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Calculations of the Energy and Mass Yields from the
Thermal-Neutron Fission of U"'
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Improvements in a semiempirical correlation of the energy and mass yield data for U"6 fission are pre-
sented. The available mass, :energy, and neutron-emission data are correlated with each other within the
accuracy of the input data. A simple model of the U"' fragments at scission is presented; This model, to-.
gether with some experimental data; is used to predict the surface-tension parameters of the fragments and
kinetic energies of the fragment pairs. The calculated kinetic energies agree reasonably well with experiment.
The surface-tension parameters of the fragments show strong shell e8ects, as indicated in other studies.
The shapes of the fragments at scission are estimated from the model.

I. INTRODUCTION

'"I this paper tmo somewhat separate calculations
~ ~ are presented, In Sec. II we bring up to date an
empirical correlation of U'" fragment yield and energy
data. ' Recent experiments' and some changes in the
model have improved the over-all correlation and have
removed some of the discrepancies shown in Ref. 1.
The calculations in Sec. II may best be described as a
method of correlating the available mass, energy, and

yield data in order to predict other quantities, such as
independent yields. In Sec. III wc introduce a set of

assumptions about the 6ssion mechanism itself, in order

to deduce further properties of the U'" fragments. Some

of the results of the Sec. II calculation are used as input
to the model in Scc. III.

II, EMPIMCAL CORRELATION OP
ENERGY AND YIELD DATA

Modi6cations in the Model

excitation energy than odd-odds nuclei because of pairing
effects. The pairing energy was chosen on the basis of
Cameron's work. ' The probability for emitting no
neutrons was determined by integrating the excitation-
energy distribution over the energy range below the
neutron separation energy. The excitation-energy dis-
tribution was then decreased by the neutron binding
energy plus j..2 MeV, the average neutron kinetic
energy, and the mass number decreased by one. Also,
the variance of the excitation-energy distribution was
increased by 1.27 (Mev), which is the neutron kinetic-
energy variance. Again, the probabilityof emitting
no neutrons was computed, and t'he process continued
until the probability for emitting six neutrons from the
original fragment was determined. This method is
an improvement over the earlier one, because it takes
into account the smearing of the excitation-energy
dlstrlbutlon by succcsslvc neutl'on emlsslon. Mathe-
matically, Eq. (4) in Ref. 1 is replaced by p.=E, B„r. —
The quantity E„ is dered by

8~(z, m—p)

E.=—
(2srtr„s) '~s

W, (Z,3f') =We+8, —1.21(o)—P c's„(Z,~ rc)—
o =osr(M)'+1. 27(v) .

All energies are in MCV and 6 is the pairing-energy
correction.

The input data for the charge distribution also werc
changed. The new curve for the most probable charge
is shown in Fig. I. This is a theoretical curve derived

by Pong. 4 It was obtained by maximizing the excitation
energy with respect to charge, essentially as described in
Appendix A of Ref. 1, except that the %ing-Pong mass
formula' mas used to obtain the mass variation. This

' A. G. %. Cameron, Can. J. Phys. 36, %40 (1958).
4 P. Pong (private communication. )' J. Wing, Bull. Arn. Phys. Soc. 9, 412 (1964); J.Wing and J. D.

Varley, Argonne National Laboratory Report No. ANL-6886,
1964 (unpublished).
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The following modi6cations were made in the

model described in Ref. l.
The new initial mass yield data of Schmitt ef et.'

mere used as input. The variances of the kinetic-energy

distribution as a function of mass were also taken from

the work of Schmitt et at.
The formula for partitioning the excitation-energy

variance between the two fragments was changed some-

what. It was assumed that the variance of each fragment

is proportional to (0+0.4), instead of r, where r is the

average number of neutrons emitted from the frag-

ment. This change was made because (9+04) is more.
nearly proportional to the fragment excitation energy

(see Appendix 8 of Ref. 1).
The Inethod for determining the number of neutrons

emitted from a fragment is basically the same as in

Ref. 1.That is, a fragment is assumed to emit a neutron

whenever enough enclgy ls avallablc. However, sornc

changes were made in the details of the calculation.

Even-even nuclei were assumed to have 2.2 MeV more

& J. M. Ferguson and P. A. Read, Phys. Rev. 139, 856 (1965).». W. Schmitt, J. H. Neither, and F. J. Walter, Phys. Rev.
l4&, j.146 (1966).
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method of deriving the most probable charge follows
naturally from the statistical theory of Gssion. Some
of the features of the curve are corroborated by the
radiochemical work of Strom et el.' A curve for Zo could
also be calculated using the mass data of Myers and
Swiatecki. We have not yet investigated this alternative.

When the new curve for Zo was put into the calcula-
tion, it was found that a charge distribution even
narrower than that used in Ref. 1 was needed to 6t the
radiochemical data. Therefore, the standard devia-
tion of the initial charge distribution, rz, was changed
from 0.55 to 0.45.

The neutron-emission input data also require some
discussion. The data of Apalin et ul. were used. Terrell'
has pointed out that in experiments of this sort, experi-
mental mass resolution must be carefully accounted
for, since it may dominate the results in regions of very
low yield. Therefore, the results for these regions should
be used with some reservation. Improved neutron data
would be very useful. It is encouraging, however, that
the calculated neutron numbers of Gordon and Aras"
(using kinetic-energy data as input) are in fairly good
agreement with the results of Apalin et ul. except near
symmetric fission.
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Results of the Modi6cations

Figure 2 shows the new radiochemical mass-yield
results, compared with experimental results. " Com-
pared with Fig. 1 of Ref. 1, the calculated yields at

Fro. 2. Comparison of calculated and measured radiochemical
mass yields. The open circles are the radiochemical mass yields
calculated in this paper, and the triangles are measured and
interpolated values taken from the compilations of Farrar et al.
(Ref. 11).
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'P. O. Strom, D. L Love, A. E. Greendale, A. A. Delucchi,
D. Sam, and N. E. Ballou, Phys. Rev. 144, 984 (1966).

W. D. Myers and W. I. Swiatecki, University of California Re-
port No. UCRL-11980, Berkeley, California, 1965 (unpublished).

V. F. Apalin, Yu N. Gritsyuk, I. E. Kutikov, V. I. Lebedov,
and L. A. Kikaelyan, Nucl. Phys. 55, 249 (1964).' J. Terrell, Phys. Rev. 127, 880 (1962)."G. E. Gordon and N. K. Aras, IAEA -Symposium on the
Physics and Chemistry of Fission, Salzburg, Austria, - 1965;
Paper SM-60/48 (unpublished)."H. Farrar and R. H. Tomlinson, Nucl. Phys. 34, 367 (1962);
H. Farrar, H. R. Fickel, and R. H. Tomlinson, Can. J. Phys.
40, 1017 (1962).

Pro. 1.Values of the most probable charge, Zo, as calculated by
Pong (Ref. 4). The quantity Zo is an estimate of the average num-
ber of protons for fragments of mass M before neutron emission.
The values have been presented as Zo —(92/236)M, in the manner
of Wahl (Ref. 13) in order to emphasize the derivation from pro-
portionate charge and mass division of the fragments.

symmetry and at the extreme wings of the curve are
much closer to the experimental values. The improve-
ment is due entirely to the new initial yield data used
as input.

The calculated kinetic energies are compared with
experiment in Fig. 3. The masses used in obtaining the
calculated curve are those of Wing and Pong. ' The
agreement is again much better than shown in Ref. 1.
In this case the improvement is due to changes in the
experimental results' rather than in the calculations.
In these data the dip at symmetry is much less pro-
nounced than in previous data. This feature is conirmed
by the range experiments of Aras et a/. "The discrep-
ancy at symmetry is reduced from about 25 MeV
to about 10 MeV. Elsewhere the discrepancies are of
the order of a few MeV. Except at extreme asymmetry
the calculated values are higher than the experimental
values. This is consistent with the calculated gamma-ray
energies being lower than experiment; presumably
about 3 MeV of the calculated kinetic energy should
appear as gamma-ray energy instead. Also, the dis-
crepancy between the calculated and experimental
curve is within the differences between various mass
formulas. If Cameron's mass values' are used, for
example, the agreement at symmetry and near the pea, k

'~ N. K. Aras, M. P. Menon, and G. E. Gordon, Nucl. Phys.
69, 337 (1965}.
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is almost perfect. Therefore, the calculated curve agrees
with experiment within the accuracy of the input data.

The calculated independent yields are compared with
experiment in Fig. 4.""Comparing Fig. 4 with the
results shown in Ref. 1, we see that the agreement is
somewhat worse than before. The root-mean-square
(rms) value of the log of the ratio of calculated to meas-
ured yields is 1.1 for the present calculations, compared
to a factor of 1.0 obtained before. It is important to
remember, however, that the work in Ref. 1 was based
on an empirical Zp curve, while the present work used a
curve derived. from theory. Therefore, one would expect
the former results to have a smaller -average deviation.
As was pointed out in Appendix A of Ref. 1, the theo-
retical curve is very sensitive to the semiempirical mass
values. Since uncertainties of only a few tenths of a

~~ A. C. Wahl, R. L.Ferguson, D. R. Nethaway, D. E.Troutner,
and K. Wolfsberg, Phys. Rev. 126, 1112 (1962);see also references
therein for earlier work.

'4N. K. Aras and G, E. Gordon, J. Inorg. Nucl. Chem. 28, 763
(1966)."H. V. Weiss and N. E. Ballou, Phys. Rev. 139, M04 (1965).

~~R. Ferguson, Oak Ridge National Laboratory, Chemistry
Division Annual Progress Report, 1965 (unpublished).

» A. C. %'ahl, Progress Report No. TID-14466, Washington
University, St. Louis, Missouri, 1962 (unpubHshed).

» P. 0. Strom, G. R. Grant, and A. C. Pappas, Can. J. Chem.
43, 2493 (1965).
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Fr@.3. Comparison of calculated and measured kinetic energies.
The open circles are the calculated average kinetic energies for
each fragment pair, plotted against the mass of the heavy frag-
ment. The solid points are the experimental data of Schmitt
ee ai. (Ref. 2). The calculated values were obtained by energy
balance, using the semiempirical mass values of Wing and Pong
(Ref. 5), and the excitation energies in Fig. 6.

charge unit. are enough to account for the observed dis-
crepancies, we feel that the agreement between calcu-
lated and. measured independent yields is good.

Both Ferguson" and Gordon and Aras'P have pointed
out that the width of the radiochemical charge distribu-
tion probably varies significantly with mass. Strom
e] el.' also give evidence for considerable structure in
the charge width and Zp curves. This leads us to believe
that better predictions could be made only with a much
more complicated model. Apparently there is much
interesting structure in the charge distribution which
can be studied by radiochemical methods and high-
resolution direct measurements.

The calculated gamma-ray energies emitted as a
function of mass are shown in Fig. 5. The average
gamma-ray energy per 6ssion is calculated to be about
4 MeV, compared to 1.4 MeV per fission in Ref. 1.
Thus, the new calculation comes closer to the experi-
mental value of 7.2 MeV per 6ssion. "The improvement
is due to the modifications in the neutron-evaporation
calculation and the use of new, smaller kinetic-energy
variances as input data. The remaining discrepancies in
the magnitude of the gamma-ray energy and its varia-
tion with mass is almost surely due to our assumption
that excited nuclei emit neutrons whenever possible.
Actually, certain features of low-energy nuclear level
spectra tend to inhibit neutron emission to these levels.
Gordon and Aras" have pointed out the importance of
these e6ects and they obtain much better agreement
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Fzo. 4. Comparison of calculated and measured independent
and fractional chain radiochemical yields. The fractional independ-
ent yield, given on the absicssa, is the ratio of the independent
radiochemical yield to the radiochemical mass yield. In some cases
the measured quantity is a fractional chain yield —the yield of ajl
isobars with atomic number less than a given value. (In cases
where the fractional chain yield is greater than one-half, the com-
parison was made with the fractional chain yield subtracted from
unity. For such cases the latter number is more sensitive to errors
and therefore is a better measure of the success of the calcula-
tion. ) Each point represents a measurement taken from Refs. 6
or 12-18. The ordinate gives the ratio of our calculated fractional
yield to the reported measured value.

I' F. C. Maienschein, R. W. Peelle, .R, W. Zobel, and T. A.
Love, I"roceedings of the Second Un@ed Nations International
.Conference on the I'eaceful Uses of Atomic Energy, Geneva, 1PSh'
(United Nations, Geneva, 1958), Paper P/670.
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by approximately allowing for them in their neutron
evaporation calculations. Grover" gives a particularly
good discussion of angular momentum effects on
neutron-gamma competition, and it would be desirable
to incorporate his ideas into our calculation. Unfor-
tunately, the length of our computer program, with its
large number of neutron-evaporation calculations,
prohibits us from including such a feature at this time.

The calculated excitation energies are shown in Fig. 6.
Because of the above gamma-ray eBects, they probably
are low by about 2 MeV.

The last results are the probabilities I' of emitting e
neutrons per hssion, given in Table I. As in Ref. 1, the
calculated probabilities show a significantly wider
variation about the mean than do the experimental
results. "We have no satisfactory explanation for this
discrepancy. Apparently it is not due to the details of
our particular model, since Gordon and Aras get the
same discrepancy in their calculation. '0 See Ref. 1 for
a more detailed discussion of possible contributors to
this discrepancy.
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III. MODEL OF THE NUCLEUS AT SCISSION

In the remainder of this paper we interpret the excita-
tion-energy and kinetic-energy data in terms of a simple
model of the nucleus at scission.

Qualitatively, the model is as follows. We assume
that the nucleus at scission assumes a shape which
minimizes the potential energy of the system. This
potential energy contains three terms: the deformation
energies of the light and heavy fragments and their
mutual Coulomb energy. But, because of shell sects,
one fragment is more easily deformed than the other.
Closed-shell nuclei resist deformation. Consequently,
the total potential energy is minimized by putting
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FIG. 6. Calculated fragment excitation energies. The average
excitation energy per fragment pair is plotted versus fragment
mass number.

TABLE I. Probabilities P of emission of e
neutrons per 6ssion.

relatively more energy into the easily deformed frag-
ment, because the higher deformation also decreases
the mutual Coulomb energy, for most types of deforma-
tion. After 6ssion, the deformation energy appears
as fragment excitation energy, and the mutual Coulomb
energy appears as kinetic energy. Thus, the easily
deformed fragments have more excitation energy, and
emit more neutrons. This would explain the shapes of
the experimental kinetic-energy-versus —mass and neu-
tron-emission —versus —mass curves.

These concepts of the nucleus at scission are not new.
Terrell, in an earlier paper, ' pointed out that the
minima in the neutron-yield-versus-mass curve cor-
respond to shell closures. He suggested that the stifI'ness
of closed-shell nuclei was responsible for their small
excitation energy. In later work" he applied a simple
model in which the fragments at scission are represented
as touching ellipsoids with deformation energy
En ——n(R —Es)' and mutual Coulomb energy Z~Zae'/
(R&+Ra). By minimizing the potential energy and using
the kinetic energies and neutron emissions as input
data, he derives 0. as a function of mass. His values of n
obtained from thermal neutron Gssion of U'33, U"'
and Pu'", and spontaneous 6ssion of Cf'" agree with
each other. The deformation parameter e increases
dramatically near magic numbers.

.0 I . I f f I I I I I I' I I f f I I f I
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FRAGMENT MASS NUMBER

FIG. 5. Calculated gamma-ray energy emitted per fragment. The
open circles give the calculated average gamma-ray energy per
fragment, as a function of fragment mass. The solid triangles are
the average gamma-ray energy per fragment pair, plotted against
the mass of the heavier fragment.

PO
P1
P2
Pg
P4
P5
Pg

Calculated

0.077
0.183
0.266
0.246
0.158
0.059
0.015

Measured (Ref. 21)

0.027
0.158
0.339
0.305
0.133
0.038

(—O.Q01)

'0 J. R. Grover, Phys. Rev. 127, 2142 (1962)."B.C. Diven, H. C. Martin, R. F. Tashek, and J. Terrell,
Phys. Rev. 101, 1012 (1956).

"J.Terrell, Physics end Chemistry of Fissiorl, (Internatjpnal
Atomic Energy Agency, Vienna, 1965), Vol. II,
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R;=Rp,(1+ P ay; Yxp(cos8)) .
)=2

(2)

(The index i identifies the fragment mass, throughout

this paper. ) The upper limit of 5 for X is taken from

semiqualitative considerations. "We assume that the
wavelength of the deformation must be larger than

the size of a nucleon; this is true only for )«5. Our

cutoff is therefore plausible, but not rigorously estab-

lished, and shouM be regarded merely as a simplifying

"R. Vandenbosch, Nucl. Phys. 46, 129 (1963).
"W. Brunner and H. Paul, Ann. Physik, 6, 267 (1960); 7,

326 (1961); 7, 333 (1961)."P. Pong, Phys. Rev. Letters 11,375 (1963).
26 H. W. Schmitt, Bull. Am. Phys. Soc. 10, 1099 (1965).
"L. Wilets, Theories of Eudeur Fusion (Clarendon Press,

Oxford, England, 1964).

Vandenbosch, " using a similar model, showed that
by using the U'" kinetic energy and neutron data as
input, he could reproduce the kinetic energies for
Cf'5' Ac", and At'". Also, he showed that the result-
ing curve for the stiftness parameter versus mass cor-
related well with that derived from nuclear-level
structure information.

Brunner and Paul, " in formulating a model of the
6ssion flarrier, came to the conclusion that asymmetric
6ssion was due to variations in the height of the barrier.
They ascribe these variations to di8erences in the
deformation of the fragments, which in turn are due
to the stiRness of closed-shell nuclei.

Pong" used stiffness parameters (for quadrupole
deformation) extrapolated from nuclear-structure data
as input to his earlier statistical theory of fission. He was
able to reproduce the experimental kinetic-energy—
versus —mass curve for U'", and also obtained a saw-tooth
shape for the excitation-energy —versus —mass curve,
in agreement with the neutron data. The asymmetric
yields are not predicted. However, Fong points out that
the energy changes needed to predict asymmetric 6ssion
are within the errors of the approximate expression for
the deformation energy.

Schmitt" has obtained deformability parameters
using only the kinetic-energy data for U'" and Cf'".
He assumes that the fragments at scission are slightly
separated spheroids with their potential energy mini-

mized. The shape of Schmitt's curve for the deforma-

bility parameter versus mass agrees, at least qualita-
tively, with those curves obtained from neutron-emission

data or from nuclear-structure data. ,

In the following we use the same general approach as
in the above works: We assume that at scission the
potential energy is minimized. We combine this assump-

tion with a simplified model of the nuclear shape at
scission to obtain deformation parameters and kinetic
energies.

We assume that the fragments at scission can be
represented by a spherical harmonic expansion about
a spherical shape:

assumption. The effect of varying the cuto8 of the
series in X is discussed in the Appendix.

In order to continue we must find an expression for
the potential (Coulomb plus deformation) energy of the
fragments. For this purpose we use a, modi6cation of
an expression derived by Wilets. '7 Wilets' 6rst-order
expression for the energy change due to the deformation
of the ith fragment, in contact with its complementary
fragment i', is

Sp; ZiZ2e' — Rp;
D,'=P (l —1)(~+2)~,P-

S+ (Rp~+Rp' ) Rp'+Rp'

(
3

t Rp; " t'2K+1)'"
(3)

2K+1 (Rp;+Rp; k 4m.

where (Rp'+Rp') is the sum of the radii of the ith
fragment and its complementary fragment i'. The
quantity Sp; is the surface energy of the ith fragment
when it is spherical:

Spj 47iRPj 1 j&

where v; is the surface tension.
Equation (3) includes the increase in surface tension

energy due to deformation, and also the change in
mutual Coulomb energy due to deformation. Wilets
derives this expression as an expansion to order x',
where x is the fissionability parameter of the fragments,
and is of the order of one-half.

The above expression refers to touching fragments.
In our preliminary analysis we found that this expres-
sion consistently gives kinetic energies high by about
20%, using rp ——1.2 F. To obtain reasonable values for
the kinetic-energy one must either take rp=1.5 F,
which is unreasonably high, or one must assume that
the fragments "at scission" are separated by a small
distance h. We chose the latter assumption. (Another
possibility would be to assume that the fragments are
polarized; this possibility was not considered in this
work. ) A value of 6=2.4 F was used. This separation
may be rationalized on the basis of the width of the
nuclear surface. The nuclear-density distribution does
not have a sharp boundary but drops from a large to a,

small value over a distance of about 2 F. Hence, the
2.4-F separation between the "surfaces" of the frag-
ments does not represent a complete separation between
the fragments. They still touch, in that their density
distributions overlap. The introduction of a spacing
requires that in Eq. (3) the quantity (Rp~+Rp') be
replaced by the quantity (Rp;+Rp; +A).

A second modification to Eq. (3) is the inclusion of a
term to account for the change in Coulomb self-energy
of each fragment" to order 0.'. The additional coeKcient

~8 See, for example, O. Nathan and S. G. Nilsson, Alpha-, Beta-,
awd Gamma-Ray Spectroscopy (North-Holland Publishing Com-
pany, Amsterdam, 1965},Chap. X.
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The complete expression of the potential energy of
the fragment pair ~, i' at scission is

V=Eo.+Sp,+Sp; +D,+D,; . (6)

This coefficient can be as much as 50% of the surface-
tension coeKcient of nq, and so needs to be included.

The modified expression for the energy due to the
deformation of the ith fragment becomes
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Also, we assume that at scission the entire excitation
energy of each fragment is tied up in deformation
energy. Then we may equate the energies 8', determined
in Sec. II with the theoretical expression for the
deformation energy:

f I I f f I I I f I f I I f f f I I
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Pjo. 7. Surface-tension parameters calculated in this work. The
ordinate is equivalent to the coeScient A, in the usual semi-
empirical mass formula; i.e., the surface energy of an undeformed
fragment of mass A; is given by pro'TjA

-(4orrpor;)A;o"
In this expression Eo, is the Coulomb energy of the IV p

' ' '
p 1)(I,+2)

underformed fragments, 8~

3Z 8- 3Z'
~Co + +

(Ro +Roe+ 6) '5Ro; 5Ro;

Zg, e'

and S(); is defined in Eq. (4).
The radii were taken to be Epi=1.2A ' F, and the

separation 6 was taken to be 2.4 F, on the basis of the
kinetic energies. We are left with the problem of deter-
mining the surface-tension parameters, 47rr'or;. (We ex-

press surface tension at 4mrp'7. , MeV, because this
quantity corresponds to the surface coe%cient A,
in the usual semiempirical mass formula. ) As was in-
dicated above, it i.s essential that we take into account
the variation of this parameter with mass number.
Therefore, we left the quantities vi as free parameters,
to be determined from the excitation energies calculated
in the first section of this paper. In determining these
parameters we assumed that, for a given nuclide, the
surface tension is the same for all multipoles.

(IV/Ba)„= 0, (9)

for each X and i. Equations (5) through (9) may be
solved for r;. (The solution is a fourth-order polynomial
in r;. It is easily shown, however, that all but the largest
of the four roots correspond to surface tensions which
wouldmake the fragment itself unstable tofission. There-
fore, the quantities ~i were found by an iterative method
which coverges on the largest root. ) With this parame-
ter determined we can solve for the spherical harmonic
coefficients and the kinetic (mutual Coulomb) energies:

3 (X—1) ZPe'
ni . (8)

4or (2K+1) Rp;

With all these assumptions, the evaluation of the
potential-energy parameters is straightforward. . The
potential energy LEq. (6)) is minimized with respect
to each mode of deformation of each fragment,

Epi

(X—1)(X+2) 6(X—1) Z. e'))
(4rrr o'r;)A; (10)

(2~+ 1) (2&+1) ., i

t'Z, Z( e' 4n. ')' ' 3 'A—1-
I\, 2)+1 o;+)(,;+)) (2)+))()4+8;+5)

(R(),+R(),,+6)

3 "-' 2K+1 '('
1—P + 1— e(i;

'=', ' (R„+R„'+A) ~ (2I(+1) R„+R„,+A 4~
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Fio. 8. Surface-tension parameters calculated from nuclear
structure data. The ordinate is equivalent to that in Fig. 7, but is.'

calculated from the properties of the first excited states of even-
even nuclei, assuming a simple vibrational model for the mode
of excitation. The data are plotted versus proton and neutron
numbers to emphasize shell effects. (Closed shells are denoted by
heavy marks on the abscissa. ) Nuclides with closed neutron shells
are omitted from the plot versus proton number, and vice versa,
to help isolate proton and neutron shell effects.

Thus, the surface-tension parameters, deformations,
and kinetic energies of each fragment pair can be deter-
mined from the fragment excitation energies (Fig. 6).

The surface-tension parameters obtained. from these
calculations are shown in Fig. 7. The surface-tension
parameter shows the strong dependence with mass
number found by others. " " It is generally higher
than the semiempirical mass value, as Terrell also
found.

In Fig. 8 we have plotted a set of surface-tension
parameters deduced from nuclear-structure data. "—"
These data clearly show a strong e6ect at closed shells,
as is implied by the curve obtained from our fission
model. The absolute values of the nuclear-structure
parameters are generally lower by a factor of 2 to 4
than those we have found. This difference is not too
unreasonable. Any further refinement in our model,
such as including higher terms in the series or assigning
some of the excitation energy to internal energy, would
reduce our values. Furthermore, the nuclear-structure
values themselves are open to question. They are cal-
culated on the assumption that the erst excited state
of the even-even nudides in this region is formed by
the nuclear surface making quadrupole vibrations about
a spherical shape. "This model is not completely cor-
rect for any nucleus, and is certainly very poor, for
some, if not most, of the nuclides represented in Fig. 8.
For example, the energy spectra above the first excited
state does not resemble that of simple vibrators in most
of the nuclides considered. Also, note that the nuclear-
structure values correspond to deformation energies
of 1 MeV or less, while the fission values are for deforma-

"K.Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther,
Rev. Mod. Phys. 28, 432 (1956).

'OP. H. Stelson and F. K.&McGowan, Phys. Rev. 110, 489
(1958).

"1VNelear Data Sheets, compiled by K. Way et al. (Printing and
Publishing Office, National Academy of Sciences—National
Research Council, Washington 25, D. C., 1964), NRC 6-4-101.

tion energies of the order of 10 MeV. It is unlikely
that a single value of the surface-tension parameter
6ts over this range of deformations.

The kinetic energies obtained from Eq. (11) are com-
pared with experiment in Fig. 9. The agreement is
generally good, with the average discrepancy being
about 5 MeV, and the shapes of the curves being very
similar. The disagreement is highest for symmetric
and very asymmetric fission. Recall that the calcula-
tion is based on empirically determined excitation
energies, and these energies are most uncertain at
symmetric and very asymmetric fission. The discrep-
ancies for the extremes of the kinetic-energy curve cor-
respond to changes in the excitation energies of about
5 MeV, which is not beyond the limits of accuracy of
8';, although it is rather high.

In addition, we have calculated the spherical har-
monic coefficients O.q;. Instead of tabulating these
values, we have plotted the shapes of the fragments,
for three mass ratios, in Fig. 10. In each case we have
included a curve of the saddle Poirtt sha-pe for U"'
fission as calculated by Lawrence, "and by Cohen and
Swiatecki. " (The two results are numerically almost
identical. )
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FIG. 9. Comparison of experimental kinetic energies with those
calculated from Kq. (11) of this paper. The open circles are the
calculated values and the solid triangles are the values measured
by Schmitt et al. (Ref. 2). These calculations are not to be con-
fused with those of Fig. 3, which are based only on energy balance.

"J.P. Lawrence, Phys. Rev. 139, 81227 (1965).
3'S. Cohen and W. J. Swiatecki, Ann. Phys. (N.Y.) 22, 406

(1963).
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Fro. 10. Shapes of the fragments at scission, as calculated from
Eqs. (2) and (10). The nuclear surfaces are of course not sharp
boundaries, as shown, but are diffuse over a distance of about
2 F. The calculated shapes are shown for three mass ratios, cor-
responding to very asymmetric, asymmetric (very probable),
and symmetric 6ssion. For comparison, the calculated saddle
point shape calculated by Lawrence (Ref. 32) and by Cohen and
Swiatecki (Ref. 33) is shown as a dashed line.

If one is to interpret the shapes further (and this
really goes beyond the scope of our simple calculation),
the implication is that there is little further elongation
between saddle point and scission. The main change
is a necking in of the 6ssioning nucleus. This picture
appears to have features similar to that presented by
Cohen and Swiatecki, " and by Milton34: For nuclei
with x&0.67 the saddle point is already quite close to
the scission shape. Our model also implies somewhat
greater elongation at scission for syrrunetric and very
asymmetric 6ssion than for intermediate-mass ratios.

g4 J. C. D. Milton, Advanced Course on Nuclear I'hysics mzth
Therma/ Neutrons (Institut for Atomenergi, KjeOer, Norway,
j.963).

In the 6rst part of the paper we demonstrated that
the available mass, energy, and yield data can be cor-
related successfully with a simple semiempirical cal-
culation. It appears that an improved correlation re-
quires improved neutron-emission data and more
accurate semiempirical mass predictions. All the evi-
dence we have indicates that the charge-mass distribu-
tion is not a simple, smoothly varying function, but has
a great deal of structure. More extensive radiochemical
data, or higher resolution initial yield measurements
should reveal some very interesting features due to
odd-even effects and closed-shell effects.

The major portion of this work involved applying a
simple model of the nucleus at scission to U"'. The
fragment excitation energies were used as input, and
from these were calculated the surface-tension paraine-
ters, the kinetic energies, and the shapes of the frag-
ments as a function of mass. The following are the major
assumptions made in the calculation: (i) the potential
energy is minimized at scission; (ii) the entire fragment
excitation energy is tied up in deformation energy at
scission; (iii) the surface-tens'ion parameter, 4rrrs r;,
is the same for all modes (multipoles) of deformation;
(iv) the shape of each fragment can be represented. by a
spherical harmonic expansion cut off at X=5; (v) Eq.
(5) adequately approximates the deformation energy
as a function of the spherical-harmonic coeKcients;
(vi) the fission fragments are separated by a distance
8=2.4 F (separation between mean radii) at scission.

Obviously many or all of these assumptions are
open to question, so that the model is really only an
interesting hypothesis. For example, the potential
energy need not be minimized at scission; the shape of
the potential barrier leading to scission might favor
development of a shape not minimizing the potential
energy at scission. Also, some of the excitation energy
is no doubt tied up in internal excitation, whereas we
have assumed that the nucleus is "cold" atscission,
so that this internal energy is small.

The validity of assumptions (iv) and (v) depends, in
part, on how big the codBcients O.q are, and how rapidly
they diminish as ) increases from 2 to 5. These con-
siderations are important because the terms neglected
in Eq. (5) involve higher order terms in rri, and other
terms for higher values of X. A discussion of the choice
of cutoff in P is given in the Appendix. For the most
deformed nuclei O.g is about 0.5. More typically it is O.i.
The value of 0.5 is generally a factor of 4 to 6 smaller
than 0.2. Although we have not examined the converg-
enceof Eq. (5) inanydetail, our feelingis thatitis nota
bad approximation from most cases (as 0.1 or 0.2).
However, it may be poor for those mass numbers which
give large values ny. It mould be worthwhile to in-
vestigate the deformation energy expansion in detail,
but this is beyond the scope of the present work.

In spite of these quali6cations, we feel that the



1026 J. M. I'E RGU SON AN D P. A. READ 150

scission shapes given by Eqs. (8)—(10) are probably not
far from the real shapes. (Tabulations of the entire
output are available on request; we have omi. tted them
from this paper to save space. ) The excitation energies,
kinetic energies, and surface-tension parameters all
depend on these shapes, and it would be very dificult
to obtain reasonable values for all three, as we have
here, with radically diRerent shapes.

This investigation will be extended to other nuclides,
with further investigations of the validity of the modeI.
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FIG. 11. Comparison of shapes calculated for diGerent cutoff
values for the series of Eq. (2). The solid curve is for maximum
) =10, while the dashed line represents maximum ) =5, the value
used in the main body of the paper.

APPENDIX

As we pointed out in Sec. III, the cuto6 of the series
of Eq. (2) at X=S is rather arbitrary. In effect, this
cutoG limits the range of shapes which we consider.
Also, it affects the calculated surface-tension parameter,
In fact, if the series went to inanity, the surface-tension

parameter calcula, ted from Eqs. (5) through (9) would.
become infinite, and the fragments would approach
spherical shapes with a separation h. Since it is obvious
that the cutoB sects the results, we discuss here the
question of how sensitive the results are to the particular
choice of the cutoff.

To investigate this question we extended the cal-
culations on the fragment pair A &

——79, A ~
——157.

Since A = 157 is the most deformed fragment, it repre-
sents an extreme case. The results of the calculation for
maximum P =10 are shown in Fig. 11.The shapes are
not radically changed. The values of R(e) for cutoffs
at X=S and X=10 differ typically by 10% or less for
A=157. In general, the shapes are not extremely
sensitive to the choice of cutoff, varying slowly for
cutouts from X=4 to ) = 10 or higher.

The surface-tension parameters increase by about
30% as the cutoff is increased from X=S to X=10.
They change rather uniformly, so that the eGect of
using X=10 as the cuto6 would increase the scale of
Fig. 7, without significantly changing the shape of the
curve. Increasing the cutoff by one term changes the
values by only a few percent.

To summarize, the results of the model depend on
the number of I.egendre polynomials used to represent
the shape. In e6ect, this cutoff is part of the model.
However, the results vary slowly with the choice of
cutoff, and they would be at least qualitatively the
same if the number of terms was more than doubled.

If the series were extended to in6nity, however, the
shape would become spherical and the surface tension
would approach inanity in such a manner as to keep
the deformation energy 6nite.


