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The effects of including a realistic wave function for the 3He jon on the predictions of the distorted-wave
theory for stripping and pickup reactions are studied in some detail. On the assumption that the 3He ion and
triton are similar, the results are carried over to reactions involving the triton. Good agreement with experi-

ment is found.

I. INTRODUCTION

S is well known, the (d,p) stripping and (p,d)

pickup reactions have yielded important informa-
tion about neutron single-particle and hole states. The
utility of this reaction has been enhanced by the
development of the distorted-wave theory,!? which, in
most cases, accurately predicts shapes of angular distri-
butions and the energy and (Q-dependence of the
reactions. Recent tests of the validity of the distorted-
wave Born approximation (DWBA) have also indicated
that the absolute cross section is reasonably well
predicted.?

Until recently, rather little was known about proton
particle and hole states. These states can be reached
via the (d,z) and (%,d) reactions, but these experiments
are difficult. Alternative ways of studying these states
are with the (*He,d) and (d,*He) reactions. Spectroscopy
with these reactions has been limited, either because of
poor energy resolution or low bombarding energy.
These difficulties have now been largely overcome, and
extensive studies of both the stripping and pickup
reactions have been reported,* and are in progress.

Some discussion of these reactions and the application
of the distorted-wave theory has been reported.* In
general, the theory has been quite successful in predict-
ing the shapes of angular distributions but, since little
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is known about the wave functions of the three-nucleon
system, the theory has been essentially unnormalized,
and extraction of spectroscopic information has relied
on empirical normalization.

Recent studies of photodisintegration of the *He ion®
into a proton and deuteron have been “quantitatively”
explained by assuming an Irving-Gunn® wave function
for the fully space-symmetric S state of the 3He jon.
A further success of this wave function is the explana-
tion of the electron-proton coincidence cross section—if
one assumes that the inelastic scattering of electrons by
*He ions is dominated by the breakup into a proton
and deuteron.” The single-parameter wave function
used in these analyses also accounts for the Coulomb
energy difference between the triton and the $He ion,
the over-all form factor of the *He ion for ¢#<5F—2,
and, crudely, the SHe size.®

These successes suggest that this wave function be
used to estimate the absolute cross section predicted by
the distorted waves theory for the (*He,d) and (d,*He)
reactions. Since the triton is expected to be similar to
the ®He ion, we extend our estimates to include (d,?)
and (t,d) reactions.

In succeeding paragraphs we consider the finite range
corrections to the theory implied by the choice of the
Irving-Gunn wave function, and compare our predic-
tions with experiment. Finally, we summarize our
findings.

II. THEORY
The transition amplitude for the reaction 4 (e,d)B
is written
draX* (ky,xa)

X(B,d‘ Veff‘A7a>xi(+) (kiyra) . (1)

pr=]/dl'a/

Here r, is the relative coordinate between ¢ (the *He
ion or the triton) and the target 4, and r;is the relative
coordinate between the deuteron and the residual
nucleus B. J is the Jacobian of the transformation to
these relative variables, and X, and X are the distorted
waves, usually treated in optical-model approximation.

5B. L. Berman, L. J. Koester, and J. H. Smith, Phys. Rev.
133, B117 (1964).

6J. C. Gunn and J. Irving, Phil. Mag. 42, 1353 (1951).

7T. A. Griffy and R. J. Oakes, Phys. Rev. 135, B1161 (1964),
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A standard formulation of the amplitude, via the
Gell-Mann-Goldberger transformation, yields

Vets=V;—U;y
=VastVas—Uy, 2

where V; is the interaction between the outgoing
deuteron and the residual nucleus B, and Uy is the
distorting potential which “satisfies” elastic scattering
in the final channel.

Vets is usually chosen to be the interaction between
the outgoing particle and the transferred nucleon (),
ie.,

Veti2Vas, 3)

arguing that there is considerable cancellation between
the remaining terms. While there is little formal
justification for this approximation, its empirical
success in describing the (d,p) reaction?® suggests that it
be tried for the reactions under consideration here.

With this approximation, the “nuclear” matrix
element can be written
<B7d]Vd3[A:a'>=<B|A)(d[ del“’)' (4)

The overlap (B| 4) of residual and target nuclear wave
functions has been discussed by several authors.® Here
we assume its properties are known and turn to the
evaluation of the remaining factor,

(@|Vaz| @)= "% / dp ¢alp)Vazo(r,p)=v"%D(r), (5)

where p is the internal coordinate of the deuteron and
r is the coordinate of the nucleon relative to the
deuteron center of mass. The factor » arises from anti-
symmetrization and is equal to the number of equivalent
nucleons « in the three-nucleon system, and ¢ is a
coefficient of fractional parentage.

For the decomposition of the three-nucleon system
into the triplet deuteron and captured nucleon, the
product »2c=+/%.

It is convenient to factor the integral in (5) into an
amplitude Dy and a normalized function f(r), with

Do= [ dr / de 04V an(r.0)

and

1) =(1/Dy) / do 0s)Varolrp).  (6)

The distorted-wave cross section is then proportional
to the factor

N=3Dg. ©)

8 M. H. Macfarlane and J. B. French, Rev. Mod. Phys. 32,
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Part b.
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II. ANALYSIS

Our central task is to evaluate the integral in Eq. (5).
For this purpose we make use of the Hulthén wave
function to describe the s state of the deuteron, i.e.,

B exp(—ap)—exp(—pp)
ﬂad(ﬁ) (41'_)1/2L P :' ’ (8)
with
a=0.231 F1, B=1438F7,
and
B=[2aB(a+B)1"*/(8—0). )

For the He ion and the triton, we take the Irving-
Gunn wave function which has the form

@(r12,713,723) =4 exp(—8R/2)/R, (10)
with normalization
A=3142/ (2z3)\/2, (11)
Here
R2=3" (r;)2=2r243p2. 12)
1<j

For the size parameter we use §=0.768 F~, the value
used in Refs. 5 and 7.

We have chosen as a model interaction the force
between the transferred nucleon and the deuteron.
Therefore, for (4,d) and (d,f) reactions, we use the
nuclear force between the neutron and the deuteron.
For the reactions involving the ®He ion it is not clear
whether the matrix element we evaluate should not
also include contributions from the Coulomb interaction
between the proton and the deuteron or whether the
Coulomb interaction should be grouped with the other
neglected interactions. Arguments similar to these
which lead to Vg4, as effective interaction indicate the
latter choice. Since there is some discussion of this
point in the literature,® we shall calculate with both
alternatives. We show below that this procedure also
gives a check of the consistency of our theory.

Our approximations then are:

(a) Vpd= Vnd+ VCoulomb 5
and
(b) Vpd = le 5

where V,q is the nuclear interaction between the
neutron and the deuteron.

We show in the Appendix that these assumptions lead
to the following expressions for the amplitude Dy:

h2
Do(t,d)=—5—'yz2 / dr / do valp)e(r,p), (13)
"
h2
DeCled) =~ / o / do ¢p)b(re), (14)
n
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and

D0b=D0a—/drfd9 ¢d(P)VCoulomb¢(r;p)' (15)

In the equations above, p is the reduced mass of the
nucleon and (%2/2u)y2 and (#2/2u)vs? are the separation
energies of the neutron from the triton and the proton
from the 3He ion, respectively.

Details of the evaluation of these integrals are given
in the Appendix. Here we quote the numerical results:

Do(t,d)=—183.6 (MeV F#72)
D¢ (*He,d)=—161 (MeV F2),
Do (He,d)=—172.8 (MeV F#2).
In terms of the reduced cross section opw(f)® dis-
cussed by Satchler,® and the spectroscopic factor S

discussed by Macfarlane and French,® our estimates of
D, yield, for the stripping reactions:

(16)

do 2Js+1
—(t,d)= 5.06( )SaDW(G) ,
aQ 27:+1

%

do® 2741
—(*He,d) =3.84< >Sc71)w(0), W)
aQ 2741
da® 2741
—(%He,d) =4.42( )SaDw(f)) .
dQ 2J:+1
And, for the inverse reactions:
(do’/dﬂ) (d,i) = 3.33SaDw(B) 5
(da'“/dﬂ) (d,“’He) =2.56Sopw(8), (18)

(do®/d)(d,*He)=2.95Sopw(6) .

If the isotopic-spin formalism is used, S should be
replaced by C2S, where C? is the square of the isospin
Clebsch-Gordan coupling coefficient.

Most distorted wave calculations have used the
zero-range approximation in order to reduce the
complexity of Tpw. More specifically, the range func-
function of Eq. (6) is taken as a delta function.

fr)=8(), (19)

and the six-dimensional integral is thereby reduced to
a three-dimensional integral.

Recently, Austern et al.'* have developed techniques
which allow the matrix element to be evaluated
exactly. The finite range effects have been shown to be
important,’? in the sense that this modification partially
obviates the use of a radial cutoff on the matrix element.
In addition the magnitude of the predicted cross

9 pw(6) corresponds to o1, (0) of the code saLLy.
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section is different from the magnitude predicted in
zero-range approximation—this difference is, of course,
reflected in the deduced spectroscopic factor.

Our expressions for f(r) can be evaluated numerically
and the results treated within the formalism of Austern
et al.! Rather than undertake this task, we use the fact
that ®He ions and tritons,’®6 and deuterons'’:'8 are
strongly absorbed particles and mainly sample the
nuclear surface. In addition, for *He ions the Coulomb
barrier aids in confining reactions to the surface.

For practical calculations then it should be reasonable
to use an approximation suggested by Drisko and
Satchler’® and demonstrated to be successful for
deuteron stripping. These authors note that, if low-
momentum components dominate the reaction, a
Gaussian range function is an adequate approximation
to the more complicated range function f(r), that is,

f@)~exp(—r*/R?). (20)

In the above expression, R is chosen to give the correct
small-momentum components of f(r).

The presciption to find R is straightforward and
consists of expanding the Fourier transforms of f(r)
and the Gaussian and comparing to order k2.

As in our evaluation of Dy, there is a unique prescrip-
tion for the range for the (4,d) and (d,t) reactions. But
for the (*He,d) and (d,°He) reactions we find two
expressions for the range according to our approxima-
tions @ and b discussed above. The expressions are quite
lengthy and are given as Eqs. (A12), (A13), and (A14),
in the Appendix. Numerical evaluation gives

R(t,d)=R(d,))=1.69F,
R.(He,d)= R,(d,*He)=0.268 F
R, (*He,d)= Ry(d,*He)=1.54 F.

(21)

Our result for the range and amplitude in approxima-
tion b for the (®He,d) case are comparable to but about
109% smaller than the equivalent quantities for the
(¢,d) reaction. Since we are using the same wave function
for the *He ion and the triton, they should be identical.
The discrepancy, due to the fact that the Irving-Gunn
wave function is too singular for small values of p, then
gives a lower bound on the accuracy of the calculation.

The smallness of the range in approximation a arises
from Coulomb repulsion. This can be understood by
noting that the nuclear and Coulomb contributions are
opposite in sign and that their sum results in a function
which falls off more rapidly than the function from the
nuclear force alone.
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To the extent that the Irving-Gunn wave function is
realistic, and that low-momentum components of f(r)
dominate, approximation a indicates that the zero-range
approximation will be good for the (*He,d) reaction.

It is difficult to argue, on theoretical grounds, which
approximation is more satisfactory. At this stage of the
distorted waves theory, we prefer to let the choice rest
on comparison with experiment.

IV. APPLICATION

A test of our estimates of Dy and the range can be
made by comparing the predictions of the theory with
an experiment involving a closed-shell nucleus. Here we
might expect spectroscopic factors to be reasonably
predicted by the shell model. We recognize, however,
that there may be particle-hole correlations in the wave
function of the “closed”-shell nucleus and that the
shell model thus may overestimate the spectroscopic
factor.

Our choice of test case is also restricted to an exper-
iment in which the optical-model parameters for the
incident and final channels are known or can be reason-
ably inferred from analyses of scattering from neighbor-
ing nuclei.

Of the available experiments, the measurements of
Blair and Armstrong®® on the “Ca(*He,d)®Sc ground-
state reaction seem a likely choice. Two-particle,
two-hole ground-state correlations are presumably
small since these authors find only a weak /=2 transition
in the experiments. Thus the spectroscopic factor for
the ground-state transition might be expected to be
close to the shell-model prediction, C2S=1. Blair and
Armstrong have measured the elastic scattering of
3He ions from “Ca, and this data has been fitted with
the optical model.!® Since no data exist for deuteron
scattering from the unstable nucleus ¥Sc, we make use
of the optical-model analysis of Yntema and Satchler*
for the neighboring nucleus #Ti.

The optical model used has the form

Ulr)=—Vo(1+4e5)1

— i Wo(l4e ) +4Wp——t + U, (r), (22)
(14-¢")?

x=(r—ridV3)/a; «'=@r—r/AV?)/d;
Ulr)=2ZZ'e?/r for r>R,

=(ZZ'e?/2R2)(3—7*/R.;2) for r<R.,

and R,=r.A'3.

The parameters are listed in Table I.

The final ingredient in our calculation is the wave
function of the transferred proton implied by the
nuclear overlap (B| 4). We treat this as an eigenfunction

with

19 D. D. Armstrong and A. G. Blair, Phys. Letters 10, 204
(1964).

R. H. BASSEL

149

TasLE 1. Optical-model and bound-state well parameters.

re Vs Wo Wp 7o a’
(F) (MeV) (MeV) (MeV) (F) ¥)
1.08 0.8 1.4 0 12.3 0 1.743 0.721

0.974 0912 1.3 6 0 183 1.439 0.6
64.3 1.2 0.65 1.25 8.9 .

Vo 70 a
Reaction (MeV) (F) )

3He+48Ca 139
d+4Sc 112
p+48Ca

of a Woods-Saxon well with eigenvalue equal to the
separation energy. For the case of a closed-shell core,
this well can be interpreted as the shell-model well, and
the procedure seems justified. However, the input
parameters (ro,a) of this well are poorly defined.
Usually, these parameters are chosen to correspond to
the parameters of the real well found for the scattering
of nucleons from the appropriate target. Because of
ambiguities in the optical potential, and the possibility
that these parameters may be energy- and mass-
dependent, several sets of values for nucleon scattering
have been found. We use here a set, listed in Table I,
due to Satchler,® which describe proton scattering from
“Ar and “Ca. We should stress that the magnitude
(but not the shape) of the predicted cross section is
dependent on the parameters of this well, and this
introduces considerable uncertainty into our determina-
tions, perhaps as much as 159,.

It has been suggested that the wave functions used in
distorted-wave calculations should be eigenfunctions of
of nonlocal wells. Accordingly, we have studied both
local and nonlocal wave functions, nonlocal corrections
to the local wave functions being made in the local
energy approximation of Perey and Saxon.?

Briefly, this correction amounts to multiplying the
local wave functions by a damping factor.

F(r)=C[1— (Mp*/2m) U (r) 2. (23)

In the above formula, 8 is the nonlocality range, M the
reduced mass of the particle, and U.(r) the local
potential. In principle, this correction is applied to both
the scattered functions, and the bound-state wave
function, although, as we discuss below, 8 is not well
known for the three functions considered here. The
constant has the value C=1 for the scattered wave
functions, since the nonlocal wave function is identical
to the local wave function asymptotically. For bound
particles C exceeds unity in order that the nonlocal
wave function be normalized.

Perey and Buck® have shown that $,=0.85F
accounts for the energy dependence of the optical
potential for nucleons. However, some of this depend-
ence may be intrinsic and not due to nonlocality, so
that this value is probably an upper limit. The energy
dependence of the shell-model potential is not well
known. The (p,2p) and (e,e’p) experiments suggest that

2 F. G. Perey and D. Saxon, Phys. Letters 10, 107 (1964); and
to be published.
2% F, G. Perey and B. Buck, Nucl. Phys. 32, 353 (1963).
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the well is nonlocal for deeply bound particles to about

the same extent as the optical potential for nucleons. 10
For particles near the top of the Fermi sea there is

evidence that the energy dependence is smaller than

for deeply bound orbitals or continuum wave func- 5 |9
tions.?? Nevertheless, in the absence of more detailed s
knowledge, we take 8=0.85 F for the nonlocality of the [ \

48n, (3 49
shell-model well. Assuming that the energy dependence 9 Co ("He, 7) Sc
of the deuteron and *He wells is due entirely to non- \ GROUND STATE
locality yields 8¢~0.54 F, and Bsue~~0.2 F, which values 2 \ 4=3
we adopt for our analysis. °

Calculations were made using the Gaussian range \ /V\
function with the range prescribed by approximation ! i
b, and in zero-range approximation, to test which form f
of the theory is more applicable. The results are = vV AN
compared with the data in Fig. 1. Curve (a) shows 5 [-(0) 5 St
the prediction assuming local wave functions in zero- RN L BB
range approximation. While the position of the main » w‘
peak is accurately given, the theory grossly over- \ .
estimates the large-angle cross section. Curve (b) is the »
theoretical result when nonlocal corrections are added \ e
to the theory but still using the zero-range approxima-
tion. Because the bound orbital is more surface localized
and the interior contribution suppressed, low-momen-
tum components are emphasized, with consequent
reduction of the large-angle cross section. Curve (c)
shows the result incorporating the finite-range modifica-
tion but neglecting the nonlocal corrections. Again,
high-momentum components are suppressed, low-
momentum components enhanced, and the shape of
the theoretical curve improved at large angles. Finally,
curve (d) is the result when both finite range and
nonlocal modifications are included. Since both correc-
tions go in the same way, there is a further lowering of
the predicted cross section at back angles.

While none of the theoretical predictions is in exact
agreement with the experimental data, the two finite =
range predictions, curves (c) and (d), are reasonably o v JAN
satisfactory, with curve (c) perhaps to be preferred. /
This result may, of course, be fortuitous. It does f —]
suggest, however, that the finite range form of the theory \ ¢

\
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is superior. 2
The predicted values of C2S extracted from the data

with these four forms of the theory are listed in Table IT.

If the interaction Vg4, is a sum of nuclear and Coulomb |

interactions, the zero-range and finite range calculations D

\\\ .

,___
T~
L a1

TasLE II. Spectroscopic factors. 0.5 \J \
L.

Mode C2S(a) C2S(b) v 3

Local, zero range 1.04 0.92
Nonlocal, zero range 0.87 0.8 0.2
Local, finite range e 6.77 10 20 30 40 50 60 70 80
Nonlocal, finite range cen 0.66 8. (deg)

Fic. 1. Distorted-wave predictions compared with the data.

22 G. E. Brown, J. H. Gunn, and P. Gould, Nucl. Phys. 46, 598 The four curves are discussed in the text.
(1963) ; and G. R. Satchler (private communication).
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are essentially equivalent, as discussed before; the
results for such an interaction are listed in Column I.
The local estimate is only slightly in excess of the
shell-model prediction, while the nonlocal estimate is
some 209, smaller.

The interpretation of the interaction as purely nuclear
leads to the estimates tabulated in column II, where for
completeness we have included the results based on the
zero-range approximation. The most detailed form of
the theory underestimates the shell model C%S by some
349%. But if the nonlocal corrections are dropped,
agreement to 209, is again achieved.

Alternative Wave Functions for the
Three-Nucleon System

In preceding paragraphs we have computed the
normalization of the (*He,d) reaction theory using an
Irving-Gunn wave function for the He ion. As we have
shown, the results are in fair agreement with exper-
iment. Before assigning significance to this “success”
it is important to repeat our calculations using other
three-body wave functions which have been shown to
describe features of the three-body system.

The wave functions we shall consider are the Gaussian
and Irving wave functions used by Schiff?® in his analysis
of elastic e=®He and e-triton scattering.

The spatially symmetric Gaussian wave function is

(4 (7)‘0) =4 G CXP[“’ 6G2R2/2] )

where the normalization constant is 4 ¢= 3%66%2/m3/s.
The Irving wave function is given by

¢ (r,p)=Ar exp[—0:R/2],

Ay= 33463/ (120)/25302.

With the values §¢=0.383 F~1, and §;=1.263 ',
used by Schiff,?® the predicted normalizations for (,d)
reactions are N¢=1.43, and N;=3.03.

These values are considerably smaller than the
normalization found with the Irving-Gunn wave
function and, as we discuss below, lead to spectroscopic
factors somewhat larger than expected on reasonable
nuclear models.

These results then agree with the analysis of Griffy
and Oakes,” who find that both the Gaussian and
Irving wave functions underestimate the electron-
proton coincidence cross section in the inelastic scatter-
ing of electrons off *He ions.

where

V. SUMMARY

The results of our application indicate that the
distorted-waves theory is capable of predicting both
the shape and the magnitude of the (*He,d) cross section.
The theoretical angular distribution is most reminiscent
of data when the finite-range modifications are included.

% L. 1. Schiff, Phys. Rev. 133, B802 (1964).
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The magnitude of the cross section is better reproduced
in the local form of the theory.

The enhanced cross section, and consequent smaller
spectroscopic factor, found in the nonlocal form of the
theory is almost wholly due to the fact that the nonlocal
bound proton wave function is some 149 larger than
the local wave function at large radii. Our preliminary
results then suggest that the nonlocality range of the
shell-model potential is somewhat less than 0.85 F,
at least for the case we are considering here.

An alternative, and perhaps superior, method of
examining the consistency of the distorted waves theory
is to study the (*He,d) reaction over a range of target
nuclei. With the aid of sum rules, a reliable estimate of
the normalization could be found. Such a survey has
recently been completed by Armstrong and Blair,* who
have studied this reaction on targets with 28 neutrons.
Using the local theory in zero-range approximation,
these authors find a normalization factor, N =3.840.7,
which is to be compared with our predicted N=4.4.
Their result, along with our findings, may suggest that
the use of the Irving-Gunn wave function leads to an
overestimate of order 20%,. On the other hand, un-
certainties in optical parameters and the bound-state
orbital could easily lead to errors of this magnitude.

Studies of the (d,) reaction provide another test of
the normalization. Thus, Fulmer and Daehnick,?* using
our predicted factor of 3.33, have found reasonable
agreement with spectroscopic factors from pairing
calculations for nickel isotopes, and Bjerregaard et al.25
find an empirical normalization of 3.25 in their studies
of the ¥Ca(d,t)*Ca reactions.

The weight of evidence seems to indicate that the
absolute cross section for these reactions is reasonably
predicted by using an Irving-Gunn wave function for
the triton or *He ion. The normalization predicted by
the Gaussian wave function is much too small, and the
Irving wave function is admissible if the nonlocality of
the shell-model potential is of the same order as the
nonlocality of the optical potential.

We hope to address these questions in more detail in
forthcoming publications. For the nonce we conclude
that the distorted-wave theory in its present form gives
fairly reliable spectroscopic information.
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APPENDIX

We assume that the wave function of the fully
space-symmetric state of the three-nucleon system
satisfies a Schridinger equation,

de¢(1’,P) = [BT_" T,—H, (P)]¢(ryp) )

with Br the total binding energy of the system.
Substitution of (A1) into the overlap integral of (5)
yields, with the aid of Green’s theorem,

(A1)

D)= / O 64D BerT 0. (A2)

Equation (A2) is the result of using the full interaction
between the transferred nucleon and the deuteron. For
the 3He ion this can be regarded as the sum of nuclear
and Coulomb contributions,

D (7) = Dnuclear (7') + Dc (7’) (AS)

with

Du()= / 4o $d()Vcomoms ()6 (1) (A4)

Integration over 7 then yields Eq. (13) for (¢,d) reactions
and Egs. (14) and (15) for (*He,d) reactions.

To evaluate these expressions, it is convenient to
work with their Fourier transforms,

1
G(kZ) ——z—ﬂ’)— dr e* 7D (1’)
e e [ ssirote)
= itk | dre®r [ dp ao)d (7,p) ,
27r)?
(2w n) (5)
where we have written — (%2/2u)v%= Bsp, and
1
Ge(k2)= [dr e*"De(r). (A6)
(2m)®

Except for factors, Eq. (AS) is exactly the integral
considered by Griffy and Oakes.” Taking over their
result, we find

256324 B(82—a?) %2
G(k)=~— —(72+ k?)
31/255
g*dgq
o (%) (82+)[1+8q%/ 36+ 28267712
= (h*/2u) (v*+ k)1 (k?) . (AT)

FINITE-RANGE EFFECTS 797
To cast (A6) into an expression suitable for numerical
evaluation, it is convenient to take the Fourier trans-
form of the Coulomb interaction and then to proceed
in the manner described by Griffy and Oakes.” After
lengthy algebra we find

321124 Be? (82— a?)

Gc(k2) = -
31/25 o 52
X[ ({itg s
Jo (e +¢%) (B*¢?)
— [+ Q+S T [14Qt 45T
) +1+Q+5T12,  (A8)
with
Q*=[14-8(g*+s*=¢s)/38"]

and

St=2(k2=£2ks) /5.

Expanding 7 (k%) and G¢(k?) in Taylor’s series about
k=0, we get

72 d
G<k2>=a(72+k2>[z<o>+k2—z<k2> o } . (49)
2 dk? £2=0
d
Gel)=GeO+F_Ge#)| - (A10)

Then

Do(1,d)=6.26I(0), Dy*(*He,d)=>5.491(0),

and

Dot (*He,d) = Dy*— G¢(0) . (A11)

Equating the moments of the transform of the Gaussian
to the appropriate combination of the moments of G
and G gives

R2
—@td)=— |:—+— In7 (k2)
4 ’Yt

. ] ., (A12)

R,2
——(3He,d)=——[———+—— InT (%) ] (A13)
4 ’Ys k?=0
and
R? #? d
*=—[~1<0>[1+~/32—1n1<k2> }
4 2,u [Zkz | k2=0
dG¢ %2 —1
B0r) ][—7321(0)—60(@] . (A1)
dk? r2m0dl 2




