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A numerical Hartree-Pock procedure is described for computing wave functions for esn s 'S configurations
in which the radial functions for the two s electrons are not assumed to be orthogonal. When the two s elec-
trons are equivalent, this approach corresponds to the unrestricted Hartree-Fock approximation. The
procedure was applied to some 2- and 4-electron systems. Results are reported for isis' 'S of He, Li+, and
Be'+ as well as 1sls'('S)2sos 'S, I=2, 3, 4 of Be.The total energies are compared with those of other approxi-
mations, and the transition integrals for the unrestricted approximation are shown to diRer only slightly
from those of the Hartree-Fock approximation.

r. r.m RoDUCrrom
" "Xatomic structure calculations, it is usual to assume
~ ~ that the state of an atom can be approximated by
an antisymmetric function 0' constructed from one-
electron functions. Furthermore, the one-electron func-
tions are assumed to be products of a radial function
P(ml; r)/r, a spherical harmonic Vt (8,&), and a spin
function, where nims are the quantum numbers associ-
ated with the electron. In the I.S-coupling scheme, the
orbital angular momenta are coupled to yield a total
angular momentum I., and the spin momenta, to yield
a total spin S. Such coupling corresponds to combining
the spherical-harmonic functions to yield an eigenfunc-
tion of the total-angular-momentum operator, and
similarly combining the spin functions to yield an
eigenfunction of the total spin. Let

~
ySL)rs. ..rr represent

an eigenfunction of S and I. formed from coupling E
electrons by the Racah coupling methods in the order
indicated. (Here y distinguishes different eigenfunctions
with the same 5 and 1..) Then

where 6, is an antisymmetrizing operator.
So far the form of the radial functions has not been

specified. The "best" functions are those for vrhich
the energy is stationary. But

E=(+]II [~I)/(e [e) (1)

& This research was supported by an Alfred P. Sloan I' ellowship.

where

Therefore the energy can be expressed entirely in terms
of the radial functions P(rtl; r). From the fact that the
energy must remain stationary with regard to small
variations in any one of the radial functions, an equation
can be derived for each function. The resulting system
of second-order, nonlinear equations determines the
Bar tree-Pock wave functions.

In order to simplify the evaluation of 8 according to
(1), it is usual to assume that radial wave functions with
the same ~/ quantum numbers are the same, and that
they are orthogonal if the angular quantum numbers
are the same but the principle quantum numbers
diGerent. This greatly reduces the number of permuta-
tions which need be considered (see Layzer, Horak,
Lewis, and Thompson. ') However, for each condition
introduced during the evaluation of h, a Lagrange

multiplier must be introduced before applying the
variational principle. These conditions may restrict
the function space of possible solutions, and con-

sequently may aRect the value of the energy obtained

by this method.
%henever the antisyrrunetric function + can be

expressed as a single determinant of one-electron
functions, the assumption that these form an ortho-
nomal set places no restriction on the generality of the

'D. Layzer, Z. Hor6k, M. N. Lewis, and D. P. Thompson,
Ann. Phys. (N. V.) 29, 101 (1964).
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method. This is the case considered by Hartree in his
book The Calculatiozz of Atomic Structures 'On the
other hand, Fock' realized that the 1s2s '5 state was
essentially diferent from the 1s2s 'S state in that the
orthogonality assumption was not valid for the latter,
and therefore he treated the two cases differently. In
fact, Sharma and Coulson4 have shown that the
orthogonality assumption leads to equations whose
solutions do not become hydrogenic for large. values of
Z, the atomic number, i.e., the assumption

P(zzl; r) =Z"[P~(zzl; p)+Z 'Pz(zzl; p)+O(Z ') J

leads to a contradiction.
The purpose of this investigation was to consider

configurations consisting of a core plus a pair of s
electrons which form a 'S state, and to determine a
numerical Hartree-Pock procedure for computing the
wave functions for such configurations without assum-
ing orthogonality for the pair of s electrons. When the
two s electrons are equivalent, this approach leads to
the unrestricted Hartree-Pock (UHF) approximation.
Some results are reported for the 1s1s' 'S state of He,
Li+, and Be'+, and the 1s1s'('5) 2szzs('5) '5 states of Be.
The total energies and the transition integrals obtained
from the unrestricted approximation are compared
with those determined by other methods.

II. HARTREE-FOCK PROCEDURE FOR
CORE+ nsn's ('S)

The expression for the total energy as given by Eq.
(1) is a homogeneous function of degree zero in each of
the radial functions P(zzl; r). Therefore we may assume
without any loss of generality that the radial functions
are normalized.

Let i r'efer to an electron in the core and let summation
with respect to i represent a summation over all groups
of equivalent electrons in the core. Furthermore, let 0.
and p refer to the two s electrons. Let a, b, c, d be any
four electrons in the configuration; then, using Slater's
notation, ' dehne

P.=P(u.t. ; r),
7'(ab) = I'"(n.l,zzblb, r),
F (ab) =F"(zz,l,zzblb); G"(ab) =G"(N, l„zzblb),

P,LPbdr,

where
I =d'/dr'+2Z/r.

Now, in deriving an expression for the energy relative
to the energy of the core we must include, in addition
to the usual terms, the contribution resulting from an
interchange of the two s electrons, In this case the
space part is symmetric, so that

(L-&....) (1+& IP&')

l CL—-+2& IP&L-s+Lssh+F'( P)+G"( P)

+Q a,b[F"(in)+F" (zP)+2(O. I
P&R"(in; iP)]

i, k

+P b, b(G"(in)+G'(iP)+2(n
I
P)R"(in; Pi)j. (2)

i, k

This expression reduces to the usual expression for the
energy when (nI8&=0.

In deriving Eq. (2) we have assumed that

&~l~&=&PIP&=1, »d (zl~&=(zIP&=0, if l,=O.

Therefore

must be stationary with regard to variations in P
and Pp.

Here the X's are Lagrange multipliers and 8(l,O) = 1
if /=0 and zero otherwise. The variation principle then
leads to the equation

(I—e )P +(nIP&LPs (2/r)(V P +——X )+~ sPs
+(1j-(~I8) )P, b(l, ,o)~.,P, ,

where

= —2(1+(zzIP&')X .,

-s = —2(&—R--)&~ I P)—L-s

+2 Q a,bbR" (zcz; iP)+2 Q, , bbR(ibn; Pi)
i, k i, k

I'-= I"(PP)+2 ' I"("),

I&= F-+~-&~
I ~&+4s&P I P)

+Q b(t, ,o)p„.(iI ~&+z;,(iI p)j

R'(ab cd)=

(aIb)=

(1/r)P P,Y"(bd)dr, i, k

x-= I"(~p)Ps+ 2 b'bLI" (z~)+ &~ I p) I'"(zp) Ã'
i, k

i, k

'D. R. Hartree, The Calculatiol of Atomic Structure (John
WViley R Sons, Inc., New York, 1957).

3 V. Fock, Z. Physik 61, 126 (1930}.' C. S. Sharma and C. A. Coulson, Proc. Phys; Soc. (I.ondon)
80, 81 (1962}.' J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc, , New York, 1960), Vol. II, p. 17.

A similar equation holds for Pp. Note that e p=op is
Not a Lagrange multiplier but instead is defined by
Eq. (4).

Equations for the core wave functions can be derived
in a similar manner. They will differ from the usual
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equations only by the presence of some extra terms in
the exchange resulting from the R~ integrals in Eq. (2).

An expression for X; and Xp; can be derived by a
procedure similar to that for ordinary Hartree-Pock
equations. ' The operator L is such that L, q

——Lq, in
particular L; =L, and L;p= Lp;. If we use the
Hartree-Fock equations to express each value of L,& in
terms of the wavefunctions and assume(ila)=(i!8)=0,
we are led to two equations in the two unknowns, X;
and Xp, . Ke shall assume tha, t these equations have a
unique solution. This will be the case if all s electrons in
the core belong to complete groups.

In the Hartree-rock calculation, it is convenient to
consider the e's and the I"s as fundamental quantities
and express 8—E„„in terms of them. Let the right-
hand side of Eq. (2) be H p and define

P, (2/r) (YbPs+Xs)dr

Multiplying Eq. (3) by P and integrating, we get

L- e-+(—al 8)L-p=F-+(alp)e«p

and similarly,

Lpp pp+(a—I8&L-p=Fpp+(a
I
8)e-p (6)

Adding, solving for e +epp, and substituting for F
+Fpp from their definition, we obtain

', (e +—epp—)=H p+(a!8)e p+F'(a8)+G'(a8),

so that

(~-~....)(1+(-Ip&) =-I -: ..+ '. pp+(-I p&--p
+F'(ap)+G'(ap)7 (7)

Now, multiplying Eq. (3) by Pp and integrating, we get

L.p &al p&e-+—(al p&Lpp=F p-+ e-p,

and similarly

Lp- (al p)ep—p+(al p)L-=F-p+e-p

Adding, and eliminating L +Lpp using Eqs. (5) and

(6), we obtain an expression for L p which on substitu-
tion into (4) results in an expression which reduces to

-p= (Ip&(F- -F-..:) {~-'(; p-)+~'(pp; p )
—(aIP&I:F'(aP)+G'(aP)7)/(I —(aIP)') (8)

Finally, on substituting (8) into (7) we obtain

F- F---= s—(e-+ep p)—(F'(aP)+G—'(aP)
—(aIP&Ã'(«; aP)+~'(PP; Pa)7)/(1 —(aIP&') (9)

Therefore, given estimates of ~, ~pp and the wave
functions, Eq. (9) can be solved for F=E,.„and (8)
for e p. Then the equations for the Lagrange multipliers
are solved and I' and X computed from their dehni-
tion. With all these functions as known, Eq. (3) can

' C. Froese, Phys, Rev, 137, A1644 (1965),

III. EQUIVALENT s ELECTRONS

When the two s electrons are in fact equivalent
electrons, the procedure just described leads to the
unrestricted Hartree-Fock (UHF) approximation for
these electrons. The only way in which the case of
equivalent electrons differs from that of nonequivalent
electrons is in the magnitude of the overlap integral

(alp). Normally (alp) is small, but for equivalent
electrons it may be close to unity.

In Eq. (10) the function f includes the term (a I
P)LPp,

which requires that the estimate I'p be diGerentiated.
Such di6erentiation emphasizes the errors in the
estimate, and when (alp&~1, the self-consistent-field

(SCF) procedure does not converge. Therefore Eq. (3)
was transformed to diagonal form so that

(L (2/r) Y * —e*)P = (2/r—)X *+e p*Pp

+ (1+(aIP&s)P, ~(i,,o)~.,*P, ,

where, in matrix notation,

!

("- .a")
(cpa epp —(alp&) e-

1 ) e~p eppl

1 1

(1—(al p)') —( I p&

&.,*=(&.,—(a IP)~p')/(I —(a IP)')

Y *P +X *=fY P +X (a!P)(YpP—p+Xp)7/

Notice that the potential and exchange terms now
contain about twice as many I'~ integrals as before, so
that the faster rate of convergence is onset to some
extent by additional computations. In this form the
fundamental energy parameters are e *, ~~~*, and e p,
as given by Eq. (8). Then

F- F-'-.= s(e-«*—+epp*) —LF'(aP)+G'(aP—)
+(a IP&(e-p*+ep-*) 7/(I+(aIP)'), (12)

where

e-p*= -p (al p)epp*, e—p-*= e-p ( I
p&e-*—

These equations have been left in a somewhat simple
form, but in an actual calculation, Eqs. (12) and (8)
must be solved for ~ p and E—E..„.

be rewritten as

(2/—r)Y —e ]P =f, P (0)=P (~)=0;
(a I a)= 1. (10)

The latter is solved for I' and e and the estimate for
I' corrected. Similar equations are solved for the other
wave functions and the process repeated until no further
significant changes occur. This is essentially the self-
consistent held procedure.
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TABLE I. Results for 1.s1s' 'S. TAsLF. II. Comparison of —I',tot l for 1s' 'S (in a.u.).

He Li+ He Li+ Q e2+

2.87799
0.87894—0.185
0.769

7.25147
0.92808—0.290
0.870

13.62584
0.94880—0.380
0.959

1. Exact~

2. Configuration interaction

(i) Analytic (35 con6g. )
(ii) Z expansion'

2.9032
2.9077

7.2792
7.2827

13.6548
13.6577

2.9037 7.2801 13.6568

The present UHF approa, ch for equivalent s electrons
is similar to the open-shell method except that in the
latter the radial functions are assumed to be simple
exponential functions. The results reported in the next
two sections show tha, t these two approximations yield
total energies which a,re remarkably similar for 2- and
4-electron systems.

3. 1s1s' (unrestricted)

(i) Numerical UHF
(ii) Open shell~

(iii) Z expansion'

4. 1s' Hartree-Pock

(i) Numerical
(ii) Analytic'

(iii) Z expansiong

2.8780
2.8757
2.8718

2.8617
2.8617
2.8610

7.2515
7.2490
7.2468

7.2364
7.2364
7.2360

13,6258
13.6230
13.6218

13.6113
13.6113
13.6110

IV. RESULTS FOR ls' '8

Equations (8), (11), and (12) were solved for the
isis''5 state of He, Li+, and Be'+. The numerical
integration procedure was the same as that described
in an earlier paper. ' The total energy for He agrees to
five decimal pla, ces with the value determined earlier by
Trefftz, Schliiter, Dettmar, and Jorgens. '

In Table I, the total energies, the overlap integral,
and the screening numbers o- for each of the two wave
functions are reported. Here o. is the Hartree' screening
number defined a,s

o =Z—(rlr/r) .

It is interesting to compare these screening numbers
with those from the simple exponential approximation
of Hylleraas-Eckart. ' For He the screening numbers are
o-I= —O. i832 and o-2=0.8ii5; these correspond closely
with our numerical results.

More recently, Shull and Lowdin" applied the open-
shell method to the atoms H to Ne"+. They were able
to show that two different orbitals improve the energy,
but that the improvement decreases with Z. Hurst
et at." have performed similar calculations. Further-
more, Stewart" has considered this case from a Z
expansion point of view. He assumed first of all that the
one-electron orbitals" were expanded in powers of
Z "', and then obtained a Z expansion of the total
energy to terms of second order. In this way he was
able to show that the unrestricted Hartree-Fock
approximation embraces more than 80% of the radial
correlation energy.

In Table II, the total energies for isis' 'S of He, Li+,
' C. Froese, Can. J. Phys. , 41, 1895 (1963).
8 E. TreGtz, A. Schluter, K.-H. Dettmar, and K. Jorgens,

Z. Astrophys. 44, 1 (1957).
9 E. A. Hylleraas, Z. Physik 54, 347 (1929); C. Eckart, Phys.

Rev. 36, 878 (1930).
'0 H. Shull and P. O. Lowdin, J. Chem. Phys. 25, 1035 (1956).
"R.P. Hurst, J. D. Gray, G. H. Brigman, and F, A. Matsen,

Mol. Phys. 1, 189 (1958).
rs A. L. Stewart, Proc. Phys. Soc. (London) 83, 1003 (1964).
"C.A. Coulson, Proc. Phys. Soc. (London) S4, 511 (1964) has

shown that in this case the Hartree-Fock equations have no
solution in the form of a Z ' expansion.

& See Ref. 14.
b A. W. gneiss, Phys. Rev. 122, 1826 (1961).
e Vf. B. Sommerville and A. L. Stewart, Proc. Phys. Soc. (London) 80,

97 (1962).
d See Ref. 10.' See Ref. 12.
& C. C. J. Roothaan, L. M. Sachs, and A. W. AVeiss, Rev. Mod. Phys.

32, 186 (1960).
g A. Dalgarno, Proc. Phys. Soc. (London) VS, 439 (1960).

and Be+' are compared with those from other approx-
imations, including the exact, nonrelativistic values
determined by Pekeris. ' All the unrestricted approx-
imations (UHF, open shell, second-order Z expansion)
give lower total energies than the Hartree-Fock
approximations. Also, the energies for the UHF and
open-shell method are always lower than the Z-expan-
sion results and, in turn, the UHF energies are some-
what lower than the open-shell energies, though the
difference between them is less than 0.08%. On the
whole, the improvement in the total energy in going
from a Hartree-Fock to an unrestricted approximation
is considerably less than the improvement which can
be achieved by the inclusion of configuration interac-
tion. In fact, the UHF improvement is 39.2%, 353%,
and 33.3%of the configuration interaction improvement
for He, Li+, and Be+', respectively. As noted by ShuB
and Lowdin, the improvement decreases as Z increases.

In Table III some transition integrals (It,.„~) from
the unrestricted and restricted Hartree-Pock approx-
ima, tion are compared. Here

Ir,, „(lsI ls")(lsIrInp——) for (ls' 'S) ~ (1s"rsp 'p)
= (1/v2) ((lsI »"&&»'Ir

I
~sp&+&»'I »"&(lsI»I~p&)/

(1+(]s I
ls'&')'~' for (ls] s' 'p) ~ (ls"&p rp)

From Table III it is evident that the assumption of
different orbitals does not change appreciably the
value of a, dipole ma, trix element for a transition.
Tre6tz et al. ' give a detailed comparison for He of
length and velocity forms of the oscillator strengths
with values obtained by other methods. No extensive
differences were noted between the length and velocity
forms. However, there appears to be an error in the

"C. L. Pekeris, Phys. Rev. 112, 1649 (1948); 115, 1216 (1959).
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TABLE III. A comparison of I1,„„for He sequence.

He
UHF HF

I,i+
UHF HF

QeR+

UHF HF

1s"S—+1s2p 'P 0.5221 0.4984 0.3901 0.3846 0.3038 0.3018—+1s3p 'P 0.2597 0.2498 0.1826 0.1806 0.1374 0.1367—+1s4p 'P' 0.1637 0.1578 0.1128 0.1117 0.0840 0.0836

TAslz IV. Over]ap integrals and screening numbers
for some Be states.

state (1sl 1s') (2sles) og, ag, ' as, o„a

1s1s'2s2s' 'S 0.95441 0.91399 —0.241 0.962 1.331 2.103
1s1s'2s3s 'S 0.95505 0.10637 —0,206 0.892 1.396 2.518
1s1s'2s4s 'S 0.95508 0.05603 —0.203 0.892 1.384 2.657

Hartree-Fock equations would not result in any of
these conditions, though, as Z increases, the overlap
integral does approach unity, which tends to make the
convergence of the Hartree-Pock iterations somewhat
more critical. For cases such as 1s1s'('S)2s3s'S, no
difhculties were encountered using the diagonal form
of the equations, as given by Eq. (11).However, for
1s1s'('S)2s2s' 'S the estimates that are generated during
the self-consistent 6eld procedure would occasionally
be such that (1sl 1s')~(2sl 2s'), which sets up violent
oscillation in the values for the Lagrange multipliers.
In order to avoid this situation, initial estimates were
chosen so that the singularity conditions were not
encountered at first and then the estimates were allowed
to change only slowly. In fact the corrected estimate
was taken to be a normalized linear combination of the
previous estimate and the solution of the differential
equation with a weighting factor of 0.75 and 0.25,
respectively. Furthermore, the I agrange multipliers
were recomputed each time a new estimate was formed.
This greatly increased the amount of computation
involved, and the degree of self-consistency finally
achieved (0.0018) was not up to the usual standards
(0.000002). In view of the fact that the overlap integrals
for the isis' and 2s2s' functions are likely to be closer
to unity and close~ to each other for higher Z values,
only the 2ses '5, n = 2, 3, 4, states of Be were attempted.
The overlap integrals and the screening numbers are
given in Table IV. Again, it is interesting to note the
considerable difference in the screening of the otherwise
equivalent electrons.

In Fig. i, the wave functions from the unrestricted
approximation are compared with the Hartree-Fock
functions for is'2s' of Be. It is interesting to note that,
in the region of the main maximum, the wave function
for an equivalent pair is approximately the average of
the wave functions in the unrestricted approximation.
This explains why the transition integrals in Table V
for the two approximations differ only slightly.

In Table VI the total energies for the states of Be are
compared for a variety of approximations. Again, the

length form of the. (1s' 'S) ~ (is2P 'P) transition.
Table III gives a value of 0.2583 for the oscillator
strength for two equivalent is electrons and 0.2834 for
two diferent is electrons. The latter agrees fairly well
with the value of 0.2793 quoted by TreA'tz et al., but
the former divers appreciably from their value of 0.4390.

V. RESULTS FOR 1sls'('8)2sns('S) OF Be

The isis'('S) 2sns('S) configuration is of special
interest in that it represents a case where the core also
consists of a pair of s electrons coupled to form a '5
state. Then the procedure described in this paper must
essentially be applied twice, once for each pair of
electrons. However, in computing L~"—l~,„,. not only
must the two outer electrons be interchanged but also
the two inner ones. Let u, b, c, d refer to the four
electrons, where ab and cd are each coupled to form
a 'S state. Then

(E—E.~) (1+(c Id)') (1+(~lb)')
= (1+(~Ib) ){——',LI...y2(c

I
d)I.,+I,.$+&'(cd)

+G'(cd) }+2E'(~j)——.G'(V)+(c I d)l. &"(~j ~j )
:E'(j j')3+—(Ib){&'(j 'j) :&'(~j;j')——

+(cld)LE'(V 'j') —:&'(j;j")j}, (»)

E=E.s+E.~+I
= (E Ii,g)+ (E, E,g) I. — — —

The latter expression can be used to determine the
total energy.

The four-electron case also differs from the two-
electron one in that I.agrange multipliers must now be
introduced into the Hartree-Fock equations to ensure
orthogonality of the outer functions with the inner ones.
The fact that I.;;=L;, leads to four equations in the
four unknown I.agrange multipliers. These equations
are singular if (al b) = 1, (cl d)=1, or (ul b)=(cl d).
Intuitively, one can argue that the solutions of the

TAm.z V. A comparison of some transition integrals I2,„„for Be.

Transition UHF HF

—2.6667—0.7366—0.3561

(2s' 'S)—+ {2s2p 'P)
{2s3p IP)
{2s4p 'P~

—2.6486
0.7536—0.3679

where the summation is over the four permutations of
{i,i'}={a,b} and {j,j'}={c,d}. Since the problem is
symmetric with respect to the pairs of electrons ab and
cd, a similar equation holds for (Lj—E,&). Equation
(13) can also be written as E E,q L~,q+I, w—here —I—
represents the interactions between the two pairs of
electrons, and the energy for a pair is given by Eq. (2)
without any electrons in the core. Equations (8) and
(9) or (8) and (12) (which can be shown to apply in
this case as well) provide a means of computing E E,~—
and E—E.g, but
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2.0-

l.5 arbital s

I.O

nt orbitaIs

I'zG. 1. A comparison of wave
functions for Be from the 1s'2s'
and 1s'1s"2s'2s" approximations.

—I.O—

I

1.0
I

2.0
I

5.0
I

4.0
I

5.0
I

6.0
I

7.0
I

8.0
I

9.0
I

IO,O

TABLE VI. A comparison of —E&,t,& for states of Be.

1. Exact'

2. Con6guration interaction

(i) Analytic' (55 conhg. )
(ii) Analytic HFb

(2 configurations)
(iii) Z expansion'

3. 1s1s'('S)2sns('5) (unrestricted)

(i) Numerical UHF
(ii) Open shelld

4. 1s'2sws'5 HF

(i) Numerical HI'
(ii) Analytic HI"

(iii) Z expansion'

1s'2s' 1s'2s3s 1s'2s4s

14.6674 14.4182 14,3700

14.6609

14.6165
14.5879

14.588 14.3745 14.3330
14.5815

14.5730 14.3622 14.3197
14.5730
14.5215

a See Ref. 15 and Atomic Energy Levels, edited by C. E. Moore, Natl.
Bur. Std. Circ. No. 467 (U. S. Government Printing and Publishing
Office, Washington, D. C., 1952).

b See Ref. 20.
&See Ref. 1 and D. Layzer, Ann. Phys. (N. Y.) 8, 271 (1959).
d See Ref. 15.
& See Table II footnote f.
f C. Froese, Astrophys. J. 141, 1206 (1965).

open-shell method applied to is1s'('S) 2s2s'('S) by
Brigman, Hurst, Gray and Matsen" gives an energy"G. H. Brigman, R. P. Hurst, J. D. Gray, and F. A. Matsen,
J. Chem. Phys. 29, 251 (1958).

remarkably close to the unrestricted Hartree-Foci.
energy. On the other hand, the UHF approximation
has done little to improve the energy over the usual
Hartree-Pock energy. The percentage of the total
correlation energy taken into account by allowing
different electrons to occupy different orbitals is 15.9%,
22.0%, and 26.4%, respectively, for the three states.
This is small compared to He, where 38.8% of the
correlation was accounted for. Obviously the unre-
stricted Hartree-Fock approximation can only account
for some of the radial correlation and none of the
angular correlation. In the 2s' configuration, the latter
is the more important and, by allowing for interactions
with only one other configuration, namely 2p' 'S,
Watson" was able to account for 46.1% of the total
correlation. Hartree-Pock calculations with conhgura-
tion interactions are considerably simpler than the
unrestricted calculations, particularly for cases such as
1s1s'('S)2s2s'('S), where Lagrange multipliers cause
difhculties. In view of these facts, the unrestricted
approximation is not recommended in general for
equivalent electrons, but the procedure as outlined is
suggested for those cases where a pair of nonequivalent
s electrons couple to form a '5 state.

"R.K. Watson, Ann. Phys. (N. Y.) 13, 250 (1961).


