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The equation of motion governing the time-averaged motion of a classical electron in an oscillating
clectromagnetic field is derived under very general conditions. It is shown that the motion is that of a rela-
tivistic particle of variable rest mass m (14 u?)!/2, where u? is the parameter proportional to the field intensity,
introduced earlier. Nonrelativistically, it is that of a particle with the effective potential-energy function
3 mc®u?. The complete analogy between the processes of refraction of light by electrons and of electrons by
light is emphasized. It is shown that in the case of focused laser beams, effects substantially larger than those
originally predicted are to be expected. The interaction of electrons with standing waves is discussed with
particular reference to the Kapitza-Dirac effect, and it is shown that a modified effect may perhaps be ex-
pected at high intensities and low electron velocities. The use of classical electrodynamics is justified by
showing, with the help of the WKB approximation, that specifically quantum effects should normally be
negligible. A model which helps to explain the complementarity between the two refraction effects is pre-
sented in which the electrons and photons are treated as classical relativistic fluids. The relationship of this

model to quantum electrodynamics is pointed out.

1. INTRODUCTION

HE effects of finite electron density on the inter-
action of light with an electron gas or plasma are
well known. But it is only in the last few years, since the
development of high-intensity laser beams, that the
complementary effects of finite photon density have be-
gun to receive much attention. In a recent paper! (here
referred to as I) it was shown that one such effect that
we may expect is the refraction of an electron beam
passing through an intense electromagnetic wave. It
is the aim of the present paper to study this effect in
greater detail, and particularly to demonstrate its very
close similarity to the more familiar phenomenon of re-
fraction of light by electrons.

This work has developed out of earlier investigations
of the interaction of electrons with intense plane-wave
fields.?=1 As was shown in I, the intensity-dependent
frequency shift in high-intensity Compton scattering,
predicted by Brown and Kibble® and by Goldman,* and
the refraction effect discussed here may be regarded as
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two aspects of the same general phenomenon. They are
both produced by forces depending on the spatial
gradient or rate of change of the field intensity, of which
the simplest example is the “field-gradient force” dis-
cussed by Phillips and Sanderson.®

We shall begin by presenting in Sec. 2 a much more
thorough, and fully relativistic, derivation of the equa-
tion of motion obtained in I for the averaged motion of
a classical electron in an electromagnetic wave. This
derivation makes use of the vector potential rather than
the electromagnetic field itself, and exhibits much more
clearly the essential unity of the various effects under
consideration. We shall in particular discuss the nature
of the averaging procedure and the validity of the
approximations involved.

In Sec. 3 we demonstrate that under suitable condi-
tions the equation of motion we have obtained is pre-
cisely that of a relativistic particle with the variable
rest mass m*=m(14+p?)V/2, where u? is the intensity
parameter introduced in BK, K, and I. This effective
mass has also been obtained for the case of plane-wave
fields by semiclassical® and quantum-mechanical'® argu-
ments. Nonrelativistically, the motion is that of a par-
ticle with potential energy 3mc2u?.

Section 4 is devoted to a comparison between the re-
fraction of light by electrons, and of electrons by an
electromagnetic wave. We show that both effects may
be described by saying that the propagating particle
acquires an effective mass, and that the expressions for
the mass-squared shift are identical when written in
terms of particle density and energy.

The way in which an electron acquires its increased
mass as it enters a beam of light is discussed in Sec. 5.
One may distinguish two basically different situations:
Either the electron is overtaken by the beam or it
enters from one side. It is the first of these which cor-
responds to the plane wave calculation of BK and G. The
true physical situation will in general be intermediate
between these two idealized cases, but we show that in
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the case of a focused beam it is normally a more reasona-
ble approximation to say that the electron enters the
beam from one side. Therefore the expected effects will
be rather different from those originally predicted in
BK and G, and in fact appreciably larger. They are
moreover still of considerable interest.

In Sec. 6 we turn to the problem of the interaction of
an electron with standing waves. This is a very inter-
esting problem, particularly in connection with the
Kapitza-Dirac effect.!~12 It also turns out to be much
more complicated than the analogous problem for the
case of a traveling wave. The effective potential-energy
function of the electron is periodic in space with period
equal to one half-wavelength of the light. (The Kapitza-
Dirac effect may be regarded as the coherent scattering
of the electron by this periodic potential.) We show that
especially for slow electrons a remarkable variety of
possible effects may occur. In particular, it is shown that
at sufficiently high intensities the electron can only
just get over the crests of the periodic potential, the
Kapitza-Dirac effect might very well be substantially
modified. The intensity used in the experiment of
Bartell, Thompson, and Roskos'? is in fact in precisely
this transition region and it is therefore peculiarly
difficult to make reliable predictions. It is suggested that
further experiments of this type with a range of in-
tensities and electron velocities would yield some very
interesting information.

Up to this point the discussion has been entirely
classical. In order to justify this approach it is necessary
to show that the same results would be obtained
quantum-mechanically. (This is particularly true in
view of the controversy which has surrounded this
question.>8) Since the equivalence of quantum-mechani-
cal and semiclassical calculations has already been
demonstrated,$? our discussion in Sec. 7 will be mainly
concerned with the question of whether a quantum-
niechanical description of the electron is necessary.
Using the WKB approximation, we shall establish con-
ditions under which the classical description may be ex-
pected to suffice, and show that they are indeed met in
reasonable physical situations.

Section'8 is devoted to a classical model which ex-
hibits rather clearly the mutual influence of electrons
and photons on each other. The electrons and photons
are treated as classical relativistic fluids with an appro-
priate interaction. Energy and momentum are obviously
conserved in the model, which therefore provides a
suitable framework for the discussion of what happens
to the energy and momentum in a particular process.
The relationship of the model to quantum electrody-
namics is briefly indicated in Sec. 9.

Finally, some of the conclusions are summarized and
discussed in Sec. 10.
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2. CLASSICAL EQUATION OF
AVERAGED MOTION

We present here an alternative derivation of the
equation of motion obtained in I for the averaged motion
of an electron in an oscillatory electromagnetic field.

The classical equation of motion for an otherwise free
electron in an electromagnetic field described by the
four-vector potential 4,(x) is

mi* = en (),
Fru(@)=0,4\(x)— x4 ,(x),

where v#=g* is the velocity four-vector, and the dot
denotes differentiation with respect to the proper time
7. (For the moment we set ¢=1 and adopt the “time-
like” metric in which v?=0*py=1.)

This equation may also be written in a form which
gives directly the rate of change of the canonical
momentum,

¢y

—-I:m'vu+eA»(x)] e, A (). @

Now let us consider a series solution of this equa-
tion, starting in zeroth order with a constant four-
velocity v(oy#, so that

%0y (1) =2#(0) v 07 3)

The expansion parameter is the magnitude of e4,/m, a
dimensionless quantity which is always much less than
unity for physically realizable intensities. Our aim is to
find an expression for the average acceleration of the
electron in terms of electromagnetic field variables
evaluated at the position defined by (3).

To first order, we may replace v, and « on the right-
hand side of Eq. (1) [or in Eq. (2)] by (0 and x. It
is convenient to choose the gauge so that

v(o)'AE‘v(o))‘A).=0. (4)

(Essentially, we are adopting the radiation gauge in the
rest frame defined by v(g).) Then to first order we ob-
tain the familiar result that the canonical momentum is
a constant, which may be identified with mv. Thus

my* () =mv oy —eA*[xoy (1)]. ®

Note that the relation v2=1 is still satisfied to this order
in virtue of (4).

If there were nonoscillatory terms in the field, then
(5) would already reveal a secular acceleration, but we
are interested in the case of purely oscillatory fields for

which .
m{py*)=—e(d*(x()))
= ev o {FM*(2(p))=0,

where the angular brackets denote the time average
over many oscillation periods. It is therefore both con-
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sistent and desirable to impose the additional gauge
condition
(Au(x@))=0, (6)

so that to first order the average velocity is ).

We now substitute from Eq. (5) into Eq. (2) and take
the time average. What we are actually interested in is
the time average with respect to a fixed reference frame.
However, if ¢ denotes the time in the rest frame defined
by (), then to first order dt/dr=1v)-vay=1. Thus we
can in fact take the average with respect to r without
introducing any error. In particular we can assume that
(A u(x@y))=0. Hence, correct to second order, we obtain

(D)= — (e/m)XANx(0)) 3,42 (2(0)))
=%anl‘27 (7)

pr=(e/m)X— A*(x))- @®

This is the dimensionless intensity parameter defined in
BK and in I. It is positive in our metric, since 4, is a
space-like vector. It is evidently a scalar, but in general
depends not only on x but also on v, via the chosen
gauge condition (4) and because v(q) specifies the direction
in which the averageis to be taken. However, we shallsee
shortly that in most cases of practical interest this de-
pendence is unimportant, so that u? may be taken to be
a scalar function of position and time alone.

We conclude this section with a discussion of the
validity of the approximations involved in the deriva-
tion of Eq. (7). For convenience we choose the time
axis in the direction of v and assume that the field
possesses a well-defined angular frequency w. (It is easy
to include the case of a superposition of several distinct
frequencies, since each contributes separately to the
average.) Then, restoring the appropriate factors of ¢
for later convenience, we may write

p2= (¢/mc*)*(A%)= (e/mcw)*(E?).

where

©)

Ttis easy to verify firstly that if u21 then the expansion
around the mean position of the electron is reasonable.
For, the characteristic distance over which we may ex-
pect the field to vary in spatial directions is at least of
the order of ¢/w. But the amplitude x of the electron
oscillation is of order eE/mw?~ uc/w, which is less than
this by a factor p.

A more important approximation is the neglect of
radiative reaction. It has already been shown by
Sanderson® that this could be important in the type of
problem we are considering, and it should certainly be
included. However, it is an essentially distinct effect
which may be treated separately. We shall return to it
later in Sec. 5.

It is also important to verify that the use of classical
rather than quantum mechanics does not introduce any
significant errors. It is convenient however to defer the
discussion of this point to Sec. 7.
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3. EFFECTIVE ELECTRON MASS

There are in practice two distinct types of electro-
magnetic waves in which we might be interested. First
we have the case of a beam, represented by a traveling
wave with a well-defined propagation direction at each
point. This is the case we consider in the present section.
Second, we may be interested in standing waves pro-
duced by multiple reflections. We defer this more com-
plicated case to Sec. 6.

Let us then suppose that the vector potential has the
form

Ay(x)=Relau(x)e¥ ], (10)
where ¢ is real and satisfies the eikonal equation
k=0, k,=o¥, (11)

and where %, and the complex amplitude function a,
are slowly varying functions of position and time
satisfying the gauge condition

k-a=0. 12)
Then to a good approximation we may write
wr=3(e/m)’[—a*(x)-a(x)]. (13)

Moreover, the dominant part of the gauge trans-
formation induced by a change in v(g) is the replacement

V) a
e au—ky

, (14)
V0 k

and in virtue of (11) and (12) this does not change the
value of p? as given by (13). Thus, provided the rela-
tive variations in the propagation vector and the ampli-
tude function over a few oscillations are small, we may
legitimately treat p? as a scalar function of x inde-
pendent of v(g). (In the case of plane waves discussed in
BK this is exactly true.)

With this assumption let us now investigate some of
the immediate implications of Eq. (7). First we note
that (2)2#%1 in general, although of course »?=1
always. Indeed, using the boundary condition that
(v)?=1 when u2=0, we find

(o)2=(ds/dr)r=1+p2,

where s denotes the proper time of an observer moving
with the averaged velocity of the electron. The four-
vector velocity of such an observer is

d) @ )
d (@ (L

These relations are more useful when re-expressed in
terms of the average momentum of the electron. We
have

(15)

(16)

(p#y=m(v)=m*d(x*)/ds, (17)
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where the effective mass m,* is defined by
(Py=m>*=m*(1+u?.

This expression for the effective mass was also obtained
for the case of plane-wave fields in earlier semiclassical®
and quantum-mechanical' calculations.

The equation of motion of a relativistic particle of
variable rest mass m*, a prescribed function of position
and time may be obtained by variation of the action
integral*

(18)

"% / ds m*(x) (&43,)'1?, (19)

where s is an arbitrary parameter (not necessarily proper
time) and ##=dx*/ds. Imposing the constraint #?=1,
which is consistent if m*>£0, we may write it in the form

d
:i—[m*(x)fvu] =0um*(x). (20)

A}

On the other hand, using (15) and (17) we may write
the equation of motion (7) in the form

d moul
—<Pﬂ>= = =a“me*.
ds {ds/dr) (14-u2)t/?
The agreement between (20) and (21) shows that the
averaged motion of the electron is precisely that of a
classical relativistic particle with the variable rest
mass m.*.
Nonrelativistically, the variable rest mass appears as
an effective-potential-energy function

(21)

(22)

Clearly the resulting force tends to push the electron
away from regions of high field intensity, as noted in a
special case by Phillips and Sanderson,® and also in I.

V= (m*—m)c?~3mu2c?.

4. COMPARISON BETWEEN REFRACTION OF
PHOTONS AND OF ELECTRONS

For convenience of application, we shall in this sec-
tion (and until the end of Sec. 7) restore the appropri-
ate factors of ¢, and also exhibit the factors of 4w which
should appear in Gaussian units within square brackets.

Let us briefly recall some features of the familiar
phenomenon of refraction of light by electrons. The dis-
persion equation for an electromagnetic wave of angu-
lar frequency w and wave vector k is

w?=c2k2+w,?, (23)

where the plasma frequency w, is related to the electron
density »n. by

wpl=[4r]Je*n./m. (24)

14 This corresponds to the problem of finding the geodesics in a

space with the metric tensor g, =m*?y,,, where n,, is the metric
tensor of flat Minkowski space.
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Thus a photon propagating in such a medium has an
effective mass m,,* given by

Tuwp\ 2 en\? n.
e () a2 2.
c? ¢/ mc?
On the other hand, if we express the effective mass of

the electron found in the previous section in terms of the
photon density 7,4, we find

(25)

h 2nph

Me¥i—mP=pim?= [411'](%:—) —. (26)

The close similarity between (25) and (26) is apparent.
In each case, the effective-mass-squared shift is pro-
portional to the particle density divided by the particle
energy. This ratio #/E is essentially Lorentz-invariant
provided that neither # nor E varies rapidly with
position.

The analogy between the two cases extends beyond
the expressions for the effective masses. Let us consider,
for example, the refraction of a beam crossing aboundary
whose normal we take to be the x direction. When a
photon enters a medium with plasma frequency w, it is
the normal component of the wave vector which
changes. The amount of change may be found directly
from (25), or

Ak =—wp?/c?. @27

In particular, the photon will be totally reflected if
initially k. <w,/c.

Precisely the same thing happens when an electron
enters an electromagnetic wave. For convenience we
shall drop the brackets on (p) and denote the time-
averaged momentum simply by p. From (7) or (21) itis
clear that only the normal component of the mean mo-
mentum is affected, and to be consistent with (18) this
must change according to

A(p,2) = —m2cu?. (28)

Once again, if p,<mcu the electron will not be able to
penetrate the beam.

Thus the laws governing the refraction of an electron
passing through a photon beam are identical with those
for a photon passing through a cloud of electrons. (Why
this should be so will be discussed later in the context of
the model introduced in Sec. 8.) Snell’s law is valid, and
we can define a frequency-dependent or energy-
dependent refractive index in both cases, equal to the
ratio of the velocity inside the medium to that outside.
It may be written as

E2_ (me*02)2 1/2 (mc“)2 1/2
2N (41— )
( E2— (mc?)? ) ( p? ’
where p is the momentum outside the beam. It may be

noted that the quantity mc?u/7% is the true analog of the
plasma frequency w.

(29)
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More generally we may consider a situation in which
p? is changing with time as well as position. If in some
region of space u? depends on the four coordinates x*
only through a single linear combination -, then the
only component of p* which can change is that in the
direction of #*. We can write (as in I)

pr=p*(0)+n+f, (30)

where f may be determined from (18) as before. This
yields a quadratic equation for f,

nfr 2 p(0) f = mALut— p(0)].
5. ENTRY OF ELECTRON INTO A BEAM

(1)

. Let us now consider the various ways in which an
electron may enter an electromagnetic wave. We shall
take the z axis in the beam direction, and suppose that
the electron is initially moving with energy E and mo-
mentum p in the x direction. In BK the assumption of
infinite plane-wave frontswas made, so that #-x=¢—23/c,
say, and #%=0. If this description is valid we find that
the mean energy E* and momentum p* inside the beam
are given by

E*—E=cp,*=pu2(mc®?/2E,
pa*=p.
In this case the electron is overtaken by the wave. The

corresponding change in velocity to first order in u? is
given by

me2\ 2 e\ 2
sz=%yﬂc(—) s Avx=-—%,u2v,<——~—) .
E E

On the other hand, if the electron enters the beam
from one side, and if the intensity is almost independent
of f and z, then we have the situation described by (28),
so that

(32)

E*=E, p*=0,
pa*=[p*—p*(me)?]2.
For this case, we have to lowest order

. 62 m62 2
Ay,=—qui— —]) ,
2.\ E

Av,=0. (33)

This approximation is of course valid only if 3/¢>u?
For slow electrons the change in velocity could be large.

In practice it is clear that neither of these idealized
cases will provide a completely accurate description of
the physical situation, and it is therefore important to
ask which is likely to represent a closer approximation to
reality. The answer to this question obviously depends
on the values of the various parameters involved, but
we can still give a fairly general discussion. Since large
intensities can be attained at present only with pulsed
beams, itis clear that the intensity must be varying with
time. The rate of change is of order u2/T, where T'is the.
duration of a pulse. Equally, it is necessary to focus the
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beam, so that there will be a transverse intensity gradi-
ent of order u2/L,where L is the width of the beam in the
focal region. Consider an electron which arrives at the
center of beam somewhere near the middle of the pulse
duration. The question to ask is whether it will have
entered from the side or have been overtaken by the
beam. Clearly, it must have entered from the side if
9,7>>L. Typically T~ 1078 sec, and certainly v,2>10%.
(Indeed, it is more likely that /¢ should be of order
10~L) Thus the condition is satisfied if L is much less
than 3 mm, as indeed it usually is. In most cases of
practical interest, therefore, it is likely that the trans-
verse spatial gradient is much more important than the
time rate of change. The typical change in velocity is
then given by (35) rather than (32).

This means that the results given by BK will not nor-
mally apply to practical cases of focused beams. To
attempt a direct verification of the original predictions
it would be necessary to design the experiment so that
the electrons were actually overtaken by the beam. One
would need to use slow electrons and a beam with an
extremely short pulse time and relatively poor focusing.
Such an experiment does not appear to be feasible at the
present time.

These remarks should not be taken to imply that it is
uninteresting to measure the Doppler shifts of light
scattered from an intense beam by free electrons. These
shifts should reveal changes in velocity which both con-
firm the theory and provide information about the in-
tensity distribution in the beam. Moreover, they should
also be considerably larger (by a factor ¢/v at least)
than those originally predicted, and therefore easier to
observe.

Near a focus, there may be a substantial intensity
gradient in the longitudinal direction as well as in trans-
verse directions. As indicated in I, this will lead to the
electrons being deviated away from the focus. If v/c
is not too much larger than u, this deviation can be
quite large, and certainly readily measurable. The effect
might provide a useful means of determining the in-
tensity distribution near the focus of a laser beam, in
the same way that the refraction of photons can be used
to find the density distribution in an electron ‘plasma.

In addition to the acceleration produced by the in-
tensity gradient, we should also allow for the effect of
radiative reaction.® This is of course always to accelerate
the electron in the direction of propagation of the beam.
It is interesting to compare the magnitudes of the two
kinds of forces. In terms of the intensity I, theparameter
w?is

p2=[4x el /m3c*w?. (34)

Thus the force due to the intensity gradient is

&
—imevut=[4r }—vI
mew?

=4mrh2vi/c.
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On the other hand, the force due to radiative reaction is
the rate at which momentum is removed from the beam,
namely, 772 /c. Thus the ratio of the two is

AN2 ] 4R?

; (35)
7o I 1’0L

if L is the typical length over which the intensity is
varying. For optical photons this ratio would be close
to unity only when L=10% cm. In most reasonable
circumstances the intensity gradient force is much larger
than the radiative reaction.

6. INTERACTION WITH STANDING WAVES

The interaction of electrons with standing electro-
magnetic waves exhibits some very interesting features,
notably the Kapitza-Dirac effect.! This is the scatter-
ing of electrons at the Bragg angle corresponding to a
lattice spacing equal to half the wavelength of the light.
Its experimental observation has been reported by
Bartell, Thompson, and Roskos,'* and more recently
Eberly”® has suggested that this type of experiment
might be a suitable place to look for effects similar to
the predicted intensity-dependent frequency shift.

As we shall see, this problem is appreciably more com-
plicated than the corresponding one in the case of
traveling waves, and the variety of possible effects is
considerably greater. The vector potential can no longer
be written in the simple form (10); instead, we must take
a sum of two terms representing the waves traveling in
opposite directions. When we consider time averages
it is then necessary to distinguish two distinct time
scales.

Over a time interval short compared to the time taken
for the electron to travel one wavelength (that is, if
k-vi<1, where k is the wave vector), the two waves
are oscillating with a fixed phase difference, and inter-
fere in the time average. Thus the intensity parameter
u? has a form like

u2=po?[1+cos2k-x], (36)

where po? is a slowly varying function of x and #. Over
longer times, and provided that the electron velocity is
not too small, the oscillatory term averages out to zero,
giving an effective average potential

37)

We shall discuss the special case of slow electrons later.

Strictly speaking, u? as given by (36) is no longer inde-
pendent of the velocity (. In fact, a gauge transforma-
tion similar to (14) does not leave u? unchanged, be-
cause although the two four-vectors ku=(w, k)
satisfy k4 2=0, they are not mutually orthogonal,
ky-k_#0. However this is really irrelevant, since the
extra terms are of the order v%/c? and therefore negligible
for nonrelativistic electrons. For relativistic electrons,
there is no time interval to which (36) is appropriate,

wP=uo’.
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and we can always use (37), which is independent of
v(0) because the two waves contribute separately.
Except in the case of very slow electrons, the aver-
aged motion over the long times is that of a particle
moving with the slowly varying potential-energy func-
tion Imc?ue®. The electrons are therefore refracted in
much the same way as in a traveling wave. In particular,
the longitudinal component of velocity k:v=~kv,, say,
is essentially unchanged while the transverse component
is reduced on entering the wave. The effect of the oscilla-
tory term in (36) is to produce a short-period oscilla-
tion in v,. The Kapitza-Dirac effect may be interpreted
as the scattering of the electron by this periodic poten-
tial, with a momentum transfer 27k. (In terms of pho-
tons, it corresponds to the absorption of a photon from
the beam and its re-emission' into the beam in the
opposite direction.) Since the refraction of the electron
on entering the standing wave leaves its longitudinal
momentum unaltered, the Bragg-scattering condition

p sind’ = p sinf=1ik, (38)

where p is the electron momentum and 6, 6’ are the inci-
dent and scattered angles, is actually unaffected by this
refraction. We therefore conclude that the experiment
suggested by Eberly'® should not in fact reveal any
effect.

Independently of the details of this mechanism it is
clear from the symmetry of the problem that one should
not expect a systematic difference between 6 and 6'.
Since there is some small spread of frequency Aw in the
light beam, it is actually possible to transfer a small
amount of energy to or from the electron. However, one
sign of energy transfer is in no way preferred over the
other. (This is, of course, very different from the case
where a photon is actually scattered out of the beam.)
Such energy change corresponds for nonrelativistic
electrons to a much larger change of momentum, so that
in individual cases one need not expect 6’ to be equal to
6, though the Laue condition

p(sinb’+-sin) = 2%k 39

should still be satisfied.!® However, there is no reason to
expect more electrons with 6/>6 than with 6/<#, or
vice versa.

Very slow electrons constitute a special, and particu-
larly interesting case. The relevant quantity is the mag-
nitude of the longitudinal component of velocity, .
say. The discussion above applies only if v,/c>uo. At
the other extreme, if v,/c<<uo, a classical electron would
be confined within a single half-wavelength in the z
direction, and would travel along this trough from one
end to the other with a nearly constant velocity, v, say,

150n this basis we would expect to find |6'—6|/(6"+46)
=~ (¢/v)(Aw/w), whereas for fixed 9 the relative spread in values of
¢’ is only of order Aw/w. The observations of Bartell, Thompson,
and Roskos (Ref. 12) confirm the existence of nonzero values of
6’0, but appear to show values larger than one might expect
from this formula.
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and a superimposed oscillation in the z direction. Thus
we see that electrons incident at angles much smaller
than poc/v would never penetrate the regions of large
intensity, and would be refracted in a very different
way from those incident at larger angles.

When sind~V2uoc/v, (40)

we have an intermediate situation, in which classically
the electrons are nearly able, or just able, to get over the
crests of the periodic potential. Since such electrons
spend a relatively long time on the crests rather than in
the troughs, the effective average value of u? may be
enhanced. The classical motion in this case is rather
complicated, but it is not difficult to see that the aver-
age z component of momentum might no longer be
constant. However, this is one case in which a classical
treatment is not wholly reliable, and we shall defer a
complete discussion of it to a later publication, in which
afully quantum-mechanical treatment will be presented.
(The argument justifying the use of classical electro-
dynamics which we give in the next section does not
apply when the change in local velocity is too rapid.)

A rather interesting situation occurs when the Bragg
scattering angle is about equal to the angle specified by
(40). The condition for this is that uo should be of the
same order as %k/mc, that is,

ro=RKe/X, 1)

where A, is the electron Compton wavelength. For ruby
photons this means uo?~ 10!, corresponding to an in-
tensity around 6X10” W cm~2. The intensity in the ex-
periment of Bartell, Thompson, and Roskos!'? was in
fact of about this order, so that one might perhaps ex-
pect some modification of the Bragg-scattering condi-
tion. A repetition of this experiment over a range of
values of the intensity and electron velocity, and with
improved resolution would be very valuable.

7. QUANTUM-MECHANICAL DISCUSSION

In order to justify the use of our purely classical
methods it is necessary to show that a quantum-
mechanical calculation would not give substantially
different results. There are really two separate problems
involved here, the quantum-mechanical treatment of
the electrons and that of the photons.

An argument intended to show that the semiclassical
calculations used by BK® must yield the same answer
as a fully quantum-mechanical calculation was presented
in K.® It made use of the so-called coherent states of the
radiation field, and the correspondence established by
Sudarshan'® between the classical and quantum de-
scription of such a field. (In a sense this result may per-
haps be regarded as a special case of the theorem of
Senitzky.!”) More recently, a much more thorough and

18 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).
(1;’6{5) R. Senitzky, Phys. Rev. Letters 15, 233 (1965); 16, 619
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general proof of the equivalence between the two
methods of calculation was given by Frantz.” The
theorem is valid provided that p<1, that the photon
number is large enough, and that radiative corrections
are negligible. All these conditions are likely to be satis-
fied in the cases of interest to us.

Next we have to consider whether a purely classical
calculation should agree with this semiclassical calcula-
tion in which the electron is treated quantum mechani-
cally. For simplicity, we shall discuss only the non-
relativistic case. First let us suppose that the electron is
well localized in space initially. Ehrenfert’s theorem!
shows that the rates of change of the expectation values
of position and momentum are given by

(»
d
—(p)=e(E(x)). (43)
dt

If the electron is localized in a small volume, near the
origin say, then we can expand E about this point, and
write approximately

Ex)=E(0)+x- VE(0). (44)
Then it follows that
(E@))=E(x)), (45)

so that from (42) and (43) we see that the expectation
value of position follows precisely a classical trajectory.

This proof cannot be applied directly to cases where
the initial uncertainty in the electron position is large.
Before discussing this case in detail it is worth asking
what result we should expect to be able to prove. When
the electron momentum distribution is fairly sharp but
its position is very uncertain, it is not sufficient to con-
sider merely the motion of the center of the wave
packet. We should expect each part of the packet to
follow approximately a classical trajectory, and to have
its own characteristic velocity. The refraction effect
we have been discussing will manifest itself not so much
in a change in the mean velocity but rather in a cor-
relation between velocity and position. If we find the
electron in one region we may expect that a measure-
ment of momentum will yield a result in some appropri-
ate range; if it is in some other region the expected range
would be different. (This is a very common situation.
For example, for an electron scattered from a central
potential there is a strong correlation between position
and velocity in the final state, since the velocity is pre-
dominantly radially outwards.)

We can show that this does indeed happen by using
the WKB approximation. We write the electron wave

18 See, for example, L. I. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1955), 2nd ed., p. 184.
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function in the form

¥=0¢ exp(iS/#),

where ¢ and S are real functions of ¢ and x. Then, using
the radiation guage, the Schrédinger equation may be
separated into two real equations

(46)

] 1 e
e L AV OB
at m c
and
(9 1 2 2
——+-—<VS——A) =—V% (48)
a 2m c mep

The first of these equations is clearly the continuity
equation corresponding to the conservation of proba-
bility. The local velocity defined by the probability

current density is
1 e
v= ——(VS - —A) .
m c

(49)

The WKB approximation consists in neglecting the
right-hand side of Eq. (48). In this approximation the
equations reduce to those for a classical fluid of density
¢? and velocity v. To see this, let us find the rate of
change of v. Using (48) and (49) we easily obtain

d e 1
—v+v-VV=—<E+—v><B) . (50)
c

d¢ m

This is the equation of motion of a fluid composed of
noninteracting classical electrons. Thus to find the effec-
tive local velocity in any region it is sufficient to follow
the classical trajectories of electrons in the prescribed
electromagnetic field.

Finally, we may examine the conditions under which
the WKB approximation is valid. From (48) we see that
it is sufficient to require that

vl '
Lmvi>— . (51)
2m ¢

If L is the characteristic distance over which the elec-
tron probability density ¢? varies, then this condition
may be written

P>h/L. (52)

The variation in ¢?is attributable to two distinct causes.
Firstly, the initial electron wave function will have
some finite extent in space. In respect of this variation
the condition is satisfied provided the electron momen-
tum is much larger than the momentum uncertainty.
This is a condition which is likely to be fulfilled in prac-
tice. Secondly, ¢? varies because of inhomogeneities in
the field which cause a bunching of electrons in some re-
gions. For this case L is the typical length over which the
field intensity varies. It is at least of the order of a wave-
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length of the light. Thus for optical wavelengths and all
reasonable electron energies the condition (52) is well
satisfied.

We have therefore shown that the WKB approxima-
tion is valid, and that in this approximation the results
of a quantum-mechanical calculation agree with those of
a classical one.

8. TWO-FLUID MODEL

In this section, we shall consider a model which ex-
hibits rather clearly certain aspects of the interaction of
photons and electrons. We first give a purely classical
discussion, and later indicate how the model may be
derived in a certain approximation from quantum
electrodynamics. The model is intended to show what
happens when a beam of photons and a beam of elec-
trons, each with finite density, interact with each other.
It is particularly useful in discussing the problem of
energy and momentum conservation.

We shall assume that both the electrons and the pho-
tons behave like relativistic fluids. Specifically, we
assume that at each point x of space-time there are well-
defined energy-momentum vectors p#(x) and k*(x) such
that all the electrons in the vicinity of x have momentum
p* and all the photons have momentum %#.*° It is con-
venient to introduce for each type of particle a Lorentz-
invariant measure of density. We define

p=ne/p°, o=npm/k. (53)

Then the four-vectors #n.* and n.n* representing the
electron-number and photon-number current densi-
ties are?

nt=pp*, Npn*=odk". (54)
Conservation of particle number requires that
3u(pp*)=0, 9,(ck*)=0. (55)

Next we assume that the mass of each particle varies
in accordance with the density of particles of the other
type, as described in Sec. 4. We then have

pr=m*=m?te%0, (56)
(7

where factors of # have been omitted. One may say
either that we have set #=1, or equivalently that e?
here (and below) is an abbreviation for [47](e#)2

We have to rewrite the equation of motion (21) of a
relativistic particle of variable rest mass m,*, namely,

(58)
in a hydrodynamic form. Since the left-hand side is the

k= mPh*2= e’p,

3 = *
p#"aﬂme ’

19 This represents a minor change of notation %+ here denotes
what we have previously denoted by Ak

20 Note that this discussion does not depend on the existence of
a velocity four-vector, and is therefore applicable to massless
photons.
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gradient of p, in the direction of the velocity four-
vector, we have, on multiplying by m.*,

(59)

This is the equation of motion of the electrons. Similarly,
the equation of motion of the photons may be written?!

B ku=2%0,mom*?=1%e2,p. (60)

The four equations (55), (59), and (60) together
specify completely the time development of the system.
It is easy to verify that they preserve the conditions
(56) and (57).

The stress-energy tensor of the electrons may be
written

—1 —1
p)‘a)‘P”—- ga"’me*z—— 7826,40' .

Tr=pprp’. (61)
Using (55) and (59) we find that its divergence is
8,T *,= pp*dup,=%e€pd,0 . (62)
Similarly, for the photons,
Tput” =ck+k (63)
and from (55) and (60)
0uT onty=3€%00,p. (64)
Thus there is a conserved stress-energy tensor given by
T#,= pptp,~+okrk,—§e2pod*, . (65)

The last term may be regarded as due to the interac-
tion, although of course the interaction does also affect
the other terms to the extent of changing the masses.
It is interesting to note that the mass shifts disappear if
we take the trace,

T = pm?. (66)

Evidently, if we can find a solution of the basic equa-
tions (55), (59), and (60), then the formula (65) for
T», provides complete information about what happens
to the energy and momentum. '

One interesting feature emerges when we try to solve
these equations. It would be natural to look for a static
solution representing two intersecting beams, and there-
fore to examine the boundary conditions across a sur-
face of discontinuity. However, this is not quite as
straightforward as it might appear, for it is easily seen
that no time-independent solutions of this type exist.2?
In fact, more generally it is impossible to have a non-
trivial solution in which all quantities in some region
depend only on a single component of x*. For in such a

2 This equation cannot be written in the alternative form (58),
because the proper time is undefined for a photon, though it could
be written in the general form derived from variation of (19).
Compare Ref. 20.

22 Jt is easy to be misled by the equations specialized to the case
of a discontinuity. One must remember that a physical solution
must be the limit of a continuous solution. Thus for example the
continuity condition [on-k]=0 may be formally satisfied by
setting o =0 on one side of the boundary and n-k=0 on the other;
but it may nevertheless be impossible to find a solution through
the boundary.
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case one can integrate the equations to obtain an
algebraic equation for either p or o, and it follows that
both quantities are in fact constants in this region.?
The physical reasonfor this is not hard to find. Consider,
for example, the point where a beam of electrons enters
a photon beam. Since their velocity is reduced on entry,
the electron density is greater immediately inside than
outside. The sharp gradient of the electron density
thus provides a large outward force on the photons at
the edge of the beam. A sharp boundary of this type is
therefore highly unstable. Of course, this does not imply
that time-independent solutions do not exist, but merely
that they cannot have any surfaces of discontinuity.

9. RELATIONSHIP TO QUANTUM
ELECTRODYNAMICS

It is interesting to examine the relationship between
the model theory discussed in the preceding section and
quantum electrodynamics. We shall for simplicity
ignore the electron spin and therefore consider scalar
electrodynamics, for which the Lagrangian density is

L=(9,—1ied,)p*(0*+ieA*)p—m d*¢—F*F,y, (67)
with F,=9,4,—3,4,, where we have now unequivo-
cally set Z=c¢=1.

It is easy to see that the effective-mass shifts arise
from the interaction term e24%*p. In a state with

finite electron or photon density we can define the
invariant (#/E) density functions by

(@*0)=3p, (-4 \)=0,

where of course the angular brackets now denote a
quantum-mechanical expectation value.?* Thus when
there is a'finite photon density we get a contribution

—eX— A2)¢*p=—e'0¢*p, (69)

which changes the effective electron mass to m.*;
while if there is a finite electron density we have

pg)ar=lerpd,

(68)

(70)

which yields the effective photon mass mp,*.

One can best see the relationship with our model
theory by dropping the linear interaction terms from
(67), keeping only this quadratic term. Since the linear
terms are oscillatory in character, this is essentially a
similar step to the time averaging we carried out earlier
in Sec. 2.

This modified Lagrangian,

L=0,¢*0rp—m*¢*¢+e*A*¢*o—1FwF,,, (1)

% The situation discussed in Ref. 22 corresponds to a sudden
change from one root to another on crossing a boundary. This is
not physically allowable.

% The relative factor of 2 between these equations arises from
the fact that the field is real in one case and complex in the other.

Both positive and negative frequency components of A, con-
tribute, whereas only negative frequency components of ¢ do so.
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yields the stress-energy tensor

Tw,= 34¢*0,p+0499,0*+F* F,
+2e%p*pArA,— o4 L. (72)
Now let us consider the expectation value of this
quantity. We shall make the assumption that within the
region of interest only a very limited range of Fourier
components of the fields contribute appreciably to this
expectation value, so that we can for example replace
9.6 by —ip.¢. We shall also assume that the four-field
expectation value can be factorized:

<¢*¢A wd V> = <¢*¢><A MAV> . (73)
To be consistent with the equations of motion,
(9*+m*)p=e’4", (74)
and
3,(7Ar—3rA")=—2e%p*pA*, (75)

it is necessary to choose p, and k, to satisfy the condi-
tions (56) and (57). Thus we find

(T#,)= pp*p,+okrk,— k¥ A*A,)
+eXArA4,)— o[ (p2—m*)p—3}e*po+3k%],

and using (56) and (57) we see that this is identical
with (65).

It is obvious that to obtain our model theory we have
to do considerable violence to quantum electrodynamics.
Nevertheless, it does appear as a reasonable first
approximation, at least for some purposes, in the case
where the particle densities are large.

10. DISCUSSION

Earlier treatments by BK, G, and others have dealt
almost exclusively with the case of plane waves. The
methods developed here are far more general, and can be
applied to all cases which are likely to arise in practice,
including in particular sharply focused beams and
standing waves. The approximations involved would
break down only for intensities much higher than those
currently available. For u2~1 (corresponding for optical
frequencies to intensities around 10** W cm™2) the higher
terms in the expansion in powers of u? would obviously
be important. However, there is no immediate prospect
of achieving such intensities. The approximations would
also be somewhat dubious for really high-velocity elec-
trons (v=c) and sharply focused beams, since we
assumed that the amplitude was nearly constant over
many oscillations of the field.
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We have seen that the important effects in most
cases of practical interest can all be understood in purely
classical terms. The only significant exception is the
Kapitza-Dirac effect, which is of course a quantumeffect.
The justification for the use of classical electrodynamics
is provided by the work of Frantz” and the discussion of
Sec. 8. However, in view of the controversy which has
surrounded the question of the equivalence of classical
and quantum-mechanical treatments, it may be desira-
ble to supplement the considerations of this paper with
a specifically quantum-mechanical calculation. Accord-
ingly, we intend to present such a calculation in a
future publication.

There are two kinds of experiments which are sug-
gested by these investigations. One involves the use of
sharply focused beams in which large intensity gradients
appear. It should be possible to observe the refraction of
electrons passing close to a focus either directly or by
examining the spectrum of scattered light. To get a
large effect one should use electrons of as low an energy
as possible consistent with having a well-defined elec-
tron beam. The other category of experiments comprises
those involving standing waves. As discussed earlier, it
would be very interesting to see what happens in the
type of experiment performed by Bartell, Thompson,
and Roskos at other intensities.

Since the original prediction of BK and G refers, as we
have seen, to the situation where the electron is over-
taken by an electromagnetic wave rather than entering
it from the side, an experiment to verify this prediction
directly becomes rather difficult. It would certainly be
interesting to perform such an experiment if one could
be devised, but at the present time it does not seem to
be possible. '

Perhaps the most interesting conclusion of this paper
from a theoretical point of view is the very precise
similarity between the two refraction effects, of elec-
trons by photons and of photons by electrons. The origin
of both effects lies in the same interaction term, and
both may be described by essentially the same equations.
There is however one point of dissimilarity which was
ignored in our earlier discussion, namely, the space-
charge effect in the electron beam. For dense electron
beams this is obviously an important factor which
should be included in the discussion. It could be elimi-
nated by using an ion-electron plasma in place of a beam
of free electrons. However, the effect would then be con-
siderably reduced in magnitude. The force on the elec-
trons would remain the same but would yield accelera-
tions reduced by a factor m/M. Nevertheless, with
sufficiently high intensity the effect might still be
observable.



