THE

PHYSICAL REVIEW

A journal of experimental and theoretical physics established by E. L. Nichols in 1893

SeconD SErIEs, Vor. 150, No. 4

28 OCTOBER 1966

Gravitational Fields in Finite and Conformal Bondi Frames

Louis A. TAMBURINO AND JEFFREY H. WINICOUR
Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio
(Received 25 May 1966)

We generalize the Bondi-Sachs treatment of the initial-value problem using null coordinate systems.
This treatment is applicable in both finite and asymptotic regions of space whose sources are bounded by a
finite world tube. Using the conformal techniques developed by Penrose, we rederive the results of Bondi
and co-workers and of Sachs in conformal-space language. Definitions of asymptotic symmetry “linkages”
are developed which offer an invariant way of labeling the properties of finite regions of space, e.g., energy
and momentum. These linkages form a representation of the Bondi-Metzner-Sachs asymptotic symmetry

group.

I. INTRODUCTION

ULL coordinate systems have been very helpful
in studying the properties of asymptotically flat
gravitational fields by means of a characteristic initial-
value formulation.*™ The investigations of Bondi
et al. and of Sachs have led to the extremely important
result that a gravitationally radiating system must lose
mass and to the identification of the Bondi-Metzner-
Sachs  (BMS) asymptotic symmetry group. These
investigators applied their techniques mainly to ques-
tions concerning the behavior of gravitational fields at
null infinity (in the limit of infinite luminosity dis-
tances along null hypersurfaces). As a consequence,
it is not clear just how important the role played by
boundary conditions at null infinity is to their formula-
tion of the characteristic initial-value problem. In
Secs. II-V, we carry over their formulation to finite
regions of space in terms of a null coordinate system
based upon a finite world tube rather than upon null
infinity.

Penrose®™” has provided a rigorous geometrical
foundation to the asymptotic methods which have been
used in studying the behavior of gravitational fields at
null infinity. His treatment maps null infinity into a

1 H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc.
Roy. Soc. (London) 269, 21 (1962).

2 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

8 R. K. Sachs, Proc. Roy. Soc. (London) 270, 103 (1962).

4R. K. Sachs, Phys. Rev. 128, 2851 (1962).

§ R. Penrose, Phys. Rev. Letters 10, 66 (1963).

6 R. Penrose, in Relativity, Groups and Topology (Gordon and
Breach, Science Publishers, Inc., New York, 1964), p. 565.

7 R. Penrose, Proc. Roy. Soc. (London) 284, 159 (1965).
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finite world tube which forms the boundary of a space
conformal to the physical space. In Secs. VI-VIII, we
use Penrose’s techniques to carry back our formulation
of the characteristic initial-value problem based upon
finite world tubes to a formulation based upon the
world tube at null infinity. We thus rederive the results
of Bondi and co-workers and of Sachs in conformal
space language. In this way, a clear picture of the role
of null infinity in their approach emerges. Of particular
importance, we have been able to give a natural ex-
tension and geometrization of their mass expression.®

There are three items where caution with regard to
the notation should be exercised. Firstly, we use signa-
ture +2 for the metric. This results in various minus-
sign differences with Ref. 8. Secondly, in Secs. II-V,
guw symbolizes the usual physical space metric. In
Secs. VI-VIII, we use g,, for the conformal space metric
and g, for the physical space metric. When reading the
latter sections, -any equations brought over from the
first sections should be regarded as equations with
%,, substituted for g,, and, say, R,, substituted for R.
We shall re-emphasize this point later. Finally, we
apply the generalized Gauss integral theorems mainly
in the dual form, such as

/A[uvl;,dsp=f AW14S,,.
T )]

We use the standard dual hypersurface elements,
except for the incorporation of a factor or (4r)~%. For

( 3]5.)Winicour and L. Tamburino, Phys. Rev. Letters 15, 601
1965).
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SURFACE GEODESICS Fic. 1. This diagram illus-

trates the construction of our
null coordinate system. The
hypersurface I' is delineated by
the three surface geodesics,
Sc which are normal to the geo-
desically parallel slices So and
Se. The null hypersurface N,
the locus of null rays emanating
from S., is delineated by the
three null rays.

NULL RAYS

So

instance,

1\1
ds =<——)_(_ )1/2 € udTvpv’
B P g uvp

where d77#° is the tensor volume element.® Brackets and
parentheses denote antisymmetrization and symmetri-
zation, respectively.

II. NULL COORDINATE SYSTEMS

The characteristic surfaces for the gravitational field
equations are null hypersurfaces in a curved space.
Solutions of the equations

(2.1)

define a family of #=const null hypersurfaces. The
normal directions to the surface, k*=g»u,, are also
tangent to the surface since null vectors are self-
orthogonal. A two-parameter system of null geodesics
tangent to k&*#, called rays, generate a single null
hypersurface.

Null coordinate systems incorporate a family of
null hypersurfaces as coordinate surfaces #®=u. Two
additional coordinates x4 are chosen as parameters
constant along each ray:

x4 k=0,

8Pty =0

(4=2,3). (2.2)

This choice of coordinates leads to three algebraic con-
ditions on the metric:

g00=g0’1=0<=‘—>g11=g14=0. (23)

Only the x* coordinate varies along a given ray.

As an example, consider a null coordinate system in
Minkowski space. The retarded time #={¢—r labels a
family of null cones which are generated by light rays
emanating from the vertices. The Minkowski line
element in null polar coordinates is

ds?= —du?— 2dudr--r (d9?-+sin%0d ¢°) (2.4)

where x'=r is the radial distance and 2*=0 and x*= ¢
are the usual polar angles.

We shall construct a particular type of null coordinate
system based upon a three-dimensional time-like
hypersurface T. We begin by establishing geodesic
coordinates on T'. These in turn determine a unique
family of null hypersurfaces in the 4-space. Assume we

9J. L. Synge and A. Schild, Tensor Calculus (University of
Toronto Press, Toronto, 1949).
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are given a fixed two-dimensional space-like slice So
of I' on which there is a coordinate net x4 (4 =2,3). The
inner geometry of I' determines a family of time-like
geodesics normal to .So which we label by their inter-
sections x4. We take the arc length along these surface
geodesics to be the time coordinate %= and the labels
x4 to be spatial coordinates. Thus we now have a
family of parallel slices S., given by 2%=¢ and coordina-
tized by «x4. Using these coordinates, the inner metric
of T takes the geodesic form,

ds?=— (dx°)*+qapdxdx®, 2.5)
which is completely specified by three functions g¢4s.
Below, we shall relate these functions to the equation
of the surface I' and to two functions that characterize
the dynamics of the gravitational field. The latter are
analogous to Bondi’s “news function” and comprise
part of the data for the initial-value problem.

We extend our coordinate system by constructing a
family of null hypersurfaces N, emanating from the
family of parallel slices S.. We label the null rays on
N, by their intersections x4 with S. (Fig. 1).

From the point of view of differential equations, the
coordinates on I' are the initial data for the integration
of Egs. (2.1) and (2.3). The existence of solutions to
these differential equations is justified by physical con-
siderations. We can imagine the null rays to be light
beams from flashlights moving along the surface geo-
desics and pointing normal to I'.

We prescribe the coordinate =7 to be a luminosity
distance along the null rays by the algebraic definition

[rAf (@)= | gmwd P = g%, (2.6)

where we have introduced an abbreviated notation for
the 2-dimensional determinant and where f(x4) is
some definite (known) function characterizing the type
of angular variable x4 used to label the null rays. For
instance, f(x4)=1 for ray labels corresponding to
x%=cosf, 2*= . The significant feature of this condition
is that in the new coordinate system |gsp| is both
determined and independent of time, so that the 2-
metric gs4p manifestly contains only #wo dynamical
degrees of freedom. This feature distinguishes the
Bondi type null coordinate systems' considered here
from other versions.? We may describe I in our coordi-
nate system by an equation r=17. Equation (2.6),
evaluated on T, relates % to the inner metric:

1(uxt)=[|gan|/ f(x4) T, 2.7)

The full metric obeys Egs. (2.3) and (2.6) and has the
form

ds?= goodu?+2[ go1dr+ goadxAldu+t gapdxida®, (2.8)
so that its determinant satisfies

g=—(gon)?|gan| = — (go)*f>. (2.9)
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Furthermore, the following conditions hold oz I':

r=n(ux4), (2.10)
gaB=g4B, (2.11)
qoo= goo+2m,0801=—1, (2.12)
goa=goa+1,4801=0. (2.13)

The general coordinate transformation that preserves
the null coordinate conditions which we have tailored
to I contains three arbitrary functions of two variables.
The subgroup that keeps .S fixed is

A= fA@xB), a=u, P=r/|Z4p], (2.14)

where the two functions f4 represent the freedom of
relabeling the surface geodesics on I' and, in turn, the
null rays. The transformations that alter Sy are more
complicated because the new initial slice Sy defines a
different family of surface geodesics and therefore a
different family of null rays. The third arbitrary func-
tion describes the location of So.

III. THE ELECTROMAGNETIC FIELD

Maxwell’s equations in a Minkowski space with line
element (2.4) provide a simple model for our treatment
of the gravitational field equations in the next section.
Because both sets of field equations contain two dy-
namical degrees of freedom and propagate along null
characteristic hypersurfaces, there is a striking analogy
in the formulations of the characteristic initial-value
problem for the two fields. We shall consider electro-
magnetic fields whose sources are bounded by a closed
time-like world tube I'. In order to facilitate our dis-
cussion, we consider a cylindrical world tube given by
r=r,. Furthermore, we relate the null polar coordinate
system to a family of null cones N, having spherical
intersections S, with T' as depicted in Fig. 2. The
nonvanishing components of the metric (2.4) are

g'=go=—g"=—gu=1,

gae= (g% =1, (3.1)
ga= (%) =12 sin%,
where (x%,xY,x4)= (u,7,0,¢) and (— g)'/2=7? sinf.
The Maxwell field equations i» vacuo are
Li=[ (—g/2P#],=0, (3.2

where F,, is expressed in terms of the 4-potential &, by

Fop=%,,—%,,. (3.3)

This formalism is invariant under the gauge trans-
formation

&, —P,4G,,, (3.4)

which involves one arbitrary function G(x*). The flat-
space metric components are ancillary entities. In the
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NULL RAY
T'| WORLD TUBE

Frc. 2. This diagram
illustrates a cylindrical
world tube with null hyper-
surfaces emanating from
the spherical sections S..

Ne¢

No- INITIAL

next section, the metric components are the potentials
of the gravitational field and the analog of ®,.
We shall adopt the following gauge conditions:

;=0 for r>7, 3.5)

®y=0 for r=r,, (3.6)

which are analogous to the coordinate conditions (2.3)
and (2.5), respectively. The remaining gauge freedom
is

By Put+G(x5) 4. (3.7)

The four field equations L* are not independent.
They satisfy the identity

((—g)'L¥),y=[ (=) ?F*] w=0.

It is sufficient to require L! only ox T, for it will remain
satisfied off I' provided the other three field equations
are satisfied everywhere. It is convenient to group
these equations into the following sets:

(3.8)

L%:  hypersurface equation,
L4

L': conservation condition on T'.

dynamical equations, 3.9

We now write out the field equations and their
integrals in our particular gauge. Constants of integra-
tion on I and Sy are denoted by [ Jr and [ Js,.

Lo [®,1]1=Jo,1,

'I>o=/r (Y2 Todr'+Cr(1/ro—1/7), (3.10)

where Jo=cscO (sind)®, ] 2+ (csc?0)®s, 3,
Cr=r¢[®o,1]r—[Jo]r,
[®o]r=0.
LA: &4,0=J4,
Ba= ] TJAdr’+[*I>A,o]P, (3.11)
where ?

cscd
Ja= %(‘I)A,1+‘I)o,A),1+"é‘“;|:(‘1%4,B—‘?B,A)CSCBJ,BgAA ,
r
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and where triplex 4 is not summed.
Ll : @o,10=J1,

u (3.12)
[(I’O,l]I‘:/ Jldul"l"[q)o,l]So,

0
where

J1= (csc)>_[gB(®p,1—P5,0)sinb] 5,
B

and where the integration is on T'.

In the above grouping, the hypersurface equation
defines ®, in terms of the dynamical variables ®4; the
dynamical equations determine the evolution of ®4
off the null cones; and the conservation condition
determines the evolution of the integration constant
[®0,1]r along the world tube.

The mixed data required to integrate the field
equations are:

[®4,0]r on world tube, (3.132)
[®4 1w, on initial null cone, (3.13b)
[®0,1]s, on initial slice. (3.13¢0)

We can evolve a solution in time by using an iterative
integration process. This scheme commences on the
initial null cone N. Given the data (3.13b) and (3.13c),
we determine ®, from the hypersurface equation L°.
With this result and the data (3.13a), we use the
dynamical equations L4 to find the retarded time
derivatives of ®4. The retarded time derivative of
[®0,1]r at So follows directly from the conservation
condition L. This completes the initial cycle. Next,
using the retarded time derivatives, we determine the
same data given in (3.13b) and (3.13c) on a neighboring
hypersurface separated by an infinitesimal # displace-
ment. Through repeated application of this process, we
can formally generate a solution in the region between
T and N,.

This formal iterative approach guarantees the exist-
ence of a unique solution only in the analytic case.
From the standpoint of mathematical rigor, it offers
much weaker knowledge than other techniques which
are applicable to linear systems, such as Maxwell’s
equations. An additional shortcoming peculiar to this
mixed initial-value formulation is that it is not cor-
rectly set. The “news” (3.13a) cannot be assigned on
I' with complete arbitrariness. On the contrary, be-
cause of the time-like character of T', prescribing the
news on a small region of I' automatically determines
the news on a larger region of I'. This is a consequence
of what John' has called the “coherency” of data on
time-like surfaces. Although there are no constraints
of a purely differential form on the news, there are
constraints of a functional nature which must be
satisfied on I'. In the analytic case, these functional
constraints are automatically satisfied. But even in the

10 F. John, Commun. Pure Appl. Math. 2, 209 (1949).
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nonanalytic case, the functional class of the news must
still possess unique continuation properties similar to
those of analytic functions. Friedlander* has investi-
gated the consequences of the incorrectly set nature of
the mixed characteristic initial-value problem with the
particular geometry considered here. Despite these
analytic weaknesses, the strong point of this approach
remains: It provides a formulation of the initial-value
problem with which Einstein’s nonlinear equations can
be analyzed without any more inherent difficulties
than in the foregoing analysis of Maxwell’s linear
equations.

IV. EINSTEIN’S EQUATIONS

The empty-space equations for the gravitational
field are
G;.w=0, (41)

where the Einstein tensor is defined in terms of the
Ricci tensor and the curvature scalar by

Gpv= Ruv_ %g#vR- (42)

These ten equations are not independent. Because of
the general covariance of the theory, they satisfy four

Bianchi identities
G»,,=0. (4.3)

We will work in the null-coordinate system constructed
in Sec. IL. Recall that the metric (2.8) can be specified
by six functions, go, and gas. The transverse metric
gap is determined by two functions which are the
analogs of the ®, in the previous section.

Combining Eqgs. (4.1) and (4.3) with our choice of
coordinate conditions leads to the following grouping
of the field equations:

(4.4)
Gap—1g488°°Gep=0 (2 dynamical equations), (4.5)
[Goolr=[Goalr=0 (3 conservation conditions), (4.6)
4.7

In Eqgs. (4.4) and (4.5), we have six equations for the
six unknown metric components. The hypersurface
equations determine go, in terms of the transverse
metric to within constants of integration of So. The
conservation conditions determine the time dependence
of these constants of integration. The dynamical
equations determine the evolution of the transverse
metric off the initial null hypersurface. Two constants
of integration on I, analogous to what Bondi et al.!
have called the “news function,” comprise part of the
initial data for the dynamical equations. The super-
fluous equation, listed for completeness, is automatically
satisfied when Eqgs. (4.4) and (4.5) are satisfied (see
Appendix A).

1 F, G. Friedlander, Proc. Roy. Soc. (London) 269, 53(1962).
2 F, G. Friedlander, Proc. Roy. Soc. (London) 279, 386 (1964).

G1,=0 (4 hypersurface equations),

g°PGep=0 (1 superfluous equation).
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We can construct an integration scheme for the
gravitational-field equations in analogy to that in the
previous section for the electromagnetic field. We shall
exhibit its important features by denoting by J lengthy
expressions which are determined by the initial data.
The definitions of the J’s follow merely from the form
of the field equations. The order of considering the
latter is designed so that at each step the J’s are known
either from the initial data or from the results of the
preceding equations. Note that all the equations below
have been decoupled as shown in the corresponding
integrations.

Gu=0: (Ingoy),1=J11>0 .
go1= I:gOIJI‘ exp[/ ]11df’:| . (48)
7
G1a=0: (Pg*gua1)1=J1a4,

goc=gcp { LeP4goalr+[r*g"¥gua, 1 ]r / gPAgn (r')2dr’
Ll

+ /; ’ [gb Agm(r')*z( /,, TIJ 1Adr”)]dr’} . (4.9)

Gn=0: (goog‘“r).1= Jor )

g r
g00=_°‘{ / ].ndr'-l-[googmf]r}- (4.10)
7 Uy

To discuss the dynamical equations, it is convenient
to introduce a complex polarization dyad #4, which is
defined up to a phase transformation by the following
properties:

84AB= tAig-{—t-AtB y (A,B= 2,3) y

tA=gABty A, ={At,—1=0,

(4.11)
(4.12)

Equation (4.5) is then equivalent to the one complex
equation

Gapt4tB=0 (4.13)
of the form
é1—2¢e[r1—tAt, =T, (4.14)
where
C=1rgap,otiiB. (4.15)

The integral of Eq. (4.14) is
é=[¢]r exp[—V(rm)]

+/rf(r’) exp[V (7' 7)]dr', (4.16)

where

V(s,t)= 2/ (tAiA_l—r‘l)dr .
t

The integration constant [¢]r is the news function for
I'. A particular choice of polarization dyad is discussed
in Appendix B.
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There are six constants of integration that appear in
the hypersurface equations, [go, |r and [go4,1]r. These
are not independent. They satisfy Egs. (2.12) and
(2.13), which relate the inner metric of T to the 4-space
metric. It is convenient to choose [goo]r and [goa,1]r as
the three independent integration constants. The three
conservation conditions take the same differential

form.
4.17)

(4.18)

[Goodr=0: D[geolr=[Joo]r,
[Goalr=0: D[goa,ilr=[Joa]lr,
D=[9/du+n,0/0r]r

is the # derivative along the time-like geodesics in T'.
Solutions to this system require specification of [goo]s,
and [goa,1]s, on the initial slice So.

With our choice of coordinates, those equations which
govern the » dependence of the metric take on the form
of ordinary differential equations whose integrals we
have exhibited above. Those equations which govern
the # dependence have no such simple features. How-
ever, an iterative integration process in complete
analogy to that of the preceding section may be applied
to formally generate a solution. The mixed initial data
required consist of four functions of three variables and
three functions of two variables:

where

©r, (4.19a)
Cg48]no, (4.19b)
[goolse, and [goa,1ls,- (4.19¢)

The news function for I' (4.19a) characterizes the time
behavior of the sources within TI'. The initial null
hypersurface data (4.19b) describe incoming fields
entering the region under consideration through N,.
The initial-slice integration constants (4.19c) describe
characteristics of the initial configuration of the sources
within I' in analogy with Bondi’s mass aspect.! The
discussion in Sec. III of the analytic weakness of this
approach applies here, although it is not clear what
coherency requirements may be derived for these
nonlinear equations. In addition, there are geometrical
limitations associated with possible self-intersections
in the families of geodesics used to construct the
coordinate system.

V. THE CONSERVATION CONDITIONS

The initial-value formulation developed in the
previous sections can be applied most effectively when
I' is a world tube of topology S?X E* which completely
surrounds the sources of the gravitational field. In this
case, the conservation conditions (4.6) are equivalent
to a set of integral flux conservation laws. We first note
that these conditions may be written as

[GOuE"'] r=0 ) (5. 1)
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where £+ ranges over a complete vectorial set of direc-
tions lying in T'. If in addition we let £ range over a
complete functional set we may replace Eq. (5.1) by
the integral equations

/ G, t4dS,=0.
T

Since the hypersurface and dynamical equations ensure
the vanishing of the Ricci scalar, we may equivalently
write Eq. (5.2) as

(5.2)

/ R £4dS,=0. (5.3)
r
Using the Ricci identities, Eq. (5.3) becomes
/ (gl g, — g Y4S, =0, (5.4)
r

Applying the conservation conditions in the form of
Eq. (54) to a portion of I' bounded by two slices
21 and =, of topology S? and utilizing the generalized
Gauss theorem then gives

me»4n@0=/[9wm—ym@w“ 5.5)
T

where
KE(Z)Ef £lengs,, .

Equation (5.5) is the integral form of a covariant flux
conservation law previously considered by Komar.?
It is a “weak” conservation law in the sense that its
validity depends upon the field equations being satisfied.
In this integral form, the conservation law relates the
change in the functional K;(Z) evaluated at two slices
of the world tube to a flux integral across the world
tube.

The scalar functional K¢(Z) is determined by the
specification of a vector field and a closed 2-space. In
order to attach physical meaning to this functional we
are at first led to associate the vector field £ with the
descriptor of an infinitesimal transformation. For this
to be effective, we need a means of geometrically
selecting descriptor fields. If the space admits a global
symmetry transformation whose descriptor satisfies
Killing’s equation

(5.6)

g9 =0, (5.7)

we are then provided with a preferred descriptor field.
This is not a sufficiently effective approach because
global symmetries do not exist in a general space.

There is, however, an approach which is applicable
to the class of asymptotically flat spaces. Such spaces
admit asymptotic symmetries.? In the following sections,

13 A, Komar, Phys. Rev. 113, 934 (1959).
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we will precisely define the notions of asymptotically
flat spaces and asymptotic symmetries. For the present,
it is sufficient to state that these spaces define preferred
descriptor fields at null infinity. There is no geometri-
cally intrinsic way to propagate descriptors at null
infinity throughout space-time. The 2-space 2, how-
ever, does determine a geometrical prescription for
propagating descriptors from null infinity to 2. Each
point on 2 geometrically determines two null directions
which are orthogonal to the local 2-space and to them-
selves. The entirety of these null directions on Z define
two null hypersurfaces which, for simple topologies,
emanate out from Z to future and past null infinity.
In this paper we concentrate on the future null hyper-
surface N. Let k* denote its normal vector field. Then
the propagation law

gwnp, =g kb (5.8)
uniquely determines £* on the null hypersurface N in
terms of its value at future null infinity. This can be
readily seen by writing Eq. (5.8) in a Bondi coordinate
system for which IV is a #=constant surface. In fact,
in such a coordinate system Eq. (5.8) describes an
infinitesimal transformation which preserves the Bondi
coordinate conditions [Egs. (2.3) and (2.6)].4 Further-
more, Eq. (5.8) is the only covariant propagation law
which (1) is linear in the descriptor, (2) is of first differ-
ential order, (3) involves derivatives only in direc-
tions lying in NV, (4) is automatically satisfied by global
symmetry descriptors, and (5) uniquely determines
the descriptor on N in terms of its value at null
infinity.

Using this propagation law, we still cannot evaluate
Komar’s functional on = because K;(Z) involves
derivatives of the descriptor in directions lying out
of N, while the descriptor field has only been defined
on N. However, we can find a geometrical modification
of Komar’s integral which is defined on Z. Represent
by k* and m*, respectively, the outgoing and incoming
null directions which 2 picks out at each point on its
surface. Normalize these vectors by

kim,=—1. (5.9
Although Eq. (5.9) does not uniquely determine the
extensions of k# and m* it does completely fix bilinear
products such as the bivector

Bw =Pkl (5.10)

If we now look for the most general geometrically
defined integral which is linear in the descriptor,
is of first differential order, and involves derivatives
only in directions lying i# NV, we are uniquely led to the
following functional :

Ly(2)= f (gwin— o, klem)dS,,.  (5.11)
b}
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For global symmetry descriptors, it reduces to Komar’s

functional.

When the asymptotic symmetry descriptor represents,
say, a time translation, we can correlate the corre-
sponding functional with energy. The closed 2-space
2, however, does not pick out any spanning space-like
3-space in which we could say the energy resides. In
fact, we have not even made an attempt to describe
the topology of the region close to the sources inside
T'. We can avoid this problem by interpreting the func-
tional as an energy linkage through 2. Linkage™ is
meant here in its topological sense as the 4-dimensional
analog of the 3-dimensional concept of a trajectory
passing through a closed loop. For a generic descrip-
tor &+ we refer to the corresponding functional L;(Z)
as the £ linkage through 2.8 It represents that aspect
corresponding to the £ asymptotic symmetry belonging
to those sources which link the closed 2-space 2.

The modification of Komar’s integral which we have
been led to on geometrical grounds has strong physical
justification. The total mass of a gravitationally radiat-
ing system defined this way turns out to be the mono-
tonically decreasing mass defined by Bondi (see Sec.
VIII). On the other hand, Komar’s integral leads to a
total mass which does not decrease for a radiating
system.

In order to obtain a conservation law for L(Z)
analagous to Eq. (5.5) we must define the local flux

Fyp= (gl —ge, klim?),,. (5.12)
This entails extending the domain of definition of £,
k*, and m#. There does not appear to be any way which
is not somewhat geometrically artificial to define these
quantities on I'. What does assume intrinsic geometrical
importance is the local flux across the null hypersurface
N. & and k* are already defined along N. We define
m# along N by

[mum* Iy =[me*]n+1=0.

This defines m* on N up to a null rotation.!> We are
interested in the component of the local flux across NV,

(5.13)

Fe=Fyk,. (5.14)
From Egs. (5.12) and (5.13) we have
Fy=£67) by = (k) . (5.15)

It is manifestly independent of the null rotation freedom
in m*, Using the Ricci identities and the propagation
law, we also have

FE= —E(”;y)ku;v_ El‘;nvkv- (516)

The flux conservation law between two closed 2-spaces
“ P, Alexandroff, Elementary Concepts in Topology (Dover

Publications, New York, 1961), p. 16.
18 R. K. Sachs, Proc. Roy. Soc. (London) 264, 309 (1961).
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on N takes the form

Li(Z0)— Le(Z) = [ FaV, (5.17)
N

where

E,dV=dS,. (5.18)

It is also convenient to rewrite the linkage expression as

Le(Z)=— j[ gk, m,dS, (5.19)
z

where

FumydS=dS . (5.20)

VI. CONFORMAL BONDI COORDINATES

Using conformal techniques, Penrose®7 has provided
a precise geometrical formulation of the boundary con-
ditions at null infinity which have been so successful~*
in analyzing the radiative structure of asymptotically
flat gravitational fields. Penrose envisages null infinity
as a boundary to space-time consisting of the limit
points of null rays. The metric structure of space-time
offers no satisfactory basis for discussing “points at
infinity.” However, by means of a coordinate trans-
formation we could at least assign finite coordinate
values to these points. Obviously, in such a coordinate
system the metric must be singular at the points
representing null infinity in order that points in their
neighborhood be infinitely distant. By performing a
conformal transformation on this metric it might be
possible to eliminate these singularities and arrive at a
conformal metric which is regular at null infinity. It is
the realizability of just this procedure which Penrose
postulates as the key requirement for a space to be
asymptotically flat. For most purposes, the require-
ment that the conformal metric be of class C® at null
infinity ensures sufficient regularity, although we will
not emphasize this point here. In addition, a topological
requirement must also be made. The set of points at
future null infinity called J* which represent the future
end points of null rays and the set J~ at past null
infinity must each have the topology S?X E'. Geometri-
cally then, we may summarize the boundary conditions
appropriate to asymptotically flat spaces by the re-
quirement that there exist a manifold conformal to the
physical manifold with this differentiable and topo-
logical structure at null infinity.

We have shown in the preceding sections how the
adaptation of a Bondi coordinate system to a finite
world tube leads to a reasonably straightforward form-
ulation of the characteristic initial-value problem.
Using Penrose’s conformal techniques to adapt a
conformal Bondi coordinate system to the world tube
at null infinity, we now connect this finite version of
the initial-value problem with the asymptotic treat-
ments of Bondi ef al.! and Sachs? We confine our
attention to future null infinity J+.
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Let x* represent a successful candidate for a coordi-
nate system satisfying Penrose’s requirements. Then
points at J* take on finite coordinate values and there
exists a conformal space metric, now represented by
guw (%), that is regular at J* and related to the physical
space metric, now represented by g,.(x), by

Luw=LZ. (6.1)

Points on J* satisfy Q(x#)=0. We further require’ that
Q be regular at J* and that

[:Q;”],ﬁ;é() . (6.2)

We now use symbols such as V.R,,, to denote
geometrical quantities and covariant derivatives con-
structed from the physical metric; and V,Ru,. or
Ryvp0;+ to denote the corresponding constructions from
the conformal metric. The Einstein equations then take
the form?®

Gop= LG5~ 200 %5+625 (200, — 30, ,2°)=0.  (6.3)

Evaluating Eq. (6.3) at 2=0 immediately tells us that
J* is a null hypersurface

[2,,%7]+=0. (6.4)

We must accordingly modify the procedure of Sec. II
which used the arc length along time-like geodesics to
“coordinatize” a time-like hypersurface.

We begin by assigning labels x4 (4=2,3) to each
point of some initial space-like slice of J*. Through each
of these points 44 there passes exactly one null geodesic
lying in J*. Let # be an affine parameter defined along
this family of null geodesics. Assign to each point on
the same null geodesic the same labels x4. Then x°=u
and x4 coordinatize J+.

Next consider the family of space-like slices of J*
given by #=constant. Let V denote the unique out-
going null hypersurface intersecting J* in a particular
slice. Emanating from each point x4 of this slice there
is exactly one null geodesic which is orthogonal to the
local 2-space of the slice and lies in V. Assign the same
labels x4 to all points on this null geodesic and the
same label # to all points on V. Applying this procedure
to the entire family of #=constant slices defines the
coordinates =% and x4 off J*. Define an nverse

luminosity distance x!=r by
=0 g*bx4 B g . (6.5)

Then in the conformal Bondi frame so constructed the
conformal metric takes the form

8oo 8o1 Loa
gw=|gn O 0 |.

goa 0 gum

(6.6)

Furthermore, by performing the conformal transforma-

16 L. R. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, New Jersey, 1926).
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tion g — (r*/Q%)g., we require
]g431=1. (67)

The physical metric is now related to the conformal
metric by
(6.8)

and J* is specified by #=0. In this coordinate system,
the Einstein equations (6.3) become

°Gop—2rri%g+ 65 (2rriP ,— 37, 11 #) =0.

— 25
Ew=""8u,

6.9)

Because # is an affine parameter for null geodesics
on J* labeled by #4=constant, we have at J*

£00= goa=2g01,0— g00,1=0. (6.10)

Also, by differentiating and contracting Eq. (6.9), we
have at J*+
(6.11)

Moreover, by applying the coordinate conditions (6.6),
(6.7), and (6.10) to Eq. (6.11), we find at J*+

1, 2ip —
7w 8w P p=0.

7,w=0, (6.12)
or more specifically the following conditions az J*:
800,1= g01,1=g4B,0=go4,1go1,4=0. 6.13)

There still remains the affine freedom in our original
choice of affine parameter # on J* and the freedom of
assigning different labels x4 to the initial slice of J*.
Taking advantage of these freedoms and Egs. (6.10)
and (6.13), we may impose the following coordinate
conditions at J*:

£00=200,1=goa=go4,1=g01,1=0, 6.14)
g01= 1, 8AB=({AB,
where g4z is time-independent. In particular, because J*
has topology S?X E! we may put

(1—-w2—t 0
QAB=( ) (6.15)
0 1-w2
for the choice of ray labels x*=TW =cosf, ¥*=¢. The
global requirements, Eqs. (6.6), (6.7), and (6.8), and
the asymptotic requirements, Eqgs. (6.14) and (6.15),
summarize our coordinate and conformal conditions.
Our construction of a conformal metric satisfying these
conditions can be justified for some finite neighborhood
of J*. From Eq. (6.12) we see that the null geodesics
on J* are shear free and divergenceless, so that null
geodesics with different labels x4 cannot intersect.'s
Thus, the affine parameter # and the labels x4 con-
stitute bona fide coordinates throughout J+. Further-
more, there exists some neighborhood of J* in which the
null hypersurfaces and geodesics used to extend =
and x4 off J* do not intersect. Thus, # and x4 are well
defined in some neighborhood of J*. Accordingly, there
exists a neighborhood of J* in which the inverse lumi-
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nosity distance 7 can be defined by Eq. (6.5) and used as
a coordinate by virtue of Eq. (6.2). This finite region of
conformal space which we have coordinatized corre-
sponds to an infinite region of physical space bounded
by some finite world tube and future null infinity.

The field equations (6.3) were essential in the pre-
ceding construction to recognize the null, shear-free,
and divergenceless properties of J*. The nullness
followed immediately from applying the field equations
at J*+. Applying the derivative of the field equations at
J*, we obtain

L(VuV— 8wV, V)2 ]+ =0. (6.16)

Geometrically, Eq. (6.16) expresses the integrabil-
ity conditions for the existence of a conformal
transformation

Q2, =0, 6.17)
such that

[V.V,&]+=0. (6.18)

Thus, there exist preferred conformal factors for which
J+ is manifestly shear free and divergenceless. The
inverse luminosity distance is such a preferred con-
formal factor, as evidenced by Eq. (6.12).

Written in terms of the contravariant conformal
metric components, the global coordinate and conformal
conditions become

0 10
g =gw = [g(‘;l gl 5:; ] ,  (6.19)
|g4B| =1, (6.19b)
and the asymptotic conditions a¢ J* become

gl=gla=git=g"1=¢",=0, (6.20a)
=1, (6.20b)

AB — 4AB — 1=
g4B=gq ——( 0 (1—W2)—1)' (6.20c)

This conformal space metric is obviously not finite
at the spherical poles W= 1. This shortcoming arises
from the impossibility of covering a sphere with a
single regular coordinate patch. Putting Z?=1—W?,
the matrix
0o - 0 0
gOl gll g12 /Z VA gl3
0 ng/Z g22/ZZ g23
0 Zgl3 g23 Z2g33

= (6.21)

is free of these polar singularities. Similarly, the singu-
larities at the poles arising from differentiation with
respect to polar coordinates do not arise from the
differential operators

10
—=Z— —=—— (6.22)
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Regularity at the spherical poles must be interpreted
with respect to Eqgs. (6.21) and (6.22).

Some coordinate freedom still remains in the con-
formal Bondi frame which we have tailored to suit the
structure of null infinity. We defer a treatment of the
corresponding transformation group until we have more
thoroughly analyzed the asymptotic content of the
field equations.

VII. THE CONFORMAL-SPACE SOLUTIONS

The null coordinate system of the preceding section
leads to the same integration scheme for the conformal-
space field equations as presented in Sec. IV. The
analysis in terms of data on an initial null hypersurface
u=u, and on J+ parallels that of Sachs.? The major
difference is that the requirements of differentiability
at Jt of the conformal space metric replace require-
ments for the existence of an asymptotic series
expansion.

First, the G1; hypersurface equation is

goig™ 1= —5784% 1g4B,1. (7.1)

Equation (7.1) gives g™ in terms of the initial hyper-
surface data gsp [the asymptotic condition (6.20b)
determines the integration constant]:

1 7
‘=exp{—§/ gAB'lgAB,lrdr}.
0

The G4 hypersurface equation is

Lepce™ (g°g01) ,1].1—2gp0cg™ (8'%g01) 1=7Kp, (7.3)
where Kp is given by
Kp=r"2(r"g018" p) 1— (¢*%,1¢8D) .4 +38*% 18a8,0. (74)

Applying the differentiability requirements at J* to
Eq. (7.3) gives

(7.2)

[Kp,1]o=0, (7.5)

where we have introduced the notation F (u,s,64) = [F .
Equation (7.5) is an asymptotic constraint on the
hypersurface data. By algebraic manipulations it
becomes

€*Bbp4.8=0, (7.6)

where

.7

where e4% is the unit 2-dimensional antisymmetric
matrix, and where the colon represents 2-dimensional
covariant differentiation with respect to the polar
metric gaz=[ga5]o. Equation (7.6) leads to the pair of
equations

bas=[gan11—32488°%gcp, 110,

baA=b,A and 54,4=0 ,

whose only regular solution defined on the sphere is
b=constant. Consequently, the asymptotic constraint
requires

[648J0=0. (7.8)
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Equation (7.3) further gives
[, o= —¢4P[Kplo=c*55,

CAB=[gAB'1]o.

Equation (7.9) and the regularity conditions associated
with Egs: (6.21) and (6.22) lead to the regularity con-
dition at the spherical poles

[#48,]o—0 as Z—0.

(7.9)

where

(7.10)

Using ’Hospital’s rule and integration by parts, the
solution to Eq. (7.3) assumes the form

& =3gpcgC 11+ Zch,lg‘C,u]ogm/ dt [ go1g®4]:

0

__g()l/ dt tl:gBAngB]; (7.11)
0

r ¢
4" f dt [ gB4go1]: ] ds s7'[Kp,1]s
0 0

and determines g'¢ in terms of the hypersurface data
and the integration constant

N4 (u0,08) = — 584 111 (10,0,27) . (7.12)

The Gio hypersurface equation introduces no new con-
straints due to regularity conditions at J*. Its integra-
tion gives

g1 = — AP K-+ it / drrKa, (1.13)
0
where K is given by

2
K=%g01g*2Rap——(gng'4) 4 (7.14)
r

(g4BR4p involves neither g nor # derivatives). K
satisfies [Klo=—1, [K.i=0. (7.15)

Equation (7.13) determines g! in terms of the hyper-
surface data and the integration constant

M (so,84) = — 758" 111 (40,0,4) . (7.16)

The dynamical equations introduce no new con-
straints. Introducing a polarization dyad

gAB=AIB 4B (A= gAByp (7.17)
and the complex news function
EZ—gAB,otAiB, (7.18)
r

we find
c= [é]o exp { 2/ dt[t-BtB' 1];}
0

17 J(S
+—/dS
2Jo

) exp{Z/rdl[thB,ﬂ;} , (7.19)
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where J satisfies
[J]o= [J,1]0=0.

The actual form is quite complicated:

(7.20)

1
J = —g0iK 4pt48+—g a5, ctA48go:1g'C
r

1 2
——g01g' g ap, #4B——1 4 (g01g"4)  51B,
7 7

where K p is equal to the hypersurface part of Raz
(those terms in Rup not containing # derivatives).
Equation (7.19) determines the time development of
the hypersurface data in terms of the news at J+.

The conservation conditions applied at J* give

M o=—[]¢|*+18"4 110410, (7.21)
848N® o= —1[go1,1140—2(g'®,1184¢,1) 0—4M 4
4240 (g'®,1:°°—g2 11°B).5— (8%%g4c,0) ,11:8
—gBc,0g%% 1:alo.  (7.22)

These equations determine the time development of
the integration constants M and N4.

The result of Bondi et al. and Sachs now follows:

A specification of gap on an initial null hypersurface
intersecting Jt, of M and N4 on the initial slice of J*,
and of ¢ on J*, determines a solution of the field equations
in the neighborhood of J+.

In physical space, this corresponds to the determina-
tion of a solution in the region between some finite
world tube and future null infinity. Alternatively, the
constants of integration in Egs. (7.2), (7.11), (7.13),
and (7.19) could be assigned on this finite world tube.
This connects the asymptotic version of the initial
value problem with the finite version discussed in
Sec. IV.

VIII. THE ASYMPTOTIC SYMMETRIES

The results of the last two sections are sufficient to
show that the differential and topological requirements
of J* lead to those asymptotic properties which have
previously been associated with outgoing radiation
fields. For instance, the structure of the conformal
Bondi metric directly leads to the vanishing of the
conformal curvature tensor' at J+:

[Cuvpvjf":o- (81)

When transformed back into physical space using a
Bondi coordinate system based upon a luminosity
distance, Eq. (8.1) becomes equivalent to one of the
various forms (given by Sachs?®) of stating the peeling-
off property of the Weyl tensor.

Another important feature of asymptotically flat
spaces is the asymptotic symmetries investigated by
Sachs.t An isometric transformation

T+ o 08P () = g (Z) 8.2)
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expresses a symmetry of the physical space. While a
general physical space does not possess such sym-
metries, in asymptotically flat spaces there does exist
a transformation group, the BMS group, which asymp-
totically satisfies Eq. (8.2). Penrose® has interpreted the
BMS group geometrically as a group of conformal
isometries of J*. In terms of the conformal space
metric, the conditions for an isometry of physical space
Eq. (8.2), become conditions for a conformal isometry
satisfying

T# o, 58P (x) = [ (2) /P (x) Jg» (2) -

Unlike Eq. (8.2), however, Eq. (8.3) is geometrically
well defined at J* for those allowed transformations that
preserve the differentiability of J*. In this way, we can
geometrically define the asymptotic symmetry trans-
formations as the group of transformations of conformal
space satisfying Eq. (8.3) af J*. The conditions for an
infinitesimal asymptotic symmetry transformation
I#=x++4 E4 then become

(8.3)

[Ewn— (Q,8/Q)g]s+=0. (8.4)
We immediately have the regularity condition
[2,,£],+=0. (8.5)

The analysis of these conditions becomes particularly
simple in our conformal Bondi frame. For this frame,
Q=7 and

01 0
[g#]s+=|1 0 0 (8.6)
0 0 ¢4B(xC)
Equation (8.5) gives
[£]+=0 (8.7)

and, using 'Hospital’s rule, Eq. (8.4) may be written
out as

Lg#o8 ptg7PEr p—g" o0 — 281 1g*" Jo=0.
From Eq. (8.8), we find the following conditions at J*:

gA= fA(xB), fA:B)=1gABfC .
P=3uf4.ata(x5),

EO,1= ) EBJ:%fA:A I}

£8 1= —(quf*.ata)®.

Equations (8.7) and (8.9a) restrict the arbitrariness of
the values of the new coordinates at J*. Equations
(8.9a) are precisely the defining equations of BMS
transformations as given by Sachs.* The functions f4
and o determine the transformation freedom at J+.
The transformations with =0 describe the 6-parameter
subgroup of conformal transformations of the unit
sphere. This subgroup is isomorphic to the orthochron-
ous homogeneous Lorentz group. The transformations
with f4=0 form the normal subgroup of supertransla-

(8.8)

(8.9a)
and
(8.9b)
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tions. In particular, the supertranslations given by
(8.10a)

a=Y,e,
where

Yo=1, VitiVe=—(1—W2l2%le V;=—W, (8.10b)

form the normal 4-parameter translation subgroup.
The parameter choices e?=§°# represent unit transla-
tions along four orthogonal axes, with =0 corre-
sponding to a time-like translation.

Equations (8.9b) uniquely determine the first 7
derivative of the new coordinates a¢ J*. There are no
conditions on the higher order » derivatives. Hence all
transformations of the interior with f4=a=0 are
automatically asymptotic symmetry transformations.
They form an invariant subgroup of the asymptotic
symmetry group whose factor group is the BMS
group.

The defining equations of the asymptotic symmetry
group are covariant under the allowed differentiable
transformations of J*. The structure of the asymptotic
symmetry group is consequently an invariant property
of J*. The conformal Bondi frame merely played the
role of a calculational aid. Had we chosen a different
conformal coordinate frame for our analysis, the re-
sulting asymptotic symmetry group would turn out to
be isomorphic to the group which we have found. This
presentation of the BMS group has been motivated by
ideas once suggested by Bergmann.” Penrose® has
come to the same conclusions from a slightly different
geometric viewpoint.

We may now define a basis

1¢*(®) =[te*(®) 1+ (@=0,1,2,---)

for BMS descriptors on J*. Given a closed 2-space 2
as in Sec. V, we can use the propagation law to define
a descriptor field £¢% on 2 corresponding to each BMS
descriptor nq* at its image 2+ on J*. In this way, we
may form a linkage Lo(Z) corresponding to each
asymptotic symmetry 7. We now formulate these
ideas analytically in terms of the conformal space
geometry. First, we re-express the null vectors asso-
ciated with Z in Sec. V (now written as 2# and #i*)
in terms of null vectors £* and m* which are normalized
with respect to the conformal metric:

mp=1iir, kr=Q2r, kem,=—1.

We fix the extensions of k* and m* so that parallel
propagation along the null rays from = to Z+ leads to
nonsingular vectors at 2+. We re-express the physical
space surface element d.S,, and volume element d.S, as

48, = ki dS=Q4dS = Q4 m,dS
and -
dS,=dS,,

so that dS,, and dS, are nonsingular at J*. When the
17P. G. Bergmann, Phys. Rev. 124, 274 (1961).



1050

volume element lies along the outgoing null direction
k, we also have

dS,=k,dV=0",dV.
The propagation law Eq. (5.8) now becomes

W, =120, kb — QI EPRH. ®8.11)

The linkage expression as given in Eq. (5.19) becomes

Le®)=— f [esbam,

— Qg Ry m,y —Q,,80) ]S,  (8.12)

and the local flux across an outgoing null hypersurface
as given in Eq. (5.16) becomes

FAV=FdV=[—t®k,,,—t* .k
+Q71Q £ke 4k (Q71Q ,84),, 10724V . (8.13)

From Eq. (8.5) we see that the propagation law is
nonsingular at J*, and from Eq. (8.4) we see that it is
automatically satisfied at J* by any asymptotic sym-
metry descriptor. Thus, the propagation law may be
applied to asymptotic symmetry descriptors without
inconsistency.

We now justify the reasonableness of our linkage
definition from a mathematical point of view by proving
that the total linkage Lqo(Zt) corresponding to any
asymptlotic symmelry is finite. We carry out the proof
in a conformal Bondi frame. We can always choose
such a frame so that 2+ is described by #=constant,
r=0. Consider the one-parameter family of sphere-like
2-spaces given by r=constant which converges to
+ along the null hypersurface #=constant. Each
member of the family intrinsically defines the null
vectors

ku=(—1,0,0,0), (8.14a)
my= (—3£02¢",£01,0,0) . (8.14b)
The propagation law becomes
£.=0,
&4 1= —gng B8 5, (8.15)

1=37(£C,c—g0g" 8 4),

and uniquely determines £ in terms of its values at
3+ given in Eq. (8.9a). The linkage through a sphere of
radius » becomes

1
L(r)= f[gl; 1+ (gorg"&— 251)]1"2035 ,
r

where
dS= (4r)"'dWde

is the fractional element of solid angle. Using Eq. (8.15)
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and the divergence theorem on the sphere, we also
have

Le(r) =f|:%72(”_1801g1‘4),m$°
1
+rigngt™+ { } Eﬂ]r“"dS-
1p

This expression is of an indeterminate form for =0,
but the solution of the initial-value problem given in
Sec. VII provides the necessary conditions for an
application of I’Hospital’s rule to determine a well-
defined limit as  — 0. In this way we find

Lz9)= § [Or—1g* e

+ (g4BNB—%go1,114— 248,188, 11) f41dS.  (8.16)

Equation (8.16) would truly represent the total linkage
for the system were its calculation independent of the
particular family of closed 2-spaces used in the limiting
process. This independence of the family chosen would
follow if the local flux F across the outgoing null hyper-
surface were finite at J*. The following theorem es-
tablishes an even stronger property:

The local flux across an ouigoing null hypersurface
corresponding to any asymplotic symmeiry linkage
vanishes at J+.

To prove this we first calculate the local flux F,
defined in Eq. (8.13) in terms of a conformal Bondi
frame chosen such that the outgoing null hypersurface
is given by #=constant. In Sec. V, we remarked that a
descriptor field satisfying the propagation law Eq. (5.8)
describes an infinitesimal coordinate transformation
which preserves the Bondi coordinate conditions when
k, is the normal to a coordinate surface %= constant.
This statement has an analogy in conformal space
language. A descriptor field satisfying the propagation
law Eq. (8.11) describes an infinitesimal joint conformal
and coordinate transformation which preserves the
Bondi conformal-coordinate conditions Egs. (6.19)
when £, is the normal to a coordinate surface »=con-
stant. When %, meets this condition, as in this proof,
we may re-express the propagation law as

5g%0=5g"4 =g 55g48=0, 8.17)

where
Bger= g () —g (1) = 2605 — (2/)igw  (8.18)

describes the functional change in the conformal space
metric associated with an infinitesimal change in con-
formal Bondi frames. Taking k, as in Eq. (8.14a) and
using Egs. (8.17) and (8.18) then gives in terms of the
conformal Bondi frame

F=g"[}g45,:084 %+ (g0ufg™) . ]/7.  (8.19)
Using Eq. (7.2) and the fact that § and coordinate
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differentiation commute, Eq. (8.19) becomes
=18" (g45.10g* 7 — 745,158 1) /7.

This expression for F is of an indeterminate form at
r=0. Since g4B is functionally an invariant at J* for
all conformal Bondi frames, the numerator in Eq. (8.20)
vanishes at J*. Thus, we may apply I'Hospital’s rule,
which gives

[Flr+={[gan.110g4B—r(gap,16g42 1), ]/8r} s+

Again this expression is indeterminate but allows an
application of I’'Hospital’s rule, which gives

[Flr+=—}[gan.084

This expression vanishes because of Eq. (7.8), yielding
the desired result
[F ]J+=0.

This result is a direct consequence of the outgoing
radiation conditions incorporated into the boundary
conditions on the gravitational field at J*. In the
Penrose formalism, the differential and topological
requirements on J* contain these outgoing radiation
conditions. Equation (7.8) is one important conse-
quence. Earlier formalisms based upon asymptotic
series expansions used Sommerfeld-type conditions or
peeling conditions in an equivalent way. F measures
a local incoming flux in the sense that a purely outgoing
flux would not give any contribution across an out-
going null hypersurface. From these considerations, it
should not be surprising to find that F is at least finite
at J*. What does result, Eq. (8.21), is a much stronger
condition. It has the following consequence. Let P, be
the energy-momentum linkages associated with the
translational descriptors ¥ ,. Then Eq. (8.21) implies the
asymptotic conservation law

Pa(z)=Pa(E+)+O(r2) ’

(8.20)

B,ll]J+-

(8.21)

(8.22)

where » measures the inverse luminosity distance from
2 to its image Zt on J*. The absence of an O(r) de-
pendence in Eq. (8.22) indicates that incoming fluxes
of gravitational energy-momentum vanish more rapidly
asymptotically than incoming fluxes of, say, electro-
magnetic energy-momentum which would give an O(r)
contribution to Eq. (8.22). In fact, even a static
Coulomb field leads to an ¢’ term in Eq. (8.22).8 The
outgoing radiation conditions thus impose even stronger
asymptotic constraints on incoming gravitational fields
than might be expected.

Given a coordinate system on J*, we may label the
asymptotic symmetry descriptors by means of the
effects of the corresponding infinitesimal transforma-
tions. We shall adopt the labeling prescribed by
Sachs.* This is based upon a coordinate system in which
‘the metric satisfies Eq. (8.6). The descriptors then have
the form at J* given in Eqgs. (8.7) and (8.9a). We have
already specified the translational descriptors %.* by
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f4=0 and a=Y,. In addition, six descriptors &{us*
with a=0 and f4=fi.4 describe the 6-parameter
group of conformal transformations of a sphere which
is isomorphic to the orthochronous homogeneous
Lorentz group. The bivector labels [ad] are chosen to
correspond to Lorentz rotations in planes with the
customary relationship to the polar axes. Finally,
those descriptors £i,* with f4=0 form the super-
translation subgroup. They are labeled by expanding
a in terms of spherical harmonics ¥ ;. The components
with /<1 represent translations. Sachs? has shown that
both the translations and supertranslations formin-
variant subgroups of the BMS group. The factor group
of the supertranslation group is the conformal group.
Thus, to each BMS transformation there corresponds
a Lorentz rotation. We label the symmetry linkages in
terms of the labels for the corresponding descriptors.
The translational descriptors give rise to the energy-
momentum P, ; the conformal descriptors to the angular-
momentum bivector Liqs; and the supertranslational
descriptors to the supermomenta Py,

This labeling may be carried out in any coordinate
system satisfying Eq. (8.6). The set of all such coordi-
nate systems defines a set of isometric observers on J¥,
all mutually connected by BMS transformations. Each
observer labels the asymptotic symmetries by the
same prescription but with respect to his own frame.
Thus, an arbitrary observer associated with, say, the
Z frame defines descriptors 7g* at J*, which in his
own frame of reference are given by

7% (%) =n*(Z).
Here the 7q* are a set of invariant functions, Q is a
collective index for all the asymptotic symmetry labels,
and the bar over « indicates that the descriptor com-
ponents are being given in the Z coordinates. Let the

Z frame differ infinitesimally from another asymptoti-
cally isometric frame «, so that

[&¥]s+r=a4+ng*(x)€?, (8.23)

where €? is a set of infinitesimal parameters. We then
have

To first order in e this implies that

=ng*(x)+ (nrfno*,s—nempr®,5)e”
=1%(x)+Crenr(x)e’,
where CpoF are the structure constants of the BMS
group which have been evaluated by Sachs.*

Since the propagation law is linear, the propagated
descriptor fields £¢* and £q* are similarly related by

£o* () = E* (%) +CpBr*(x)€P.

The £q* transform as vectors because the propagation
law is covariant and the 5¢# transform as vectors at J+.
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As a result, the linkage expression is a scalar and may be
evaluated in any allowed coordinate system. Further-
more, the linkage expression is linear in the descriptor
field. Consequently,

Lo(2)=Lo(Z)+CrePLr(Z)e?, (8.24)

where Lq is the linkage associated with the 7q asymp-
totic symmetry intrinsic to an observer at J* in the
Z frame of Eq. (8.23). Hence, under transformations
from one preferred observer at J* to another asymptoti-
cally isometric observer at J* the linkages transform
among themselves as a representation (the adjoint
representation’®) of the BMS group. In particular, the
energy-momentum linkages P, and P, associated with
two such observers at J* are related by

Po=LaPy, (8.25)

where L,® is the Lorentz matrix associated with the
BMS transformation connecting the two observers.
Equation (8.25) states that the energy-momentum
linkages transform as a Lorentz free vector when
interpreted by a set of isometric observers on J*. On
the other hand, from Eq. (8.24) and Sachs’ table of the
structure constants?® it follows that the angular-momen-
tum linkages do not have their usual Minkowski
space transformation properties due to the super-
translation freedom. The angular momenta mix with
all of the supermomenta under a general BMS
transformation.

Putting Sachs’ canonical form for the descriptors into
Eq. (8.16) gives explicit expressions for the various
total asymptotic symmetry linkages in terms of the
conformal Bondi metric. The one nonvanishing com-
ponent of the translational descriptors at J* satisfies

(8.26)

Consequently, by using the tracelessness of g4p,1 and
the divergence theorem on the sphere, the total energy-
momentum linking a sphere Z*(#) on J* given by
u=constant becomes

Pulu)= f MY.dS.

—1 .
Ya:8c=%q8cYPp.

(8.27)

M (u,x4) has been called the mass aspect of the system
because it is that part of the metric which determines
the total energy.! The total supermomenta with I>1
are given by the slightly more complicated expression

Pin(u)= f (M—1g14 14 V1.

The total angular-momentum bivector is given by

Liay =f[% (M—3g"4 114) fran 4 an

+ (g4BNZ—1go1,114— $g48,18'%,11) flan 2 1dS .

187, A. Schouten, Ricci-Calculus (Springer-Verlag, Berlin,
1954), p. 191.
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For the spatial components fi54:4 vanishes, so that
NZ plays the major role and may be appropriately
called the angular-momentum aspect of the system.

The difference between the total linkages through
two neighboring %= constant spheres on J* is found by
differentiating Eq. (8.16) and inserting the time de-
pendence of the mass and angular-momentum aspects
as given in Egs. (7.21) and (7.22). The resulting equa-
tion for the rate of radiation of energy and momentum
out of the system is

dPq(u)
=—f1e|2vads,
du

(8.28)

where Eq. (8.26) has been used to eliminate the
additional divergence term. This immediately leads us
to the important conclusion that the total energy of the
system must decrease in the presence of outgoing radia-
tion across J+.1

IX. DISCUSSION

Although the most important results of this paper
are of an invariant nature, the use of Bondi coordinates
has played a major role both as a calculational aid and
in supplying an intuitive picture of the properties of
conformal space-time. To some extent the construction
of a Bondi coordinate system is geometrical. Given
a family of null hypersurfaces, Egs. (2.2) for the ray
labels and (2.6) for the luminosity distance take on a
covariant form. While this is only as geometrically
significant as the concept of a family of null hyper-
surfaces, it does lead to an intrinsic formulation of
null-hypersurface data. Furthermore, Bondi coordinates
are the natural coordinates for writing out the null
hypersurface propagation law. On the other hand, the
introduction of a luminosity distance in Eq. (2.6) in
terms of derivatives of the ray labels destroys the
differentiable structure of the manifold. As a result, it
is awkward to describe the exact differentiable struc-
ture of J* in terms of a conformal Bondi frame.

The asymptotic symmetry linkages offer an invari-
ant means of labeling the properties of finite regions of
space. The choice of linkage expression and propagation
law are fixed quite strongly by their desired transforma-
tion properties and by the insistence that they be
meaningful for a single null hypersurface. This leaves
only the freedom of extending the differential order
incorporated in their construction. Any such modifica-
tion must leave unaltered the result for the total energy
momentum.

The application of these ideas to global questions will
ultimately involve problems of outstanding current
importance. To apply the linkages to the structure and
dynamics of localized gravitational sources, a better
understanding of the topology of null hypersurfaces in
strong-field regions is necessary. The dual possibility
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of using the asymptotic symmetries of J* and J~ is
related to the S-matrix problem for general relativity.
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APPENDIX A: BIANCHI IDENTITIES

Here we demonstrate how Bianchi identities group
the field equations into the four sets, (4.4)-(4.7). We
are given that the coordinate conditions,

gr=g4=det|gan| —r*f(x4)*=0, (A1)

and the field equations,
G1,,=0, (4.4)
Gac—38488°°Gep=0, (4.5)

are satisfied globally. We write the Bianchi identities as

AL (—9"G2 1ot (—9)'PGug” a=0.  (A2)
Starting with a=1 in Eq. (A2), we obtain
Gapgt8,.=0,
which is equivalent to
8*8,1(g458°"Gep) =0.
Since g4B 1g4p=—4/r#0, we conclude that
£2Gep=0. Q.E.D. @.7)
The remaining identities now have the form
[(—9"*Ga],=0. (a=0,4). (A3)

For a=A4, Eq. (A3) reduces to
gm[szoA],l-:O.

Requiring that g0 and [Gea]r=0 establishes that
Goa=0 globally Finally, for a=0,

g"[7°Goo],i=0,
so that [Goo]r=0 implies Gooy=0 globally.
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APPENDIX B: DYAD FORMALISM

In our discussion of the dynamical equations we
found it convenient to introduce a dyad formalism.
Here we discuss a particular form for #,4,

ta=[34 (secB) exp(z+iw /2,

—ity=[34 (secB)exp(—z+iw) ]'2, (B1)
z=a+1B, Z=a—1iB.
From Eq. (4.11), we obtain
go=Ae*secB, gm=Ae*secBf, gs=A tang, (B2)

det|gan| =42
Coordinate condition (A1) determined the function
A?=rtf(x4)2.
From Egs. (4.12), we have
=—itz/A, B=it/A.
For reference, we list the following equations:
tABgap ,=221414 ,=3, 6™ secB, (B3)
2t484 w= (Inr*f) y+i[ (tanfleytw,].  (B4)

We partly restrict the arbitrary phase w(x*) by
requiring that ¢4 undergo parallel transport along the
null rays, i.e.,

#4,,=0. (BS)

Using Egs. (B3) and (B4), one readily finds that (BS)
is equivalent to

Aty 1=1/r, (B6)
and

w1+ (tanB)e,1=0. B7)

Hence, w is determined from « and 8 up to a function
of integration wr. Equation (B6) reduces the dynamical
equation (4.14) to

éa=J, (4.14a)
where
26=rgap ot B=r(secB)e*z,, (4.15)
and
e=[6]r+ / Jar. (4.162)
7



