appears to be related to diffusion
processes in fluids with currents Rowing in them. We do
not want this, so we make the opposite assumption that
v is a gradient, and set

gradS= (m/tg) v. (44)

The Time-Dependent Schrodinger Equation

There are in general other stationary (that is,
Bu/Bt=0, Bv/Bt=0) solutions of (34) for which v/0
(magnetic atoms). However, it is just as easy to discuss
the general time-dependent case.

At this point we need a further kinematical assump-
tion. Suppose we were to assume that divv=0. Since u
is always a gradient, we could then write (34b) as
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Keeping R as before LEq. (40)$, we let

y —eR+is (45)

We wish to show that f satisfies the Schrodinger
equation

BP h 1—=i /) P i Vi)—+i—n(t)P.
Bt 2m fi

(46)

/Since ~f~'= p, if we multiply by+, integrate over space,
and take real parts, we see that if (46) is satisfied then
n(t) is real. We can always choose the potential S so
that the phase factor n(/) is 0.]That is, we wish to show

that

(BR BS h
+i i—/=i (AR+iAS+Lgrad(R+iS)]')P

8t 2m

i VP+—in(—t)P (47).

If we divide by f, take gradients, and separate real and
imaginary parts: this is equivalent to the pair of
equations

BU
Av —grad(v u),

Bt 2m
(48a)

Bv A 1
Au+-,' grad(u') ,' gra—d—~v')——grad V. (48b)

8$ 2m m

Since u and v are gradients, (48) is equivalent to (34).
Conversely, if we have any solution to the Schrodinger

equation (46), normalized so that J'
~ P ~

'd'x= 1, we may
write /=exp(R+iS), u=h gradR/m, v=h gradS/m,
b= v+u, bu= v —u, and p= ~P~~. The Markoff process
with diffusion coefficient h/2m, forward velocity b,
and backward velocity ba has probability density p
and mean acceleration a= —gradV/m. That is, every
solution of the Schrodinger equation arises in this way.

The same considerations apply to systems of several
particles with m-body potentials.

By the vector identity

—', grad(v') = v X (curl v)+ (v V)v,

and the fact that u is a gradient, this becomes

(56)

where v is the current velocity. (The force should be
symmetrical under f —+ —t. Under time inversion,
v —+ —v and H-+ —H, so that this is the case. Note
that u-+ u under time inversion. ) To solve (34) with
this force, we proceed as before except that instead of
assuming the momentum mv to be a gradient, we assume
the generalized momentum mv+eA/c to be a gradient.
This assumption is gauge-independent. We set

gradS= (m/h) Lv+ (e/mc)A], (52)

and define /=exp(R+iS) as before, where R is given
by (40).

We claim that ))t' satisfies the Schrodinger equation

BP i e )' ie
&h& A—

I & —~+&~«)k (53)
Bt 2m' c ) h

LAs before, n(t) must be real, and we can choose S so
that n(t) =0.]That is, we claim that

t'BR BS h
+i P—=i (DR+it)iS+/grad(R+iS)]')P

I Bt Bt 2m

e 1 e
+ [A grad(R+iS)]f+ —divAQ

mc 2 mc

ie
A'p ——~+in(t)))t . (54)

2m' c PL

Divide (54) by f and take gradients. The real part then
yields (34a), as the two terms involving grad divA
cancel and the two terms involving grad(A u) cancel.
If we use (50), the imaginary part yields, after
simplification,

Bv e—=—E+ hu+-', grad(u') ——,
' grad(v') . (55)

8$ m 2m

The Schrodinger Equation in an External
Electromagnetic Field

Finally, we consider the Brownian motion (without
friction) of a particle of charge e and mass m in the
presence of an external electromagnetic field. As usual,
we denote by A the vector potential, by p the scalar
potential, by E the electric field strength, and by II the
magnetic Geld strength, so that

Bv e ti—=—E—vX(curlv)+(u ~)u—(v ~)v+ Au. (57)
8t m 2m

Now curl(v+eA/mc) =0, so that

e e ~1—vX(curl v) = vX (car)A) =—
~
-vXH) . (58)

mc mac

H= curl A,

18A
E+— = —gl'adp c

C

where c is the speed of light. The force on the parti

F=e/E+ (1/c)vX H],

(49) Therefore (57) is (34b) with the force (51). As before,
every solution of (53) arises in this way.

(50) IV. COMPARISON WITH QUANTUM
MECHANICS

cle is
The theory we are proposing is so radically diferent

(51) from quantum mechanics, and the latter is so well
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verified, that it should be a simple matter to show that
it is wrong. Consider, however, an experiment which
might distinguish between the two theories. It can
be maintained that all measurements are reducible to
position measurements (pointer readings). We consider
an experiment which can be described within the frame-
work of the nonrelativistic mechanics of systems of
finitely many degrees of freedom.

At time to we have S particles with wave function P.
We assume that they interact through given two-body
and e-body potentials. We apply an external field and
at a later time t~ we Ineasure the positions of the N
particles (pointer readings, which may include a record
of readings made at previous times). We call U the
unitary operator (depending on the external field
chosen) which takes P into f(ti), and if x is any coordi-
nate of one of the particles we call the value of x at
time ti, which we denote by $, a primary observable. If
it is true that all measurements can be reduced to
position measurements, then only primary observables
have an operational meaning as observables. In quantum
mechanics, $ is represented by the self-adjoint operator
U 'xU. In stochastic mechanics it is represented by the
random variable x(t,). If f is a bounded real function,
we can make the measurement $ and then compute f($).
Quantum mechanics represents f(f) by the self-adjoint
operator f(U 'xU)= U 'f(x)U, so that the expected
valueof f($) is Q, U—'f(x)U)g=g(t, ),f(x)P(t,)f,which
is equal to

f(x)p(x, z,t,)Cx d'" 's, -

where s represents the remaining coordinates. Stochastic
mechanics represents f($) by the random variable
f[x(ti)], so that the expected value of f($) is again
(59). So far, therefore, the statistical interpretations of
the two theories agree. If one accepts the view that all
measurements are reducible to position measurements,
this means that the two theories give the same
predictions.

Suppose now that we had performed a different
experiment, applying a different external field giving
the unitary operator V, and observing a possibly dif-
ferent coordinate y at time tj. Call this observation p.
Quantum mechanics represents this observable by the
self-adjoint operator V 'yV, stochastic mechanics by a
random variable y(/i), and again the statistical in-
terpretations agree.

Now consider $+rl. This has no clea, r operational
meaning. If we perform an experiment to measure $, it
is not clear that the question of what. would have hap-
pened had we performed a different experiment to
measure g has meaning. However, in quantum me-
chanics it is customary to consider the operator
U—'xU+V 'yV as corresponding to the "observable"

$+g. (Considerations of domains of operators are
irrelevant here. We may replace x and y by bounded

uX(t,)+ (1—u)x(t. ,)=X(t,), (60)

whe~e 4=utli+(1 —u)tm, and we have seen that X(13)
gives the same statistics as x(t3). There is no contradic-
tion because ux(ti)+(1 —u)x(t2) and x(t3) are diferent
random variables, although their expectations are the
same, for any f.

The quantum and stochastic descriptions give dif-
ferent statistics for the triple $(ti), $($2), $(ts), but the
question as to which description is correct is moot unless
an operational meaning can be given to u&(ti)+ (1—u)
X$(t2). Von Neumann, in his proof of the impossibility
of hidden variables, explicitly assumes that there is a
one-to-one correspondence between observables and self-

functions of x and y.) The statistical interpretation is
the same as for primary observables: If f is a bounded
real function, the expected value of f($+g) is

g, f(U 'xU+ V 'yV)fj. No operational meaning is
assigned to this definition of $+g. It is the natural
definition in the framework of operators on Hilbert
space.

Stochastic mechanics also leads to a natural interpre-
tation of $+p. The observable $ is represented by the
random variable x(/i) and q is represented by the random
variable y(ti), so we may represent $+p by the random
variable x(ti)+y(ti). The random variables x(t&), y(fi)
depend on the different external fields, but they are
dehned on the same probability space, that of the
Weiner processes for the S particles, so that it is
meaningful to add them. If f is a bounded real function,
the expectation of f[x(ti)+y(ti)j is well-defined. No
operational meaning is assigned to this definition of
$+q. It is the natural definition in the framework of
stocha, stic processes.

However, the statistical interpretations of the two
definitions of $+z do not agree. In fact, we may easily
find U and V (unitary operators, arising from external
fields, which connect the wave functions at time $0 and
ti) such that U 'xU and V 'yV do not commute. This
means (and this is the content of von Neuman's proof2
of the impossibility of hidden variables) that for a
suitable P there is no pair of random variables x(ti),
y(ti) such that uU —'xU+PV 'yV in the state with
wave function f has the same probability distribution
as ux(ti)+Py(ti), for all real u and P.

The situation is clarified by considering the motion
of a free particle. Let $(t) be the position of the particle
at time I. In the quantum-mechanical description, let
X(t) be the position operator at time t and in the
stochastic description, let x(t) be the random variable
giving the position at time t. The x(t) are the random
variables of a Markoff process, the precise form of which
depends on the wave function f at a given time.

Now consider two different times t~ and t2. We know,
by von Neumann's theorem 2 that uX(ti)+(1—u)X(t2)
cannot give the same statistics as ux(/i)+(1 —u)x(t~)
for all 0.. On the other hand, since the particle is free,
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adjoint operators, but this is not a necessary require-
ment for a physical theory. It should be remarked,
however, that the class of Hamiltonians that we have
been able to treat by the stochastic method is quite
limited, all of them being of second order in the
momentum.

One conclusion which may be drawn from this is
that the additional information which stochastic
mechanics seems to provide, such as continuous tra-
jectories, is useless, because lt is not accessible to experi-
mental varification.

Another conclusion which this analysis suggests is
that the practice of regarding the sum of two non-
commuting operators corresponding to two observables
as being the operator corresponding to the sum of the
observables is a matter of convention which is not ac-
cessible to experimental verification. If one wishes, for
convenience, to add observables, stochastic mechanics
provides a simpler (although by now less familiar)
framework than does Hilbert space, a framework in
which observables are represented by random variables
which may be freely added and multiplied together,
and which all have joint probability distributions.

V. DISCUSSION

In this paper we have made no attempt at mathe-
matical rigor. In deriving the Schrodinger equation we
assumed u, v, and p to be smooth functions. This is the
case if and only if ilr is smooth and p= ~Ib~' does not
vanish Lsee Eq. (40)j. For real solutions of the time-
independent Schrodinger equation, other than the
ground-state solution, p has nodal surfaces on which u
becomes infinite. The definition (41) produces an equiva-
lence between Eqs. (37) and (42) only within a region
bounded by nodal surfaces. However, it can be shown
that the associated MarkoG process is well defined in
each such region, and that a particle performing the
MarkoG process never reaches a nodal surface. The
question remains as to the proper definition of p
throughout space, which is essential for the identifica-
tion of the constant E as the mean energy. Let us take
the smooth solution f of the Schrodinger equation (42),
let fo be the ground-state solution, and let

0"= (0+seA)/(I+ e')'" (61)

The solution of the time-dependent Schrodinger equa-
tion with iIr, as initial value corresponds to a Markoff
process in which u becomes infinite on a surface only
at isolated times, and there is no problem with unique-
ness. The probability density is p, =

~
iP,

~

'. As e tends to
0, this Marko6 process becomes approximately station-
ary, and has as limit the MarkoG process associated with
ilr and probability density p=

~
f~s. We could also think

of taking a different wave function iPt which in each
region bounded by nodal surfaces is a constant multiple

of exp', but then if we approximate P& by a smooth ft,
with nonvanishing ~ft, ~', the corresponding Markoff
process will no longer be approximately stationary. For
this reason we take the usual probability density
p=

~ i' ~

', and so have the usual energy levels.
An interpretation of the Schrodinger equation in

terms of particle trajectories was first proposed by de
Broglie' and later developed by Bohm. In this work the
particle velocity was identified with what we call the
current velocity v, and Bohm interpreted the deviation
from the Newtonian equations of motion as being due to
a quantum-mechanical potential associated with the
wave function. Bohm and Vigier" introduced 'the notion
of random fluctuations arising from interaction with a
subquantum medium. Since completing this work, the
author became aware of the work of Fenyes" Weizel"
and Kershaw. "Fenyes showed that instead of assuming
a quantum-mechanical potential the motion could be
understood in terms of a Markoff process. This work
was developed by Weizel, who also proposed a model for
the random aspects of the motion in terms of interaction
with hypothetical particles, which he calls zerons. The
case v=0 was also discussed by Kershaw. The theory
which we have developed is just the Fenyes-Weizel
theory from a different point of view. Our aim has been
to show how close it is to classical theories of Brownian
motion and Newtonian mechanics, and how the
Schrodinger equation might have been discovered from
this point of view.

A formal analogy between Brownian motion and the
Schrodinger equation was noticed by Fiirth' and de-
veloped recently by Comisar. "In this work the diffusion
coefBcient is imaginary. A parallelism between quantum
mechanics and stochastic processes has been noticed in
a number of recent papers. "

Only a very small part of the subject matter of quan-
tum mechanics has been discussed here. Relativity,
spin, statistics of identical particles, and systems of
infinitely many degrees of freedom have all been
ignored. Consequently, no firm conclusions can be
drawn. However, it appears that the phenomena which
first led to the abandonment of classical physics admit
a simple classical interpretation which is only in a
limited sense equivalent to quantum mechanics.
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