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THE BOHR THEORY AND THE APPROXIMATE HARMONICS
IN THE INFRA —RED SPECTRA OF DIATOMIC GASES.

BY EDwIN C. KEMBLE.

SYNOPSIS.

Infra-red spectra of diatomic gases; a quantum theory. The author's earlier theo-
retical explanation of the occurrence of approximate harmonics in the infra-red spectra
of HC1, HBr and CO, based on the non-linearity of the law of force governing the
relative displacement of the component atoms, encountered three difficulties: it did
not explain the inexactness of the harmonics; it gave a wrong ratio for the asymmetry
constants of the fundamental and harmonic bands; and it was in serious conflict with
Kirchhoff's law. It is now shown that by adopting Bohr's hypotheses that the mole-

cules possess a series of discrete, non-radiating states of vibration and that the
frequencies radiated and absorbed are determined by the energy emitted or absorbed,
a new explanation is obtained which seems to overcome the difficulties mentioned
above. In connection with the discussion the author presents a full account of his

theory of the asymmetry of the bands, which postulates a decrease in the frequency of
vibration of a rotating diatomic molecule with increasing angular velocity, a conse-
quence of the non-linearity of the law of force. It is found that the theory gives the
observed value of the ratio of the asymmetry constants only if it is assumed that the
minimum kinetic energy for vibratory motion is not finite as for rotary motion in the
Bohr theory, but is zero.

Kirchhog's lax; suggested limitation. The author's theory of the structure of
these band spectra is based on a theory which involves a minor contradiction to
Kirchhoff's law since it leads to the conclusion that the ratio of the intensities of any
two component parts of an absorption band is independent of the temperature.
This suggests that Kirchhoff's law may not hold in such cases.

INTRQDUc TIGN.

N I9I6 the writer published a theoretical paper predicting the oc-
currence of weak harmonics to the principal absorption bands in

the infra-red spectra of diatomic gases. The theory was based on the
assumption that the form of the electromagnetic waves radiated or
absorbed by an oscillating dipole must be related to the form of the
vibration in the . manner indicated by the classical electromagnetic
theory. It was shown that, on account of the non-linearity of the law
of force governing' the relative displacement of the atoms of a diatomic
molecule, vibrations. of these atoms along their li.ne of centers having the
amplitudes called for by the quantum theory must depart considerably
from the simple harmonic type. According to Fourier's theorem the

i PHYs. REv. (Ser. 2), 8, xgI6 (7oz).
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radiation emitted from such a vibrator should therefore consist of a
harmonic series of wave-lengths. It was assumed that the entire series
of emitted frequencies must also be absorbed. The infra-red absorption
bands of diatomic gases, which are believed to have their origin in the
atomic vibrations under consideration, should accordingly be accom-
panied by faint harmonics. As an example of the occurrence of such
faint harmonics. , the infra-red absorption bands of carbon monoxide were
cited at the time, while a later paper' by Dr. J. B. Brinsmade and the
writer reported the discovery of similar harmonic absorption bands in

the infra-red spectra of HC1 and HBr, which were held to constitute a
verification of the theory.

There were, however, three difficulties in connection with the above
explanation of the observations, viz. , (a) the 'fact that the observed
harmonics seemed not to be exact, the wave-length of the center in each
case being from o.o2g p to o.o45 p, greater than its calculated value,

(b) the fact that the relation between the assymmetry constants of the
fundamental and harmonic absorption bands in the HC1 spectrum was
not that predicted by the theory, and (c) the incompatibility of the
theory itself with Kirchhoff's law. In the absence of an alternative
explanation of the phenomena, and in view of the inherent plausibility
of the explanation given above, the writer was inclined to attribute the
discrepancies (a) and (b) to a slight error of unknown origin in the
dispersion curve for quartz used in calculating the wave-lengths, and
to assume that these h'armonics constitute a bona fide exception to
Kirchhoff's law. He now desires to report that the hypotheses adopted

by Bohr in his theory of radiation and of atomic structure afford an
alternative explanation of the observed phenomena which seems to
avoid the above-mentioned difhculties.

THE APPLICATION OF BOHR S HYPOTHESES TO RADIATION FROM

VIBRATING DIATOMIC MOLECVLES.

We proceed to the application of Bohr's hypotheses to the radiation
from a vibrating diatomic molecule. The molecules are assumed to
possess a series of discrete, non-radiating, steady, possible states of
vibration. Let ~ denote the number of any of these steady states, and

'

let W, denote the corresponding energy of vibration. The law of force
governing .the motion being nonlinear, the frequency of vibration,
will depend upon the energy and therefore upon v. In accordance with
the earlier form of Planck's theory we assume that the energy of vibration
is always an integral multiple of bc'. (See supplementary note). Thus

W, = rbcu, r = (o), r, 2, g, . (x)
~ J. B. Brinsmade and E. C. Kemble, Proc, Nat. Acad. Sci., 3, I9I7 (420).
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According to the Bohr theory the angular momentum of an electron
attached to a single hydrogen atom cannot be reduced below the minimum
value fi/2ir. The observed structure of the infra-red absorption bands
of HCl indicates that the above remark is also true of the angular momen-

tum of a diatomic molecule. ' These considerations create the pre-
sumption that the energy of any vibratory degree of freedom as well as
that of any rotational degree of freedom must always be greater than
zero, in accordance with which zero should be eliminated from the list
of the possible values of ~ in the above equation. There is some evi-
dence in the present theory, however, that such a generalization is in-

correct, and the question will accordingly be left open.
With Bohr we add the hypothesis that the frequency of the radiation

emitted or absorbed by the molecule in passing from the steady state ~&

to the steady state 72 is given by the relation

hv =
i
(W„—W„) i.

Combining these assumptions, we obtain the following expression for the
radiation frequencies emitted or absorbed:

P = 7 2COy~ %1~&1 ~

If the frequency of vibration were completely independent of the
amplitude, as in the case of an ideal linear oscillator, the frequencies
emitted and absorbed would all be integral multiples of co. If the
frequency of vibration is nearly independent of the amplitude, the
frequencies of the radiation emitted and absorbed will be approximately
integral multiples of the frequency of vibration for small amplitudes.
This theory, therefore, like the other, predicts the occurrence of (approxi-
mate) harmonics, though it gives them a different interpretation. The
fundamental absorption band is due to the molecules jumping from the
first of the steady states of vibration to the second (at ordinary tempera-
tures the number of molecules normally in the second steady state is

infinitesimal), while the first harmonic is due to the molecules jumping
from the first steady state to the third.

Let us now see how the present theory meets the difficulties encountered

by the former.

WAVE-LENGTHS OF HARMONICS.

The fact that the wave-length of the center of the "harmonic"
band is in each case observed to be a little more than half of the wave-

length of the fundamental fits perfectly with the new theory. We may
assume as a first approximation for small amplitudes that the equation

~ Brinsmade and Kemble, 1. c., p. 425.
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bands owes its width primarily to the effect of the molecular rotations
and should be composed of a double series of elementary bands or quan-
tum lines. (These elementary bands are themselves of quite appreciable
breadth, but in order to distinguish them from the composite band which

they unite to form, it will be convenient to designate them in the re-
mainder of this paper as "quantum lines. ") The moiecules are as-
sumed to vibrate with a common frequency'co. The radiation emitted
and absorbed by the molecules which rotate with the frequency v„ is
divided between the frequencies co + v„and co —v„. Consequently the
molecules having any given angular velocity give rise to a pair of narrow
absorption lines whose separation on the frequency scale is twice the
frequency of the rotation. According to the quantum theory the
frequencies of rotation must a11 be integral multiples of a certain basic
frequency which we denote by the symbol v&. Hence the only frequencies
radiated or absorbed are those given by the formula

p = co &Pp])

Thus the quantum lines corresponding to different values of p should
be equally spaced. Since the two absorption lines corresponding to
each value of p are due to the same group of molecules, they should be
of nearly equal intensity, while the intensities of the lines corresponding
to different values of p should vary with the numbers of molecules in the
corresponding groups. Consequently the large band of which these lines

are the components should have the general appearance of a symmetrical
doublet.

The accompanying figure shows the appearance of the principal band
in the infra-red spectrum of HC1 as observed by Dr. Brinsmade and the
writer. ' Instead of being equally spaced, the quantum lines are obviously
closer together on the high frequency side and it is evident that if the
band is observed with a spectrometer of low resolving power it will

appear to be an asymmetric doublet, the high frequency maximum

being the more intense. This group of lines and the approximately
harmonic group in the same spectrum are the only infra-red absorption
bands in the spectra of the diatomic gases which have been resolved into
their elementary components, but the infra-red absorption bands of the
other diatomic gases are similarly asymmetric doublets.

In the writer's opinion the asymmetry is due to a decrease in the
frequency of vibration with increasing angular velocity. This decrease
results from the nonlinearity of the law of force which governs the
vibratory motion.

In order to reduce the above hypothesis to quantitative form, we
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proceed to formulate the equations of motion of the rotating and vibrating
molecule. It will be assumed that the masses of the two atoms, m~

and m2, are concentrated in the nuclei. Let g denote the distance
between the atomic centers and let

m = mgmg/(mg + mg).

Let 0 denote the angle between the line of the atomic centers and any
fixed line in the plane of the motion. With this notation the expression
for the kinetic energy of the system is readily reduced to the form

T +(2

Denoting the potential energy by C(f) and setting up Lagrange's
equations, we have

d—(mg) —mme' + C'(g) = o

and

—(my') = o.
dt (8)

Equation (8) gives rise to the statement of the constancy of the angular
momentum. This may be written

mt2tj = mfp20p,

where gp is assumed to be the distance between the nuclei when the
molecule is in equilibrium and at rest, while Qp is the angular velocity
of the moving molecule when g passes through the value gp. Substituting
from (9) into (7) we obtain the differential equation for the vibratory
motion:

d2$ Q2| 4

m —,, = —e'(g) pm

Let U denote the total energy of vibratory and rotational motion, and
let g~ and g2 denote the minimum and maximum values of g. Inte-
gration of equation (to) then gives the following expression for the
period of the vibration:

k dt
2m

mno2(o4~ —~(f)—
2/2

Obviously |& and g2 are roots of the equation

m0o2g, 4

U —4(g) — = o.
2(2

(»)

Qp can be identified with the mean angular velocity of the molecule
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without appreciable error and equation (it) shows that the period of
vibration is. a function of Qp. It also shows that if v, or its reciprocal,
the frequency of vibration, co, is expanded into a power series in Qp, the
coefficients of the odd powers must vanish, since a reversal of the sign
of Qp cannot affect the value of 7 Denoting the frequency of rotation

by pv& and the frequency of vibration for zero angular velocity by cdp,

we may therefore write as a first approximation

m = ep —QP2~P.

The cock.cient a is a function of the total vibrational energy W. It
will be shown later on that in general we may expect a to be positive.

If we adopt the fundamental hypothesis of the writer's earlier work,
which identifies the frequency of vibration of the molecule with the mean
of the two radiation frequencies absorbed (or radiated), and combine
equations (5) and (t3), we obtain

P = Q)P GP VI ~ PVy.

This is the equation for the position of the quantum lines given in the
writer's former brief statement of the theory of asymmetry. ' If the
values of cop, a, and v& are properly chosen, the formula gives the fre-

quencies of the quantum lines in the HCl fundamental with considerable
accuracy (cf. the vertical dashed lines in the figure2).

The positions of the lines in a true harmonic should be given by

v = 2(~o —aP'vP) a Pvg. (i4a)

Equation (t4a) is of the same form as (t4) and gives the frequencies
of the quantum lines in the observed harmonic correctly if the values of
the constants cop and a are readjusted. No readjustment of the value
of v& is necessary.

Equation (5), however, does not fit with the fundamental hypotheses
regarding the nature of the process of radiation on which the present

paper is based. In order to bring the theory of asymmetry into line

with the Bohr theory we must assume that equation (3) gives the mean
of the two frequencies emitted and absorbed by any one group of mole-

cules. ' Confining our attention to the process of absorption, we replace
equation (3) by

P = T2G0~2 7.1+zy ~ pVl)
~v ~l 37 l

( )
~o ) Vi.

~ Brinsmade and Kemble, 1. c., p. 424.
~ The consistent discrepancy in the outermost quantum lines on the high frequency side

is completely eliminated without the introduction of fresh arbitrary constants if the change
in the moment of inertia due to the expansion of the molecule with increasing angular velocity
is taken into account.

'An equivalent assumption has been used by Bohr to explain the Zeemon effect. Cf.
Phil. Mag. , 27, I9I4 (520).
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Since the frequency of vibration depends on the angular velocity and

on the energy of vibration, co is to be regarded as a function of ~ and P.
Moreover, the constant a is a function of ~. We therefore introduce
the notation

N(r, P);
a —= a(r).

Equation (I3) becomes

vl(r, p) = vl(r, o) —a(r)p2V12.

Combining (I5) and (I6), we obtain

P = T2 [01(T2t 0) a(T2)p Vl ]

Tl [cAl(rl 0) a(Tl)p Pl I ~ pvl

Let N(rl, T2) and K(rl, T2) be defined by the equations

N(rl T2) = T2V1(T2q 0) Tlccl(Tlat 0)I

8(rl, T2) = T2a(T2) Tla(rl) ~

Then (I7) becomes

(I6)

P N(Tlat T2) K(Tlat T2)p Pl & pvl (I9)
This equation is of the same form as (I4) and consequently gives the

positions of the lines in either of the HCl bands with equal accuracy.
The specific expressions for X and 5 for the fundamental and first

harmonic differ according as we assume that zero is or is not a possible
value of v.. If it is not, ~~ = I and ~2 = 2 for the fundamental. Thus

N = 2M(2, 0) —cL1(I, 0),

5 = 2a(2) —a(I).
(2o)

In the case of the first harmonic we should then have v.
~

= x and 72 = 3.
Denoting the values of X and 5 for the first harmonic by the symbols
N' and 5', we obtain

N' = 3cv(3, O) —cv(I, O),
(2I)

@' = Sa(S) —a(I).
If, on the other hand, we adopt the alternative hypothesis that zero

is a possible value of r, the above equations become

N = Vl(I, o);
N' = 2cu(2, O);

8 = a(I);
5' = 2a(2).

In either case, if a were independent of the energy of vibration, 5
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would be equal to 25. This relation is the same as that called for by
the old theory and does not agree with experiment, since the observed
value of the ratio of the asymmetry constants P' and P is a little less
than I.5. On the other hand, if a decreases regularly as the energy of
vibration increases, it is to be expected in either case that the ratio of
5' to 5 will be less than 2.

In order to justify fully the present revised theory of the structure
of these infra-red absorption bands, it would be necessary to derive the
observed values of the constants N, X', 5, and ' on the basis of a
plausible form for the potential energy function C. Mathematical
diAiculties, however, stand in the way of such a complete solution of the
problem, and for the present we must content ourselves with showing
that the observed values of the constants mentioned are not unreason-
able. To that end we shall assume a simple form for the potential
energy function and shall study the variation in the frequency of vibra-
tion with the angular velocity and with the vibrational energy on the
basis of the restricting hypothesis that the amplitude of the vibrations
is small.

All that we can reasonably feel sure of in regard to the law of force
which governs the motion of the atoms is that it is asymmetric in that
the potential energy increases more rapidly when the atoms are com-
pressed together than when they are drawn apart. A simple formula
having the asymmetry suggested is obtained if the force is assumed to
be composed of a constant attraction combined with a repulsion varying
inversely as the nth power of the distance between the nuclei. The net
repulsive force between the atomic centers will then be given by an
expression of the form

(23)

where o, and P are constants.
Since the force reduces to zero when g equals &0,

Equation (zo) becomes

dg I I mQO fg
SZ = A +|0"

In order to integrate (zg) we will throw it into the form (4) by means
of approximations. Consider first the case where the angular velocity
is zero. In this case it is convenient to expand z/i" and r/i' into power
series about the point g = (0. Let
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Then (24) is readily transformed into

g2$
tn

dt2

nn an(n + i)
+] 5 + 2| +2 5 +

Neglecting the terms containing the cube and higher powers of (, we can
throw (25) into the form (4) by establishing the relationships

k = nn/l 0"+',

k, = —nn(n + i)/2f, "+'
(a6s)

(26b)

According to Seeliger the following equations constitute an approxi-
mate solution of (4):

g = A' cos 27I G)pl+ A cos 47iGopf + const. , (27')

A'=A z+ (z7b)

2" = A'4/6k, (~7e)

I
~,' = —lk/m,2' (27d)

(27e)

In case the angular velocity is not zero, the molecule expands under

the inHuence of centrifugal force, so that the equilibrium value of p

changes from gp to g&, where |& is a root of the equation

(28)

It is convenient to introduce the quantity Ag defined by the equation

~C = li —Cp.

Expanding the left-hand member of equation (z8) in series, neglecting
terms containing the squares and higher powers of 6f, and solving for

Dg, we obtain the approximate value

mQp2gp

„+,+ 3mQp'n+1

By the introduction of the frequency of rotation v, and by the use of
equations (26m) and (27d) the above can be reduced to

Po~r

coo 2 + /vs

Since the frequency of rotation v, is for all cases under consideration
' R. Seeliger, Verh. d. D. Physik. Ges. , I6, p. IO42, Igx4.
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quite small compared with the frequency of vibration, we can neglect
3v„2 in comparison with cop' . Hence

Now let
xxf = i pv„p/~p"

5 = 0 —F~ ~

(29)

Expanding in series about the point f~ and discarding higher order
terms, we throw (24) into the form

J2$
m

dt2

nn 3rnQp f p nn(n + I) 6pnQp i p

f m+P+ f 4 ~+ 2f n, +P +

Let k' and k2' denote the values of k and k2 when Qp does not vanish.

an 3mQp'gp'
n+1

g
4

an nn(n + I) I2npQp
, + 3mQp' —At, +

g
n+1 %+2

gp

nn(n + I) 6pnQp'i'p'—k2' = +2
2g n+2

nn(n+ I) 6rnQp' Ap nn(n+ x)(n+ 2)
2g n+2 +

g g2 2g n+j. +3

By means of further approximations and with the help of equations

(26a), (2pd), and (29) the above expressions for k' and kp' can be re-
duced to

Hence

k = 4'FmMp I

4x2mgp" n + I

p 2—(n —2)
Glp

(n + I) (n + 2)

(Sx)

V
2

(S2)

n+ I I2 pP
kp'/k' = — — I—

2gp n+ I Gop

Let co denote the frequency of vibration corresponding to the angular
frequency v„. Then

I k
M 2' m

5/I2A ( )
/

COp

A
I ——— (n+ x)'

48 Fp

8 — ——n+ I '
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Comparing. equations (r3) and (3g) we see that

a = —, —— 8 — ——n+ I ' (35)

It is to be expected on the basis of the attempts which have been made
to formulate a law governing the mutual repulsion of whole molecules
that n will have a value between 5 and I5. That being the case, it
will be observed that for small values of A (which is a measure of the
amplitude of the vibration) a is a positive quantity whose value decreases
with the energy of vibration. A qualitative agreement between the
observed values of 5 and 5' and the equations (2o) and (2I), or (22) is
thus established.

The writer has shown elsewhere that in the case of HC1 the ratio
A. /go should be in the neighborhood of o.i2 when ~ = i. The above
approximate equations are certainly not valid for such large amplitudes
of vibration as this, but it is of interest to apply them even out of the
range in which they are properly applicable.

The square of A is roughly proportional to the energy of vibration,
which, in turn, is roughly proportional to v. Hence we may substitute
(o.t2)'r for A jgo in (35). The observed values of X and N' are 8.655
g Io '4 and 2 & 8.49 )& Io "respectively, from which we may assume,
on the basis of equations (22), that 8.8 X xo "is not far from the correct
value of &o(o, o), or &oo'. Substituting these values into (35) and giving n

the value 7.5, we obtain

o = (3.I2$ —0 638r) X. lo ".
Equations (22), based on the assumption that the vibrational energy

may be reduced to zero, then give Q = 2.5 p Io "and 5' = 3.7 )( Io ".
The observed values of these constants are g = 2.55 X Io ' and

= 3.7 )( Io respectively, so that the agreement is excellent. On
the other hand it is not possible to choose any value of n which will

give good values of either 5 or 5' if we assume that equations (2o)
and (2I) are correct.

The internal evidence of our theory therefore favors the hypothesis
that for vibrational motion zero is one of the possible values of r. In
other words, there is no "zero-point energy" for vibrational degrees
of freedom such as that which the Bohr theory assumes for the rota-
tional degrees of freedom. Too much weight should not be attached to
this result, however, since the equations on which it is based are ad-
mittedly inaccurate and give excessively large differences between the
frequencies N' and 2¹
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KIRCHHOFF s LAW.

The problem of giving quantitative proof that the present extension
of Bohr's theory is in harmony with Kirchhoff's law is substantially
equivalent to the problem of deriving Planck's radiation formula from
the theory in question, and it involves the introduction of hypotheses
which are outside the scope of the present paper. The writer will there-
fore content himself here with a qualitative discussion of the relation
of the theory to Kirchhoff's law in the hope that he may later have the
privilege of taking up the problem in a quantitative manner.

Kirchhoff's law rests on the proposition that the ratio of the coefficient
of emission of any medium for the frequency v to its coefficient of ab-
sorption for the same frequency when in a state of thermodynamic
equilibrium is equal to the specific intensity of black radiation for the
same temperature and frequency divided by the square of the index of
refraction. ' lf we assume (following in the footsteps of Planck) that
we have to do with a gaseous medium of very low density, we may call
the index of refraction unity. Denoting the coefficients of emission and
absorption by e.

'
and a„respectively, and the intensity of black radiation

by E„we have

—= Z
nv

Let v' denote any other frequency. Then
/

6v—= X/ v )
nv

and by Planck's radiation law

j'g6)

Equation (36) must be satisfied for any two frequencies p and v', if
Kirchhofl's law is to be satisfied, and conversely we may apply (36) to
the theory of harmonics as a test of its compatibility with Kirchho6's
law.

In making this test, we may, to begin with, neglect the broadening of
the absorption and emission bands by molecular rotations and by the
Doppler effect. e„and e.' may then be replaced by the integrated
intensities of the fundamental and harmonic emission bands, while o„
and 0/. are replaced by the corresponding intensities of the absorption
bands. It should be observed that if we replace v' by 2v the right-hand
member of (36) decreases from infinity for very small values of the
temperature T to one fourth for very large values of T. Consequently

~ Cf. Planck's "Heat Radiation" (trans. by Masius), p. 3S.
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either the ratio of the emission coefficients e,e,. must decrease greatly
with increasing temperature or the ratio of the absorption coefficients
O.,n, must increase to the same extent.

Now according to the writer's earlier theory of harmonics the ratio
of the intensities of the fundamental and harmonic bands was inde-

pendent of the temperature for both the absorption and emission pro-
cesses, in complete disaccord with (36). The present theory, on the
other hand, provides for a large temperature variation in the relative
emission from the two bands, although the ratio of the absorption per-
centages should be independent of the temperature. This is because
the fundamental and harmonic emission bands have their origin in
dhgerent groups of molecules, the relative numbers in which vary with
the temperature. Thus, at the lowest temperatures the number of
molecules in the second steady state is infinite compared with the number
in the third, while at extremely high temperatures the numbers approach
equality and the relgtive intensity of the fundamental emission band
decreases correspondingly.

The above fact establishes a qualitative agreement between our new
theory of harmonics and Kirchhoff's law and shows that the new theory
meets all the difficulties'encountered by the old in a qualitative manner,
at least. It should be observed, however, that there is a minor contra-
diction to Kirchhoff's law involved in the Bjerrum theory of the struc-
ture of the infra-red absorption and emission bands upon which the
present work is in part based. For if we let v and v' in equation (36)
denote the frequencies of the two quantum lines in one of these bands
which are due to the group of molecules having any one of the possible
angular velocities, we get into the same trouble as in the writer's first
theory of harmonics. The two elementary absorption bands are due to
the same group of molecules and the two emission bands are due to the
same group. Consequently the ratio of the intensities of the absorption
bands and the ratio of the intensities of the two emission bands should
apparently each be independent of the temperature. As the Bjerrum
theory is very well established the above consideration seems to force
the conclusion that, while equation (36) may be, and probably is, correct
when applied to regions of the spectrum which are far apart, it cannot
hold when applied to narrow strips of the spectrum which are very close
together. In other words, Kirchhoff's law and the rule that the ratio
of the intensity of radiation inside any body or substance in thermo-
dynamic equilibrium to the square of the index of refraction is a uni-
versal function of the temperature and frequency, while approximately
correct as broad generalizations, are not strictly true when applied to
the comparison of closely adjacent portions of the spectrum.
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SUPPLEMENTARY NOTE.

Since placing the above paper in the hands of the publishers, my atten-
tion has been called to the formulation of the quantum condition for the
determination of the steady states of motion by W. Wilson (Phil. Mag. ,

29, pp. 795—8o2, June, t9i5), and the arrival of the long delayed copies
of the Annalen der Physik for r. 9x6 has put into my hands the inde-
pendent formulation of this same hypothesis by Sommerfeld, together
with his brilliant explanation of the complex structure of the lines in the
spectra of hydrogen and ionized helium by its aid.

The quantum condition in question takes the form of the requirement
that certain of the generalized coordinates of the atomic or molecular
systems in question shall satisfy equations of the form

fpdg = rh,

where p is the momentum corresponding to the coordinates g, h is Planck's
constant, ~ is an integer, and the integration is to be extended over a
complete cycle of values of g. Applying this condition to the vibration
of a diatomic molecule we obtain

fmfdf = 2f Tdt = rh,
or

71= &A.
2

Here, as in the text above, T and co denote the kinetic energy and the
vibrational frequency respectively.

If we assume, as a 6rst approximation, that the mean values of the
kinetic and potential energies are sensibly equal, we obtain equation

(i) above.
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