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THE PRESSURE OF SOUND.

BY WARREN WEAVER.

SYNOPSZS.

The Pressure of Sound: Relation between Pressure and Energy Density. —An
argument is given, following a method used by Larmor, to show that a certain
general type of radiation will exert a pressure. The pressure of small sound waves is
found to agree with this result, but for finite waves the conditions for the application
of the argument are not satisfied. These finite waves do exert a pressure which
depends upon the relation between pressure and density, the pressure being zero in a
certain important case. This theory has been developed by Lord Rayleigh. It
however appears that any actual aerial wave does exert a pressure not zero. The
pressure on an absorbing sphere is a second order effect in the product (ak), and is
therefore not considered in the usual treatment of spherical obstacles. Waves of
energy density of o.5 ergs/cm. ' or greater apparently must be treated as finite.

I. It is interesting and surprising that the subject of the steady
pressure of sound waves on a surface normal to the direction of propaga-
tion has been so little mentioned in the ordinary literature of the subject.
One 6nds, for example, no mention of it in Rayleigh's treatise, in Lamb' s
Dynamical Theory of Sound, and in many standard texts on physics.
It is treated in two articles by Rayleigh, ' in one by Poynting, ' and in the
article on sound by Stokes in the Encyclopedia Britannica. There is an

apparent but entirely superhcial confusion in the treatments here cited
which it is the purpose of this note to remove.

2. To Larmor is due a method of argument to show that any propa-
gated disturbance in which the energy density in the beam is inversely

proportional to the square of the wave-length will exert a radiation
pressure. For let the disturbance be propagated with a velocity c,
and let it be reflected by a plane normal to the direction of propagation
moving with a velocity of magnitude v opposite to c. Then by Doppler's
Principle the wave-length of the reflected beam will be reduced in the
ratio t —av/c to t, so that the energy density in the reflected beam will

be increased in the ratio i + 4v/c to r, (v/c being supposed small). Let
e be the energy density in the original beam, and consider unit area of
the reflecting surface. An amount of energy e(c + v) will be encountered

by it per second. It will be reflected in a wave train that is shorter than

(c + v) in the ratio r —2v/c to t, but in which the energy density is

I9og, II., p. 364; z9oa, I., p. 338, Phil. Mag.
2 r9os, I., p. 393, Phil. Mag.
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larger in the ratio x + i'/c to z. Accordingly there will be added, per
second, energy equal to

e(c + v) (z —2%)(i + 4v/c) —e(c + v) = e(c + v)2v/c.

This energy is supplied by work done in advancing the refiecting surface
a distance v per second against a pressure p. So that:

pv = e(c + v)2v/c

p = e(c + v)2/c.

The total energy density is the energy density in the oncoming and in
— the reflected beams, so that, if we denote it by E, ,

and if we set
Z = c + 8(I + 4%) = 28(I + 2v/c),

p = KA

we hame, neglecting first order terms in v/c,

K= I

so that the pressure is equal to the total energy density in the wave train
if the reflector is moving slowly as compared to the velocity of propaga-
tion of the disturbance. In case the reHector is not moving at all, so
that v = o the result (i) is rigidly correct. This argument of course
covers the case of light pressure on a normal reHecting surface.

The argument, as given by Larmor, ' is not restricted to first order
terms in v/c. An incident train of length c +' v is reflected into a train
of length c —v. The energy density in the reflected train is accordingly

and the total energy reflected per second

e . c —v.

We have then for the increase in energy per second

c+8 c+8
e (c —v) —e(c+ v) = e(c + v)c —v c —v

The total energy density in front of the reflector is

E =e+e
' Art. on Radiation, Enc. Brit. , Irth ed.
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and if we set as before

or

we have

which reduces to unity as in (t) if we neglect second order terms in %.
3. Let us consider a simple harmonic train of waves travelling in the

positive x-direction given by

g &s(n t—k~)

The energy per unit volume of this plane wave disturbance is inversely
proportional to the square of the wave-length, and hence sound of this
sort should cause a pressure upon a reflecting surface equal to the
total energy density in the incident and reAected sound beams according
to 2. %'e shall see, in fact, from elementary mechanical principles that
in the case of a perfectly absorbing plane obstacle normal to x there is
also a pressure equal to the total energy density in front of the obstacle.
Let R be the absorbing surface, and let a, b, c, d be a column one square
centimeter in cross section, of any length, and normal to R. Since in

Fig. i.

a steady state the air within the column neither gains nor loses momentum

the momentum flow across 0,—b per second will be equal to the pressure
on R. On the average there will be no momentum flow due to the
variable part of the pressure, that is due to p(ByjBt), since this obviously
has a time average of zero. The steady pressure at a—b will of course
cause a steady pressure on R, but with that we are not concerned. The
volume of air, however, gains forward momentum by having air enter
it moving to the right, and as well by having air leave it moving to the
left. If the velocity of the air particles be I the instantaneous rate at
which momentum is flowing to the right across the surface a—5 is then
pn': so that

2

P'=P+ =P
Bx
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But from (3) we have

the real part of which

We have, therefore,

&Pg &s(n t—ls~)
8p
Bx

= kA sin (et —kx).

p = pk'A' sin' (nt —kx),

the average value of which over a whole number of periods

= -'pk'A'

p = —',(y + I) (average energy/cubic centimeter).

This'is, in the first place, a hybrid result. As actually obtained the
pressure is given by

~c

p = -,'(y + z) — po~Pdx.
C

(4)

the known expression for the energy density in the incident beam.
Equation (4) also gives, as is well known, the value approached by the
average over any lapse of time as the interval becomes long with respect
to the period.

4. Expression (3) above is the velocity potential for plane waves under
the assumption of small particle velocities, or, what comes to the same
thing, under assumption that the pressure variation is so small that the
volume modulus of elasticity of the gas may be considered constant
over this pressure range. The relation between pressure and density
in an actual gas is however such that a wave cannot be propagated with-
out change of type (Rayleigh, Theory of Sound, Art. 25o). An approxi-
mate study of this change of type shows that the pressure crests travel
with higher velocity than do the pressure troughs, so that there is a
tendency for the wave to "comb over" as a water wave does near the
beach. This implies that the forward How of momentum across a
surface will be larger than in the case just considered, since the more
dense portions of the gas are moving forward the more rapidly. There
is actually a resultant forward How of matter, which a reHecting or ab-
sorbing surface would have to reverse or annihilate, so that we should

expect the pressure upon it to be greater than in the case given by (3).
This problem has been treated by Rayleigh and Lamb. Rayleigh
abandons the ordinary sound equations and starts from the basis of
Bernoulli's equation. Lamb retains the ordinary equations but finds a
corrective term to the expression for the change in pressure due to a
small change in volume, the correction being obtained from the ordinary
gas law. The result obtained is that the pressure is given by the equation



vox.. xv,
No. g. THE PRESSURE OF SOUND. 403

The expression
z C

pozPdx,
0

(

is the value of the average energy density under the assumption of small
pressure changes, while the coeScient -', (~ + i) differs from unity only
because the pressure changes. have not been assumed to be so small.
The result is therefore not to be considered as establishing an exception
to the principle given in 2. In fact in this case we could not apply the
principle given by Larmor at all because, there being continual change
of type, there is, strictly speaking, nothing one can call the wave-length
at all.

5. If the changes of pressure are small enough a wave can be propagated
without change of type whatever the law between pressure and density.
This is equivalent to saying that whatever the relation between p and p

a sufficiently short piece of the p, v curve may be.considered a straight
line, such a relation being that which makes possible propagation without
change of type. ' Within the range over which this approximation is

allowable the pressure will be numerically equal to the energy density
in the sound-filled space before the reflector or absorber. In the case of
finite waves, as suggested above, the pressure is in general larger than
this. The exact relationship depends upon the law connecting pressure
with density. It is given by equation (5) when the law of pressure is

that given by the adiabatic relationship

f/Po = (p/po)V

(5) reduces to (i) in case we have Boyle's law. For the case of the law

P = const —d'po'/p, (6)

which is the only relation under which there can be propagation without

change of type, the pressure comes out curiously enough to be zero'.

Lord Rayleigh therefore remarks that "pressure and momentum are
here associated with the tendency of waves to alter their forms as they
proceed on their course. " This might seem to imply that waves whose

type is preserved as they move do not exert a pressure and have no

momentum associated with them. In the case of actual waves, however,

equation (6) holds only over pressure ranges so small that (g) accurately
gives the velocity potential, and (4) gives the pressure. For these very
small waves Lord Rayleigh has found a pressure equivalent to that given

by (4).' The conclusion is, then, that any actual aerial waves, whether

' Lamb, Dynamical The. of Sound, p, r7S.
' Phil. Mag. , zgoz, p. 338.
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of such magnitude as to be considered small or hnite, whether their

type is preserved or not, do exert a pressure.
Both equations (r) and (g) have been made the basis of experimental

determinations of the energy of sound waves. W. Zernov~ used powerful
waves of frequency 5r2 and energy density of the order of o.5 ergs/cm'. ,
and found that equation (5) gave results which checked with a maximum

discrepancy of 3 per cent. those given by a vibration-manometer method

as developed by Wien. ~ %'. Altberg's measurements' were on sound
waves whose energy content was about half the above value, and he
used equation ?. (His experiments were made before the publishing of
Lord Rayleigh's z9o5 paper. ) It is unfortunately not possible to deduce
from his results whether (r) or (g) represents the more closely the truth
for sounds of this intensity since he considered only the constancy of the
ratio of the result obtained by the pressure method to that given by
the vibration-manometer method. This ratio was found to be approxi-
mately constant, as would of course be the case whether (r) or (5) was

used.
6. The ordinary theory of the impinging of plane waves of sound on

an obstructing sphere is upon the basis that (ka) is small, where u is the
radius of the sphere. Since it exerts a pressure, we may associate a
momentum wit& a sound beam, and since a perfectly absorbing sphere
would annihilate per second the sound contained in a cylinder c in length
and ma' in cross-section, it would be subjected to a pressure equal to
~2~pA'(ka)'. It is thus clear that for obstacles small enough to have
the ordinary theory apply to them with good approximation the pressure
effect we are considering would be negligible, containing as it does the
square of (ka). This explains the absence of reference to any such

pressure in the ordinary treatments. For sound in air of frequency t,ooo
per second the product (ka) is equal to o.or (whose square we might

perhaps agree to neglect) when a = o.o52g. Obviously, however, a
criterion for how small particles could be and have the steady pressure
effect sensible would have to take account also of density and amplitude.
In certain experiments carried out during the war use was made of a small

absorbing cylinder to measure pressure and hence energy density of
super-sonic waves in water. The wave-lengths used were about those of
the upper limit of audibility in air, their frequency being about four times
this limit. The product (ka) in these experiments was approximately
unity, so that the ordinary theory is entirely inapplicable, while the
pressure is sensible and can be easily measured.
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