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Theory of Microwave Nonresonant Absorption and Relaxation in Gases
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A quantum derivation is given of nonresonant absorption and dielectric and magnetic relaxation in gases
with molecules which have diagonal electric or magnetic dipole matrix elements. General expressions for the
shape and width of pressure-broadened nonresonant lines are obtained by solving a master equation for
the polarization. Relaxation by bimolecular collisions which change the magnetic (orientational) and total-
angular-momentum quantum numbers of the dipoles is treated in the impact approximation. The case of
weak collisions which change these quantum numbers by one or two units is solved in detail; intermediate
and strong collisions which cause much larger quantum changes are considered qualitatively. Formulas are
derived for computing collision cross sections from known intermolecular interactions for weak collisions.
On comparing experimental results for symmetric-top gases with the theory, it is concluded that strong
collisions are responsible for the relaxation process.

I. INTRODUCTION AND SUMMARY nonresonant lines. ' However, Ben-Reuven~ has recently
emphasized that the Anderson theory should not apply
to nonresonant lines which should be regarded as com-
posed of many overlapping lines at zero frequency. The
erst consistent treatments of overlapping lines in the
theory of pressure broadening were made by Baranger, s

and by Kolb and Griem. ' Their results were later re-
derived as a particular case of a more general theory by
Fano. "Using the theories of Baranger, Kolb and Griem,
and Pano, Ben-Reuven~ has treated pressure broadening
in both the resonant and nonresonant microwave spectra
of gases.

In this paper, we start with a master equation govern-
ing the distribution of dipoles among the rotational
states and derive an expression for the frequency-
dependent polarization associated with the diagonal
dipole matrix elexnents. This type of treatment is based
upon a method frequently adopted in the theory of di-
electric and magnetic relaxation. ""It differs from the
method of Ben-Reuven~ and gives additional insight
into the nature of the relaxation process.

After a physical picture of the polarization process is
presented in Sec. II, a rate equation for the polarization
is developed in Sec. III. General expressions for the
shape and width of nonresonant lines in gases are derived
in Sec. IV. The relaxation rate expressed in terms of
cross sections is treated in the impact approximation
in Sec. V. Formulas for the cross section for a variety of
intermolecular potentials are obtained in Sec. VI by a
perturbation expansion. The resulting selection rules
allow changes in the magnetic and total-angular-
momentum quantum numbers of only one or two units.

I~LASSICALLY speaking, symmetric-top' and cer-~ tain diatomic' molecules have a component of the
permanent dipole moment in the direction of the total
angular momentum. This dipole component, which is
stationary (nonrotating) in space except for reorienta-
tions by molecular collisions, gives rise to a nonresonant
or Debye-type spectra in gases at low pressure, where
collisions are bimolecular. In quantum mechanics, re-
orientations are equivalent to transitions among the
various spatially degenerate quantum states. Since such
transitions are produced by anisotropic intermolecular
interactions between a pair of colliding molecules, the
study of nonresonant absorption in gases is capable of
yielding valuable information on such interactions, pro-
vided the relation between the relaxation time and the
pertinent molecular parameters is known.

Nonresonant spectra have been analyzed within the
framework of the Debye equation, obtained from the
Van Vleck—Keisskopf equation specialized for zero fre-
quency. "In these equations the linewidth or relaxa-
tion frequency appears as a parameter to be determined
by experiment. Since it is clear that the linewidth in
general must be a function of rotational state, it has been
assumed tha, t the nonresonant shape may be represented
as a sum of Debye equations, each of which depends on
the rotational state. It is the object of this work to de-
rive expressions for nonresonant line shape and relaxa-
tion rate.

The most complete study of the impact theory of
spectral line shape for isolated lines has been given by
Anderson' and extended by Tsao and Curnutte. 4 This
theory which has had some success in accounting for the
width of resonant lines' has failed in its application to
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Collisions associated with such transitions are called
weak, and the corresponding relaxation rate for dipole-
dipole interaction is found to be much smaller than the
experimental values (Sec. VII). The case of strong col-
lisions which cause large changes in the rotational state
of the dipoles, and the role of weak and strong collisions
in resonant and nonresonant absorption are discussed in
Sec. VIII.

To check the theory as well as to discuss certain of its
aspects, the spin-lattice relaxation rate in certain types
of paramagnetic crystals is obtained in Appendix A.
Certain sums of matrix elements which are needed in the
development of the theory are evaluated in Appendices
8 and C.

II. THE STATIONARY COMPONENT OF
THE DIPOLE MOMENT

Consider a symmetric top molecule whose rotational
state is speciGed by the quantum numbers, J, E, and
M. In units of h, [J(J+1)$'Is is the total angular mo-
mentum, E is the component of angular momentum
along the symmetry axis, and M is the projection of the
total angular momentum J, along a given axis. The
vector relation of these angular momenta is illustrated
in I'ig. 1. In the absence of electric or magnetic Gelds,
the states 3f=J. —J are degenerate. The permanent
dipole moment y lies along the symmetry axis I and,
classically speaking, has a component pK/LJ(J+1]"'
collinear with J. As a consequence, symmetric top
molecules may be expected to interact with electric
fields in a manner analogous to the behavior of magnetic
spins in magnetic Gelds.

Consider an isolated molecule in state J and in a
deGnite eigenstate M in the direction of a linearly
polarized electric Geld, F=Iioe'"'. The stationary or
diagonal component of the dipole moment in the direc-
tion of the applied Geld is given by"

y Jrr~=is(J, K,M
~

cos8
~
J,K,M) =@KM/J(J+1), (1)

where p is the permanent dipole moment. If, as is
assumed here, the angular frequency co is not resonant
with any pair of rotational levels, the applied Geld can-
not induce rotational transitions. In addition, it is clear

FIG. 1. Vector diagram of the angular
momenta for a symmetric top molecule.
The molecule represented is, for example,
CHSCl.

'3 R. de L. Kronig, Proc. Rat. Acad. Sci. 12, 608 (1926).

that the applied Geld cannot exert a torque and, there-
fore, reorient the molecule. However, these transitions,
e.g. , M —+M', J—& J' and 3E,J~3f',J', can occur
because of molecular collisions. "In terms of (1), these
transitions signify, respectively, a reorientatio of the
stationary component of the dipole moment, a change in
its magnitude, and both. Detailed balancing in the pres-
ence of the applied field preferentially weights those
transitions which increase the dipole moment in the
direction of the field, and consequently, the gas becomes
polarized.

We should note that the interaction between the
dipole and perturber depends on space quantization
with respect to the line joining the two molecules.
This line moves in space as the perturber passes by,
turning through an angle &180' during a complete
passage. If the interaction is adiabatic, i.e., if the colli-
sions are slow and the splitting of the degeneracy by the
intermolecular force is large, the dipole remains in the
same 3E state with respect to the collision axis and eGects
a complete reorientation about the space fixed axis. "
Such collisions are not considered in evaluating the cross
sections. The sudden approximation is used where one
regards the intermolecular perturbation as the cause of
transitions to other eigenstates of the unperturbed
Hamiltonian.

III. THE RATE EQUATION FOR THE
POLARIZATION

The Debye formula for the reorientational relaxation
of magnetic dipoles in paramagnetic solids has been
derived quantum mechanically by Kronig" for weak
collisions and by Van Vleck and Weisskopf" for col-
lisions of arbitrary strength. Their derivations are based
on solving appropriate rate equations governing the
polarization in the magnetic substates belonging to a
given spin state. Extending their method, we obtain in
this section equations for nonresonant absorption in
gases for collisions of arbitrary strength, which change
both the magnetic and total-angular-momentum quan-
tum numbers.

Wang Chang and Uhlenbeckrs (WC-U) have pre-
sented a semiclassical treatment of transport theory in
dilute gases where the translational motion is considered
classically and internal motions quantum mechanically.
They use a distribution function f;(s;,i) for each quan-
tum state i which refers to the entire set of quantum
numbers necessary to specify the internal state of the
molecule. Here we let the polar molecule be designated
by i= j., and the perturbing molecule byi =2. The posi-

'4 The transition E—+ X' is strictly forbidden for all interactions
considered here; for simplicity, this quantum number will often be
suppressed."H. Margenau and M. Lewis, Rev. Mod. Phys. 31, 569 (1959)."C.S. Wang Chang and G. E. Uhlenbeck, in Molecular Theory
of Gases and Isgssids, edited by J. 0. Hirschfelder, C. F. Cnrtiss,
and R. B. Bird (John Wiley R Sons, Inc., New York, 1954), pp.
501-506.
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tion coordinates in the distribution function are sup-
pressed since only uniform gases are considered. This
function is defined in such a way that f;(v;)dv; represents
the density of molecules in state i in the velocity ele-
ment dv; at a time t. Each distribution function satisfies
its own Boltzmann equation which for negligible ex-
ternal forces may be written as

Equation (3) describes the system with an applied
electric or magnetic field, F=Fpe'"', provided f and A
are functions of this field. Then detailed balancing is
preserved when"

A, , expt —(a—p,F)/k&j
=A» «pE —(~t —» F)/k&j~ (5)

1'22'
fl'(V1') f2'(V2') Vi'2'o12, 1'2'(Vi'2')dV1'dV2'

where E& is the internal energy, p, & is the diagonal dipole
matrix element in the direction of the field, and F is the
instantaneous value of the field at collision. To the first
power in the field, a Taylor expansion gives

fi(V1)f2(V2)V1201'2', 12(V12)dVldV2 y (2)

Ai i=+ f2
22I

g('v) vlgv
' 2,0121,

where g(v) is the distribution function for the initial
relative velocity. Note that the ensemble of perturbers
represents the heat bath.

' N. Taxman, Phys. Rev. 110, 1235 (1958).
8 R. F. Snider, J. Chem. Phys. 32, 1051 (1960)."H. A. Tolhoek and S. R. de Groot, Phypica 15, 833 (1949).

where v~2 represents the initial relative velocity of
molecules 1 and 2 before a collision in which the final
relative velocity is vi 2.. The cross section o12,»(v»)
refers to a collision in which the molecules initially in
states 1 and 2 end up in states 1' and 2'.

The Boltzmann equation derived by WC-U has been
discussed by Taxman' and Snider, "the latter empha-
sizing that this equation applies when the internal states
are nondegenerate and the corresponding density matrix
is diagonal. With spatial degeneracy, the initial state of
a molecule may be any linear combination of degenerate
states belonging to the same energy. Snider" has de-
rived a Boltzmann-type equation for this case which in-

cludes nondiagonal terms in the distribution function.
However, Tolhoek and de Groot" have shown that when
the Hamiltonian of a system is invariant for rotations,
the density matrix of the ensemble remains diagonal in
the degenerate quantum numbers. In the system under
study, the unperturbed Hamiltonian is spherically sym-
metric, and the effect of collisions is also spherically sym-
metric, i.e., there is no preferential direction for the
velocity of the perturbers. Consequently, Eq. (2) which
has only populations and neglects off-diagonal terms is
sufficiently general for our purpose.

Since the distribution function fi(vi) can be repre-
sented as a product of the function fi, the density of
molecules in state 1, and F(vi), the normalized velocity
distribution function, Eq. (2) may be written in the
form

ilfi/~(=Pi (firA» —fiAi i). (3)

A» is the probability per unit time that molecule 1 will

make a transition from state 1 to 1' accompanied by an
unspecified transition of the perturber. This transition
rate is given by

A 1'1—A 1'1 + (r)A1'1/t)F0)3'0=0F0,

fi= fip+oiFo,

(6)

(7)

IV. THE COMPLEX DIELECTRIC CONSTANT
AND RELAXATION RATE

In the absence of the Geld, the Hamiltonian of the
system is spherically symmetric and the transition
probability cannot depend on how the axis of quantiza-
tion is selected. As a consequence, several authors" "
have obtained a relation of the form

ZM ii JMA JM, J'3P '= I3J'M'R JJ' y

where the reduced matrix RJ-J is independent of mag-
netic quantum numbers. With Eqs. (9) and (11), Eq.
(10) becomes

dP J/di= Q J' (PJ'RJJ' PJQM' A J'M',JM'
+(F/k P)Z3E fJM ii JM ZM' A J'M' JM'

(F/k&)ZM 13J M'fJ M'R—JJ), (12)

where the sum pM A J M, JM' is independent of mag-
netic quantum numbers. ""Multiplying Eq. (11) by

20 See Appendix II and note from Eq. (38) that AJM

where the superscript zero denotes the absence of a Geld.
The population fi and population per unit field at are
functions of time; f10 is time-independent. It is assumed
that the perturber does not interact with the field, and
consequently f2= f20. Th—en to terms linear in the applied
field, Eq. (3) becomes

d&1/dk Ql' Lo 1'A 11'— 0 1A1'1

+(e'"'/kT)(fi'P1At 1 ft '131 A»—)j. (8)

With the subscript 1 replaced by the quantum numbers
J, M, ' the polarization in state J is given by

PJ Fp EM 13JM&JM ~'
Then multiplying Eq. (8) by Fpii JM and summing over
3f, we have the rate equation for the polarization in the
Jth state,

dP J/di =F0 Q J'MM' [KJ'M'i3JMA JM JIM'

oJMi3JMA J M—,JM'+(e'"'/kT)(f JM'iiJM'A JM J.M'
—fJIM~ P J'3Pl3JMA JM, JIMI )j. (10)
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p,J ~ and summing over M', we obtain for EJJ

ZMM' I3 JM13J'M'~ JM, J'M'
RJJJ

ZM' 13J'M'
(13)

(ZM fJM 13JM )I ZM~ A J~M', JM

ZM" M' 13JM"31J'M'~ J'3P, JM"
(14)

M" PJ3P'

by noting that fJM' is independent of 3f, i.e., fJM'
=fj'/(2 1+1),and by using the relation

fJ'M' Jf JM, J'M' fJM ~ J'M', JM ~

With some rearrangement, (14) may be written as

~+J ZM fJM 13JM

where

+&J ZJ'3P ~ J'M', JM (1 I3J'M'/I3JM) ~

In view of Eqs. (14) and (15), Eq. (12) becomes

dPJ (Pj=Pj Pjf &Jj ZM Jf j M, JM—'
I

dt ~

(15)

p
+ ~~j QM fJM'13JM' ~ (16)

kT

Using the relation dPJ/dh=uvP j, we obtain from Eq.
{16),

p ACO J
Pj= QM fJM'13JM'

kT Md+AM J'
(17)

where Ace J' is given by

The the last two terms in Eq. (12) may be put in the
form

4& ZM fJM 13JM ~&J
6J—1=—

where ho& J is given by

kT 6M j+'LN
(24)

~&J QM' + JM', JM (1 33J3P/P JM) . (25)

Relaxation in paramagnetic crystals is an example of
this case and is treated in Appendix A to illustrate the
application of Eq. (25).

Consider next collisions so strong that all final orienta-
tions of the dipole are equally likely. In this case the
transition rate will be independent of magnetic quantum
numbers and the second and fourth terms on the right
side of Eq. (10) will be equal to zero since pM ll3JM=O.
The vanishing of these terms means that the probability
of a given dipole returning to its initial state in a single
collision is negligible. The complex dielectric constant is
now represented by a sum of Debye equations.

Numerous experiments have shown that the dielectric
relaxation spectrum in gases has very nearly the simple
Debye shape. ' ' It is therefore reasonable to make the
approximation gj (o&)/g j(co)~1, in which case the com-
plex dielectric is represented by a sum of Debye
equations,

4m.

1— P fJM I3JM
Aco j+go

(26)

When ~=0, Aarj'=hajj and Eq. (22) gives

~'(0) —1= (47r/kT)g JM fJM'33JM g (23)

i.e., the usual expression for the static dielectric
constant. "

Despite its simple appearance, Eq. (22) is extremely
complicated since Acr J' is a function of the shape factors
g j(co) and gJ.(~).However, this equation may be simpli-
fied in several cases. If the probability for J transitions
is negligible compared with that for 3E transitions, the
solution of Eq. (16) is the Debye equation, namely,

&a&j'=Qj ((Pj/Pj)&jj EM Jf J M, JM—') (1g) where AcoJ is given by Eq. (15).For the purpose of cal-
culation, it is convenient to introduce the quantity LJ.J
defined by

QM' PJ'M'Jl J'M', JM 13JM~J'J ZM' ~ J'3PJM ~ (2, 7)

Then Eq. (15) assumes the form

az j=g j.(PM. A J.M. ,JM')(1—Lj.j). (28)
where

(20)gJ(M) = EcoJ/($Q+ AQ J),

An expression for AceJ' approximately in the form of Eq.
(15), namely,

( gj~(&) 13J~M~'l

(1~)
gJ(Q) I3JMi'

e—1= (4x/F) PJPj,
we have from Eq. (17) that

4x A(d J
Z JM fJM'I3JM'

A(d J +ZQkT

may be obtained by using Eqs. (13) and (14). Since the
complex dielectric constant e= e'—ie" is related to the
polarization by

(21)

An expression for LJ J is derived in Appendix C. The
assumption of strong collisions means that LJ J is
negligible, whereas for weak collisions, LJ.J is nearly
equal to one and greatly reduces the contribution of such
collisions to the relaxation frequency. Thus the contribu-
tion to the polarization arising from transitions in which
dipoles leave a given state can be largely canceled by
the polarization arising from reverse transitions.

Since dielectric-loss measurements have shown that
the frequency distribution has nearly the Debye shape, ' 2
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it is reasonable to expand Eq. (26) in a power series. A
6rst approximation produces a Debye term plus a small
correction term. ' The relaxation frequency in the Debye
term is the intensity weighted average,

Z ZM f 1M ls JM Q J'M' A J'M', JM (1 )s J'M'/V J M)
(Ao)) =

ZZM AM') ZM'
(29)

In Eq. (33) I' is the time-ordering operator which
makes operators act in the order prescribed by the
time in their argument. If H, (f) commutes with
Hl+H2, then Eq. (33) with the time-ordering operator
removed solves the equation of motion. The requirement
that $Efg+H2, H.(f))=0 demands for all levels that
Ev E—=0, where Ef)=Et +E2 and E =Et+E2.
However, it has been argued that for the particular
levels considered, it is only necessary that"

The numerator of this equation may be rearranged as

2 J'M' JM fJM A Z'M' JM 2 (8JM IsJ'M')
[E,—Z.[«av/b. , (35)

Then using Eq. (4) for the transition rate and Eq.
(29), we obtain

(+o)) Qll' fl +22' f2 'Vg(V) dV 0'P 2~, is

X2(Ill f t'—)' Zl ft') 2', (3o)

which is identical with Ben-Reuven's~ equation derived

by a different method. (As before subscript 1 means

JM, 1' means J'M', and 2 and 2' refer to the initial and
final states of the perturbing molecule. ) Equation (30)
clearly shows that only collisions which change the ex-
pectation value of the dipole in the direction of the
applied field contribute to the relaxation frequency.

e(f) = U(f, &,)e(&,).
The propagator U(t, fv) is defined by

(32)

V. CROSS SECTION IN THE SUDDEN
APPROXIMATION

General expressions for the transition probability and
cross section in the sudden approximation are developed
in this section. Only an outline of the derivation suffi-

cient to define terms is presented since this derivation
has been discussed by a number of authors. ' ""

The Hamiltonian for two molecules, whose transla-
tional motion is described by a classical trajectory, is
given by

H(f) =H,+H2+H, (&) . (31)

H1 and H2 are the unperturbed Hamiltonians of mole-
cules 1 and 2, containing only their internal coordinates,
and H, (f) is the intermolecular interaction. In the inter-
action picture, the Schrodinger equation of motion is
formally solved by"

0 1'2', 12 [ Tt 2,22(d~) ['d~, (37)

where dg is an element of the cross section. The meaning
of Eq. (37) is that the collisions are characterized ac-
cording to the paths followed by the molecules; then
corresponding to each element of cross section there is a
definite transition probability. Since the integral J'do.
implies an average over all direction angles of the col-
liding molecules relative to the polarization direction,
Eq. (37) may be represented by

0 1'2', 12 22rbdb([ Tl 2,22(b) [ 2)n, (37a)

where b is the impact parameter or distance of closest
approach, and ( )() represents the average over all
collision directions. However, since the collisions occur
with equal probability in all directions (in the absence
of the applied field), ( )n is simply an average over the
unit sphere. (See Appendix B.) This average is taken
over the direction angles of molecule 1, since [Tl, l, ['
must be summed over all initial and final degenerate
states of molecule 2, and such a double sum is inde-
pendent of the orientation of molecule 2.

With Eq. (37a), the transition rate given by Eq. (4)
becomes

where bp is the collision diameter and e is the relative
velocity. Assuming that the inequality expressed by
(35) holds, we have for the transition probability
12~1'2'

t

[Tl 2, l2[ = [(1'2'[exp[ —(i/b) H, '(8')dk')[12) [2.

(36)

The cross section for the transition 1,2 —+1',2' is
given by the integral

where

U(t, fv) =P exp —— H, '(t')dt'
A,

(33)
A@is=+ fss g('V)'VdV

22 p

22rbdb([ Ti 2 22[ )n. (38)

H '(f) —&(((s) (&1+&2)&H (f)v(—(ls) (Irl+rr2)1 (34)

"R.B. Bernstein and K. H. Kramer, Theoretical Chemistry
Institute, The University of Wisconsin, 1965 (unpublished).

22E. Merzbacher, Qlcamtrcvl Mechalzcs Uohn Wiley 8z Sons,
Inc., New York, 1962), Chap. 17.

The quantity fsvv22rbdbdf is the probability that a col-
lision of type mb' occurs in the element of area 2xbdb
in a time dt. The interval dh is chosen large compared
with the duration of collision, b/v, but small compared
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with the interval between collisions so that it contains Eq. (II.4), that
at most a single collision. For this reason, the limits of
integration t and to in Eq. (36) can be replaced by &~. Z (I &pa~'i I')ii= L(2J2+1)/16m')Q In(khan) I'

M'M2M2' kkg

XC(JkJ' EOE)'C(Jak4Ju', E20E2)' (44)VI. CROSS SECTION FOR WEAK COLLISIONS

When collisions are weak, i.e., k j'o" H, (t)dt«1, Eq.
(36) may be expanded in a power series. To terms of Note that on substituting Eq. (44) in Eq. (38), the

second order, the T matrix becomes product (2J2+1) and f2' f~4r——o gives fqo.
It is convenient to define the quantity

I
z'e-"'I'= l(pl H.(t)e""&e d'tin)

I

' ~r z,z s=(2J2+1) ' E (l2'p "I')~. (45)

Sz,z,z(b)=Q S~, z. ,z g(b)= (46)4:lk2(t) Yi ~1(1)Y~ i2(2) (40) b2n —2

where P represents the final states 1', 2' and u the initial Summing Eq. (45) over all final values of J2, we have
states 1, 2. H, (t) can be expressed as a sum of terms of
the form4

where the V's are the spherical harmonics of the rota-
tional coordinates of the molecules. The time de-
pendence of H, (t) due to the transla, tional motion of the
molecules is contained in C(t) so that the time integra-
tion can be performed independently of the matrix ele-
ments. Hence, the general form of the matrix element for
two symmetric top molecules is

(~&j)(J,'K, 'M, ',J'K'M'I Y~ (1)

The matrix elements are represented by 8„,and b 2"+2

is the result of the time integration of the translational
motion of the molecules. 4 The integer e depends on the
intermolecular potential as shown in Table I.

On the basis of Eqs. (37a) and (46), the cross section
associated with the transition J—+ J', summed over all
magnetic substates and final rotational states of mole-
cule 2, assumes the form

kk2

X Yg, "'(2)
I JgEgM2, JEM) . (41) 0J.,»J——2+

8 (J',J2J)
bdb

b2n —2
(47)

For simplicity, the subscript 1 indicating molecule 1 is
omitted. The coefficients a(Xk j) depend, besides, on the
coeKcients C in the expansion of II„alsothe results of
the time integration. They therefore depend on the
J's as indicated by the single index j.

The matrix elements of the spherical harmonics can
be evaluated in terms of the Clebsch-Gordan coefficients,

(2J+1)(2k+1)
(J KM

I
Y.~(g,q)l JEM)=

44r(2J'+1)

XC(JkJ'; EOK)C(JkJ'; MAM'). (42)

The matrix element for the transition in the reverse
direction is Eq. (42) with the primed and unprimed
quantities interchanged. Using Eqs. (41) and (42), we
obtain

(2J+1)(2k+1)
I Tp '"

I
'= Q I

u(A j) I

' c(JkJ' MAM')'
kk2 4n-(2J'+ 1)

(2J2+1)(2k2+1)
XC(JkJ' EOE)'

4n. (2J2'+ 1)

XC(J,k2J2', E20E2)'C(J2k2J2', M24M2')'. (43)

Summing Eq. (43) over magnetic quantum numbers and
averaging over all directions of collisions, we find, using

Suppose that at the kinetic diameter bq, S(bi,)«1.Then
if it is assumed that from b= 0 to b =bi„Eq.(46) has the
value $(b4), Eq. (47) gives

e 18„(J',J2J)—
|7J', J2J

bA,
2n—4

(48)

TABLE I. Intermolecular potentials.

Potential

dipole-dipole
dipole-quadrupole
quadrupole-quadrupole
dipole-induced dipole

Order of spherical
harmonic'
kg k2

1 1
I 2
2 2
2 0

In most cases, however, the interaction is so strong
that S(b) = 1 at intermolecular distance greater than the
kinetic diameter. Since 5(b), essentially a transition
probability, is obtained by a perturbation expansion, it
should be restricted to values much less than one.
Nevertheless, to evaluate Eq. (47) we make the same
approximation as in the Anderson-Tsao and Curnutte
theory of pressure broadening. 34 Thus 5(b) is de-
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termined by Eq. (46) from b= ~ to bo, where

S(bo) =1, (49)

and is assumed to be one from. b=bo to b=0. Then
Eq. (47) gives

Note that the integration produces 8„'~{"') rather
than 8„,as in Eq. (48), and interchanging the order of
summing over the quantum numbers and integrating
over the impact diameter gives different results. Be-
cause the reaction of the internal motion on the trans-
latory motion is neglected in the present approxima-
tion, " the averaging over paths and states should be
independent and consequently the order of averaging
may be interchanged. '4 The result showing that the
order of averaging is significant arises apparently from
the integration of a transition probability obtained by
perturbation theory into the region of strong interaction.

kkm(()g ca(p~~) td/ (51)

VII. WEAK COLLISIONS. COMPARISON OF
THEORY AND EXPERIMENT FOR

DIPOLE-DIPOLE INTERACTION

To evaluate Eq. (47) for the cross section, it is neces-
sary to consider specific intermolecular forces and to
compute the collision integrals with respect to a given
set of coordinates. The interaction may be evaluated
in any convenient coordinate system, however, since
the cross section is averaged over all collision directions.

Consider the quantity

3 kv J(J+1) [J(J+1)j'/'
+2

~
1/2

p
+2 1/2-

(2J+1)"' & (J+1)V k J' . (54)

The 6rst term within the curly brackets arises from the
J, M —+ J, &~1 transitions, and the second and third
terms arise from the J, M —+ J+1, M&1 and J',
3f~J—1, &&1 transitions, respectively. To make
comparison with experiment, the intensity-weighted
average given by Eq. (30) should be used. However, it is
sufficiently accurate for our purpose to take a Boltz-
mann average of the quantities in Eq. (54). Taking as
values typical for a number of symmetric top mole-
cules, p= 10 " esu& v= 5X 10' cm/sec, (J')= 200,
(E'/J')=0. 2 we find from Eq. (54) that the average
diameter associated with the relaxation process is less
than 1 A, about an order of magnitude smaller than the
experimental values shown in Table II.

VIII. STRONG COLLISIONS

To examine the effect of strong collisions, the transi-
tion probability given by Eq. (36) must be used. This
transition probability has been evaluated by Bernstein

section

0 jj,——7r((m —1)/(e —2))
XQ j' [8 (J',J2J)]"'" "(1 Lj—j), (53)

where L,j j is given by Eq. (III.9). From the orthogo-
nality of the Clebsch-Gordan coef6cients, the sum over
J2' in Eq. (52) is unity; then Eq. (53) is evaluated as

where C(/) depends on time through the intermolecular
distance. We save the labor of evaluating Eq. (51) by
noting that Tsao and Curnutte4 have calculated
on the basis of a straight-line collision path a quantity
So(b),«„;related to our Pj j, Sj, j. j,j. On com-
paring their Eq. (108) and our Eq. (46), we find that

(51a)

Then for dipole-dipole interaction in self-broadening, we
obtain

5j j j j(b) = (16/9)(/i /Avb )
XC(J1J' EOE)oC(Jo1J2", EoOE2)', (52)

for the condition oi(np)b/w«1, where v is the mean
relative velocity.

From Eqs. (28), (38), and (50), we obtain for the cross

"The net change in rotational energy is much smaller than the
relative kinetic energy.

'4 J. Van Kranendonk, dissertation, University of Amsterdam,
1952, pp. 16—18 (unpublished).

TABLE II. Nonresonant, rotational, and kinetic collision
diameters of symmetric top molecules.

Gas

CH8F
CH3Cl
CHSBr
CH3I
CH3CN
CHF3
NH3
ND3

JR

esu X10-js

1.81
1.87
1.80
1.65
3.96
1.65
1.47
1.51

Nonres.
diamb

A

6.5
7.2
7.8
8.5

12.4
5.3
7.7
6.9

Rotat.
diam

A

14.2e

16.1i

16.2e
13 8e

Kinetic
dlamp A

From From
critical vol vis-

or temp' cosity

4.0 4.08
4.3
4.5
47

4.2
3.44

a A. A. Maryott and F. Buckley, Natl. Bur. Std. (U.S.) Cir. Np. 537(1953).
b From Ref. 1 with the exception of NHa LB. Bleaney and J. H. N,Loubser, Proc. Phys. Soc. (London) 63, 483 (1950)g and ND a )G. Birnbaum

and A. A. Maryott, Phys. Rev. 92, 270 {1953)j.
e The J =0 -+1 transition of CHaF and the J=1 -+2 transition ofCHFa; O. R. Gillian, H. D. Edwards, and W. Gordy, Phys. Rev. 75, 1014

(1949).
d The J=0 -+ 1 transition; G. R. Bird, Phys. Rev. 95, 1686 {1954).e The J=3, %=3 inversion line; B. Bleaney and R. P. Penrose, Proc.Phys. Soc. {London) 60, 540 (1948).
f P. G. T. Fogg, P. H. Hanks, and J. D. Lambert, Prpc. Rpy. Spc. (Lpndon) A219, 497 (1955).
& J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory ofLiquids and Gases (John Wiley 8z Sons, Inc. , New York, 1954), Table 8.6-1.
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and Kramer" "for collisions between a polar diatomic
molecule and an atom. They found that with increasing
strength of interaction, the selection rules obtained on
the basis of a perturbation approximation, i.e., AM =~ 1.,
~2, 67=%1,&2, become progressively weakened, and
more and more forbidden channels open up. In this proc-
ess, as the impact parameter b is decreased from large
values, successive transitions become important, reach
a peak probability, then decrease in significance. It is
found that at a value of b greater than the kinetic diam-

eter, the individual transition probabilities become
essentially randomized, with expectation values given

by the reciprocal of the number of channels. Such transi-
tion probabilities are certainly independent of magnetic
quantum numbers, and a,s shown in Sec. IV, I.z &

——0.
Then the line width Ace J is simply equal to the collision
rate AJ for transitions out of the initial state, i.e.,
there is no negative term reducing the eGect of A J, It
seems clear then that strong collisions must be mainly
responsible for the observed nonresonant collision diam-

eters shown in Table II.
It is interesting to compare the role of molecular im-

pacts in the pressure broadening of rotational lines and
nonresonant lines. In the former case, the collisions are
considered strong when they cause the rotational transi-
tions 6J=~1, &2, because such transitions represent a
complete interruption of the radiation process. The col-
lision diameters associated. with such transitions are
not only much larger than the kinetic diameter, but
also, as shown in Table II, larger than the nonresonant
values. %e have seen that the contribution of such
transitions to the relaxation frequency in nonresonant
absorption is negligible, and that it is the stronger inter-
actions at closer intermolecular distances which are
needed to produce large reorientations and changes in
the J states. In resonant absorption, on the other hand,
once the radiating molecule has undergone a rotational
transition, further transitions at closer distances can do
no more than the original transition, i.e., completely
interrupt the radiation process. In view of this, it is

apparent that the study of Lionresonant relaxation in

gases provides a means of investigating the powerful
intermolecular forces that exist between molecules in

close encounters.
The author thanks Dr. A. A. Maryott for many

stimulating discussions on nonresonant absorption, and
Dr. A. Ben-Reuven and Dr. %. G. %agner for helpful
comments regarding this paper.

APPENDIX A: RELAXATION IN PARA-
MA, GNETIC CRYSTALS

It is instructive to obtain the spin-lattice relaxation
rate in certain paramagnetic crystals by the method of
this paper. Kronig" considered an ensemble of spins
which have a stationary state with a (2J+1)-fold de-

'~ K. H. Kramer and R. B. Bernstein, J. Chem. Phys. 40, 200
(1964).

generacy, corresponding to 2J+1 possible orientations
when space quantized. This degeneracy is assumed to
be completely removed by an external magnetic Geld;
however, the splitting is assumed to be small compared
with kT. The 2J+1 sublevels of every spin have a value
of the diagonal matrix element of the magnetic moment
given by

pJu= ps+ ~ (A.1)

The spins are coupled with the elastic vibrations of the
crystal which cause quantum jumps of the spins between
sublevels with values of M diQering by one unit. The
resulting transition rate is given by

A gis ~,z~o= BC(J1J' MAM ) (A.2)

where 8 is a constant independent of the quantum
numbers and X has the values ~1. In the case of
a gas, the transition rate is proportional to

~
a(k, lb, ,j) ~

'
XC(JkJ'; MAM')', where a(k, X,j), which arises from
the time integration of the molecular path, depends on
X (see Eq. (43)].

According to Eqs. (25) and (A.2),~the relaxation rate
is given by

6(u=B p C(J1J;MAM ) (1 Ijg~i/Iig~). (—A.3)

By the orthogonality of the Clebsch-Gordan coeScients,
the sum of the first term in Eq. (A.3) is one, provided X

is allowed to have the value zero, although there is no
diagonal matrix element. However, Eq. (A.3) shows that
for the transition M —+M there is no change in the
dipole matrix element and the contribution of this transi-
tion to Aced vanishes. In the case of a gas, because of the
factor a(k, X,j), we cannot use the orthogonality relation
in summing over X and M'. Instead we sum over M' and
average over directions of collision.

Using Eqs. (C.S) and (C.9), we find that

Ij,giiriC( J1J' MAM )

=pziiLJ(J+1) —1]/J(J+1), (A.4)

and consequently

h(v =B/PJ(J+1)]. (A.5)

APPENDIX 3: EVALUATION OF
P~ (~ Tz ~,s~~')o

Consider the equation

A —Z(~&z~, z~~ )o,

This is exactly Kronig's result since he uses A~~~, ~=B'(JWM)(JAM+1) instead of Eq. (A.2), and conse-
quently, B=2J(J+1)B'. Note that her rapidly de-
creases with increasing J.
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where the axis of quantization is the direction of the
applied held, and the average is over the unit sphere.
In a rotated coordinate system, we have

!TIM, IM! — Z ~I,I ~I ",I
I II III

JQ Jl J/4X+Il,M DIl,"M DP"IMI Dfl, l MI ) (S.2)

where D„MIis the rotation matrix, and tt designates the
spatial quantization in the rotated coordinate system.
The sum over M' gives 2J'+1 1

7=
2J+1 Sn'

dQQ C(J'kJ; M', —X, M)

efficients gives'~

C(JkJ' MAM')'

=((2J'+1)/(2J+1))c(j'kj M' —X M)'. (C 2)

Then with the relation"

M'C(j'k J;M', —X, M) =Q -(J"M"!J,'!JM)
XC(j'kJ" M' —X M), (C.3)

II III

g gJI+II I J'Ill l DIg~ Dflr I~ /+IVII I I ~
J J4 (8.3) Xg&j"M"!J.'!JM)C(J'kJ"; M', —X, M). (C.4)

The average of Eq. (3.3) over the unit sphere gives"

A= (2J+1) g TI&&s I&TIz&sos I&&s o&&sr)&e sgg

Equation (C.4) vanishes in summing over M' and
averaging over the unit sphere unless J"=J. Then
since28

J(j+1)&JM!J. !JM)
=-'MLJ(J+1)+J'(J'+1)—k(k+1)i,

Eq. (C.4) is evaluated as

=(2J+1) '2 ITI'.l.l',

i.e., h. is independent of magnetic quantum numbers.
Consequently, the T matrix may be evaluated in any -1 j(j+])+J'(J'+1)—k(k+1)-
convenient coordinate system. It is evident from the
preceding development that 2 J(j+1)

(C 5)

Z&! TI'M', IM! ')o=(2J'+1) ' Z!TI'o', Ie!'. (& 3) XP&C(jkj',Ml M')s). . (C.6)

y=QM M'(C(Jk J'; MAM')s)o (C.1)

APPENDIX C: EVALUATION OF
EM» M & I TI M .IM I').

We wish to evaluate the sum in Eq. (27) and obtain
an expression for LI I. From Eqs. (38) and (43), we
see that the dependence of A J ~,J~ on the projection
quantum numbers M and M' is entirely contained in
the Clebsch-Gordan coeKcient C(jkj'; MAM'). In
essence, then, we must evaluate

In view of Eqs. (43) and (C.6), where the quantity
within the square brackets is designated by I.JJ., we
obtain the relation

ZM t I M &I TI M .IM I')o
=Mt I LII ZM &! TI M, IM! )0. (C.&)

Then using Eq. (1) and remembering that E'=E, we'
have

EM»'M'(I TI'M'. IM I
s)o

t IMLI I Z—M'&! TI'M, IM! )a, (C.S)

where pJ.~ =M'pJ. .
The symmetry relation of the Clebsch-Gordan co-

"M. E. Rose, Elementary Theory of Angular Momentum Qohn
%'ikey 8z Sons, Inc., New York, 1957), p. 75.

1 J(J+1)+J'(J'+1)—k(k+1)

2 J'(J'+1)
'7 Reference 26, pp. 38—39.
'8 Reference 26, p. 223.

(C.9)


