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ON SOME APPLICATIONS OF HERTZ'S THEORY OF IMPACT.
By C. V. RamaN.

SyNOPSIS.

Statement of the Theory.—One of the premises on which the mathematical theory
of the collision of elastic solids given by Hertz is based is that the strains produced
in the immediate neighborhood of the region of contact are determined by the
pressure subsisting at any instant between the bodies, and are practically the same
as under statical conditions. This premise is valid even when the impinging bodies

- do not move as rigid bodies, and the impact results in part of the translational kinetic
energy being transformed into energy of elastic wave-motion in the substance of
the solids. Hertz's theory of impact with suitable modifications may accordingly
be applied under a very wide variety of conditions. In the present paper, an attempt
is made to discuss the problem of the transverse impact of a solid sphere on an infinitely
extended elastic plate of finite thickness and to calculate the theoretical coefficient of
restitution which is a function of the elastic constants and densities of the materials,
the diameter of the sphere and the thickness of the plate, and of the velocity of im-
pact. As the result of the impact, annular waves of flexure are set up in the plate,
and the sum of the kinetic and potential energies of the wave-motion may be deter-
mined in terms of the magnitude and duration of the impulse on certain simplifying
assumptions. The calculation results in a simple formula for the coefficient of restitu-
tion.

Experiments.—A series of experiments carried out in the author’s laboratory by
Mr. A. Venkatasubbaraman has furnished a quantitative confirmation of the
formula within the limits of its applicability, that is for plates not thinner than
about half the diameter of the spheres. For plates much thinner than this, theory
and experiment agree in indicating a zero coefficient of restitution. The formula
indicates that the coefficient of restitution should increase and approach unity for
greatly diminished velocities of impact, and this is also confirmed in experiment.
The paper concludes with indications of some further applications and extensions
of Hertz’s theory of impact.

1. INTRODUCTION.

S is well known, Hertz! developed a solution of the problem of the
collision of curved elastic solids on the following premises: (1)

the elastic state of the two bodies near the point of impact during the
whole duration of impact is very nearly the same as the state of equi-
librium which would be produced by the total pressure subsisting at any
instant between the bodies, supposing it to act for a long time; (2) it is
further assumed that the time of impact is large compared with the time
taken by elastic waves to traverse the impinging bodies from end to end,

1 Hertz's Miscellaneous Papers, English edition, page 146, and Love's Theory of Elas-
ticity, page 195 (1906 edition).
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which consequently move practically as rigid bodies except in the im-
mediate neighborhood of the region of contact. From these premises,
it follows at once that the energy of the colliding bodies remains as
translational energy after the impact, a deduction which is closely borne
out in experiment, provided the impinging bodies are of appropriate
shape, ‘e.g., solid spheres, and the stresses set up do not transcend the
limits of perfect elastic recovery.! The first of the two premises on
which Hertz’s theory is based is of very general validity, in as much as
it depends for its truth on the consideration that the elastic deformations
near the region of contact are determined mainly by the pressure sub-
sisting between the bodies at the instant, and being of a local character
and relatively large, are un-influenced by any changes in the elastic
deformations that might be developed elsewhere as the result of move-
ments of the bodies. The second premise of Hertz is however purely
an assumption? which is of comparatively restricted validity and may
even fail completely. Indeed it is often the case that the colliding bodies
cannot even approximately be considered to move as rigid bodies during
and after the collision, and a considerable proportion of the energy is
transformed into the energy of elastic wave-motion set up in the sub-
stance of the solids. Hertz remarked in his paper, though he did not
fully develop the idea, that even in such cases, the first hypothesis
(which remains valid) taken together with the equations of wave-motion
in an elastic solid might enable the course of the impact to be traced.
This suggestion of Hertz does not appear to have been generally followed
up, though indeed in one case, that of the longitudinal impact of rods
with rounded ends, its utility has been established.® It is proposed in
the present paper to consider the application of the method suggested
by Hertz to the problem of the fransverse impact of a sphere or other
solid of limited dimensions upon an infinitely extended elastic plate of
finite thickness. It will be shown how the proportion of energy of
impact transformed to energy of elastic wave-motion may be approxi-
mately calculated, in other words how the coefficient of restitution of the
impinging body may be theoretically determined.

2. ON THE NATURE OF THE WAVE-MOTION SET UP BY IMPACT.

The effect of an impulse of short duration applied at a point on the
plane face of an infinite mass of elastic solid has been investigated by
Lamb,* who found that the main shock produced by the impulse travels

1 C. V. Raman, PHysICAL REVIEW, Dec., 1918, page 442.

2 Except in the case of extremely small velocities of impact when it is true irrespective of
the shapes of the impinging bodies.

3 J. E. Sears, Trans. Camb. Phil. Soc., Vol. XXI (1908), page 49.

4 Phil. Trans. Roy. Soc., A, Vol. 203 (1904), pages 1—42.
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along the surface of the solid as a solitary wave (with one maximum
and one minimum, both in the horizontal and vertical displacements),
with its time-scale constant, and its amplitude decreasing in accordance
with the usual law of annular divergence, so that its total energy remains
undiminished. The velocity of this solitary wave is that of the free
Rayleigh waves on the surface of the solid which is somewhat less than
that of the equivoluminal waves in an unlimited medium. As the depth
to which the Rayleigh waves penetrate is comparable with their wave-
length, it may be readily shown that for the case of a sphere impinging
on the plane face of an infinite solid, the fraction of the translational
energy transformed to energy of elastic wave-motion is extremely small.
When, however, the impact takes place on an unlimited elastic plate or
bar of finite thickness, this is no longer true, and a considerable pro-
portion of the energy (in some cases, the whole of it) may be so trans-
formed. The theory of wave-motion on a cylindrical rod of infinite
length has been discussed by Pochhammer in a well-known memoir,!
and for the case of an infinite elastic plate of finite thickness by Lamb?
in a recent paper. Lamb finds that the types of wave-motion possible
in an elastic plate may be divided into two classes, (¢) the symmetrical
modes, and (b) the asymmetrical modes. The former class travel with
very high velocities ranging from a maximum equal to the highest value
possible in an unlimited medium to a minimum equal to that of the
Rayleigh surface-waves. The asymmetrical modes of wave-motion have
relatively smaller velocities ranging from a maximum equal to that of
the Rayleigh waves to a minimum value which tends to zero for very
long flexural waves. Prima facie, it is clear that the modes of wave-
motion excited by transverse impact would be chiefly of the asymmetrical
class, and that, even of the latter, those chiefly concerned in taking up -
the momentum of the blow would be the relatively slowly-moving waves.
Which particular type of wave-motion preponderates would obviously
depend on the duration of impact and the manner in which the pressure
exerted by the impinging body varies during impact.

An approximate calculation of the energy taken up by the wave-
motion excited in the plate may be founded on the simplifying assumption
(which may be justified at least as a first approximation) that the dis-
turbance set up by the impact travels outward in the plate with the
velocity of flexural waves having a half-period equal to the duration of
impact. Let 2f, and 2b be the thickness of the plate, and the diameter
of the sphere respectively, pi, ps their densities, g1, go, their Young's

1 Crelle, Vol. 81, page 324, sée also Love’s Elasticity, 1906, page 275.
2 Proc. Roy. Soc., Vol. 93 (A series), 1917, page 114.
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Moduli, o3, o, the values of Poisson’s ratio, and r the duration of
impact. The velocity V of long flexural waves of wave-length A in
the plate is given by the formula

V2=i.wz.jj.m,~_.ql .
3 N op(1 — ar?)
On the foregoing assumption, the radius ¢ of the circle on the plate
over which the disturbance has spread at the termination of the impact
is given by the relation ¢ = V7 = N\/2. Accordingly, we have
a* = wif Vgu/3p:(1 — 01?). (2)
The next step is to find the kinetic and potential energies of the wave-
motion in the plate. The kinetic energy may be determined if we know
the transverse velocity of the plate at each point over the circle of radius
a covered by the wave. The problem is one of two-dimensional wave-
propagation analogous to that treated by Lamb,! who has discussed the
configuration of the annular solitary wave diverging from a point at
which a local pressure is applied, rising from zero to a maximum and
falling again to zero. Lamb has given a sketch in the paper cited,
showing the form of the wave when it has moved out to a considerable
distance from the origin, from which it is seen that the wave consists
of two parts: a rising part in .which the transverse velocity of a point
over which the wave passes increases quickly from zero to a maximum
positive velocity and decreases again to zero, and a falling part which
consists of an infinitely extended ‘tail’ in which the transverse velocity
after reaching a certain maximum #egative value (which is numerically
less than in the first part) gradually drops down to zero again. The
first part of the wave in Lamb’s diagram passes over any specified point
in about 5/8 of the duration of the original impulse. The form of the
wave when near the origin just after the impulse has ceased would, of
course, differ in details from that described above, but may be approxi-
mately represented as in Fig. 1 in which the ordinates represent trans-
verse velocities, and the abscisse are the radial distances from the point
of impact. The direction of the impact is shown in the figure by an
arrow.

(1)

3. CALCULATION OF THE COEFFICIENT OF RESTITUTION.
" The kinetic energy contained in the wave is given by

E = f 3+2fp1-2wrdr, (3)
0

where v is the transverse velocity at any point as given by the graph
1 Proc. Lond. Math. Soc. ,Vol. 35, page 141 (1902).
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in Fig. 1. We may, without appreciable error, denote the sum of the
potential and kinetic energies in the wave by twice the integral in (3),
that is by 2E. The impulse given by the impinging body to the plate
is given by

I = f 2fp1 - 2mrody, (4)
c
the integration in which is to be carried out having due regard to the
Vi -&l& Va.
g 3 o —
a 3e/8 /‘\ 32/ -~
Fig. 1.

sign of v. If M be the mass of the impinging body, v; its velocity before
impact, and e the coefficient of restitution, we have on the assumption
that the energy is fully conserved, the two relations

T Mv2(1 — &) = 2E}

Mo, (1 +e)=1 (5)

On evaluating the integrals in (3) and (4), and substituting the same in
(5), we get the value of the coefficient of restitution, e. The necessary
integrations are readily carried out by taking the graph of the transverse
velocity in Fig. (1) to be made up of arcs of sine-curves. The formula

finally obtained is
fp10»2 - 056M
e =" T . (6)
fp]_a + 0.56M
The distribution of transverse velocity shown in Fig. (1) is, as explained
above, based on Lamb’s investigation of two dimensional wave-propaga-
tion, and has thus theoretical justification. It also appears to be that

Y

i
[_\/"\

a T a

Fig. 2(a).

most closely agreeing with facts. Nevertheless, it is of interest to see
how far other assumed distributions of velocity would modify the formula
for ¢ given in (6). If the distribution of transverse velocity were that
shown in Fig. 2(a), the formula for e is found to be

_ fp@* — 0.39M

"~ fpe® 4 0.39M° @
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For the distribution shown in Fig. 2(b), the formula is

foie® = 0.44M

¢ foua® + 0.44M " (8)
To make use of the formula given in (6), we have to substitute in it
the value of @ as given by (2), and to enable this to be done, we have to
ascertain the duration of the impulse 7. It is obvious that to a first
approximation, this may be taken to be the same as that given by
Hertz’s theory of impact, the mass of the impinging body being M, and

va
/—-\
a T a
Fig. 2(b).

the mass of the plate being taken to be infinitely great. If there is any
deviation from this in actual practice, such deviation should be sensible
only when the velocity of impact is very large or when the thickness of
the plate is much smaller than the diameter of the impinging sphere.
The duration of impact on Hertz’s theory is given by the equation

T = 2.94a/'2)1, (9)

. 2 — 2 2/5
a=[i—27)12<1 A U2)M] b5 (10)

where

g1 g2

and b is the radius of the impinging sphere. These values have to be
substituted in equations (2) and (6) above.

4. COMPARISON WITH EXPERIMENT, AND SOME CONCLUDING REMARKS.

The correctness of the formula for the coefficient of restitution de-
veloped in (6) above has been tested in the author’s laboratory in a very
careful series of experiments carried out by Mr. A. Venkatasubbaraman
to whom his best thanks are due. The impacts observed were those of
polished hard steel spheres impinging on horizontally held glass plates
of sufficient size to permit of the application of the theory, these materials
being chosen as for moderate velocities of impact they very nearly
satisfy the condition that the system is of the conservative type. As
remarked above, the calculations assume that the duration of impact
is the same as that given by Hertz's formule which would be practically
correct, provided the velocity of impact is not very great and that the
thickness of the plate is not very small. Mr. Venkatasubbaraman’s
experiments give results for the coefficient of restitution under these
conditions closely agreeing with those found from (6).
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TasLE I.
Coefficient of Restitution, e.

Velocity of impact = 234 cms. per second.

Diameter of Spheres in Centimeters.

Thickness of |
Plate in 0.791. 0.714. 0.637. 0.555. l 0.396. 0.314. 0.237.

Centimeters. | -

Calc. Obsd.| Calc. |Obsd.| Calc. Obsd.| Calc. |Obsd.| Calc. |Obsd.| Calc. [Obsd.| Calc. [Obsd.

e. e. . €. é. e. €. e. €. e. e. e. e. e.
2.53....... 0.98 0.95‘ 0.99] 0.96| 0.99| 0.97| 0.99| 0.97| 0.99| 0.98| 0.99| 0.98 0.99!0.98
1.93....... 0.97/0.95| 0.98| 0.96| 0.98| 0.96| 0.99| 0.97| 0.99| 0.97| 0.99| 0.98 0.99'0.98
1.29....... 0.93|0.91] 0.94] 0.93] 0.96| 0.93| 0.97| 0.94| 0.98| 0.95| 0.99| 0.97 0'99l0'98
1.01....... 0.89/0.87| 0.91] 0.89| 0.93| 0.91| 0.95| 0.93| 0.97| 0.94| 0.98| 0.96 0.99i0.97
0.71....... 0.79|0.77| 0.83} 0.80| 0.86| 0.83| 0.89| 0.86] 0.94| 0.90| 0.96| 0.95|.0.98,0.96
049....... 0.61] 0.60| 0.67| 0.66] 0.73| 0.71] 0.79 0.77| 0.89| 0.86| 0.93| 0.91 0.96;0.94
0.35....... 0.36| 0.38] 0.44| 0.45! 0.53| 0.53 0.62] 0.61} 0.79| 0.77| 0.86| 0.84| 0.92,0.89
0.225...... 0 0 10.03] 0.13] 0.15] 0.23] 0.28| 0.34] 0.55| 0.55| 0.69| 0.68 0.81.0.79
0.150...... 0 0] o0 ] 0 } 0 0 0 |0.12 0.21\0.28 0.421 0.451 0.62 0.63
0.105...... 010 ‘ 0] 0] 0] 0|70T 0] 0 |0.0870.00 0.24] 0.36[0.43]

The following facts emerge on an examination of the figures shown in
the table of results. For the thicker plates, the experimental values for
e are smaller by two or three per cent. than the theoretical values. This
is evidently due to various minor causes of dissipation of energy not being
taken into account in the. theoretical treatment. For moderate thick-
nesses of plate, the calculated and observed coefficients of restitution
agree well. Theory and experiment also agree in the case of very thin
plates in giving a zero coefficient of restitution. In other words, in such
cases, the sphere on impact with the plate remains in contact with it.
But in certain intermediate cases, where the thickness of the plate is
less than about half the diameter of the impinging sphere, but not so
small as to give a zero coefficient of restitution, the observed values of e
are somewhat larger than the calculated values. These cases are shown
enclosed in heavy lines in the columns of the table. It has already been
remarked that in such cases, the assumption made that the duration of
the impulse is given by Hertz's formula for impact with an infinite mass
of solid would cease to be valid, and the discrepancy between the observed
and calculated figures may possibly be due to this. An alternative
explanation would be that in such cases, the configuration of the annular
wave set up in the plate may slightly differ from that shown graphically
in Fig. 1, and may approach more closely to that shown in Fig. 2(a).
It is obvious then that the formula (6) would have to be modified for
such cases by slightly decreasing the numerical constant 0.56 appearing
in it to 0.50 or 0.45 for the thinnest plates. As a matter of fact, if this
is done, the discrepancy between the observed and calculated values of e
in these cases disappears.
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Another noteworthy result indicated by formulas (2) and (6) and which
is confirmed by some observations made by the writer is that the coeffi-
cient of restitution for impact on an elastic plate should depend on the
velocity of impact, and should approach unity for very small values of
this velocity. This is a consequence of the fact that the duration of
impact as given by Hertz's formula varies inversely as the one fifth
power of the velocity, and the radial distance a covered by the annular
wave diverging from the origin should therefore increase with decreasing
velocity of impact. Fuller quantitative data showing the relation be-
tween the coefficient of restitution and the velocity of impact will be
obtained and presented in due course in a further communication.

It may be remarked that much higher velocities of impact or larger
spheres than those indicated in the table cannot be used, for the reason
that the impact in such cases ceases to be of the conservative type, and
results in internal fractures of a local character and of peculiar geometrical
form in the glass plates. The character of these fractures bears an
interesting relation to the distribution of stress in impact as given by
Hertz's mathematical theory, and will be more fully discussed in a
later paper.

The method used in the present paper can of course be applied also
to the problem of transverse impact on an elastic bar, which is of a
somewhat simpler character owing to the wave-propagation being in a
single dimension instead of in two dimensions as in an elastic plate.
The nature of the wave-motion set up by impact in this case is also
capable of somewhat stricter analytical treatment if, following Boussinesq,
we use Fourier’s well known integral for the transverse vibration of an
infinitely long bar to find the motion resulting from the initial impulse.
In both cases also, it would be of interest to attempt a theoretical treat-
ment (with experimental verification) of the manner in which the duration
of impact varies with the thickness of the bar or plate, and also a direct
experimental determination of the form of the wave at the instant at
which the impact ceases.

210, BOWBAZAAR STREET,
CALcUTTA, INDIA.



