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A new method for calculating the distribution oi electric microfields (high-frequency components) in a
plasma is developed. Distributions are calculated at both a neutral and a charged point. The plasma is
taken to be a system of X charged particles moving in a uniform neutralizing background. It is shown that
this development allows for the inclusion of all correlations to a high degree of accuracy. This theory is then
compared with the Holtsmark and Baranger-Mozer theories. A detailed analysis of all approximations is
included, together with a Monte Carlo study. Numerical results are shown both graphically and in tabulated
form.

I. INTRODUCTION
' 'N recent years considerable eA'ort has been expended
~ - on the problem of spectral line broadening in
plasmas. '—' In relation to this problem, various theories
of the electric microfield distributions have been
formulated. ' ' The primary aim of these efforts has
been to include particle-particle correlations to various
orders and thus to improve the original work done by
Holtsmark. ~ The microfield problem may be separated
into two categories; in the first of these, the primary
concern is with the treatment of extremely dense
plasmas (solar cores). One approach to such plasmas
has used collective coordinates to calculate the micro-
field distribution at an ion. ' While this calculation
may have been valid for that particular temperature-
density region, its applicability to high temperature,
dilute plasmas has been held in doubt, since it did not
result in the Holtsmark distribution when the infinite
temperature limit was taken. ' The second category
has been primarily concerned with less dense plasmas,
such as those produced in the laboratory. The most
successful of these was presented by Baranger and
Mozer (hereafter referred to as 3-M). Their papers
considered two cases which they referred to as the high-
and low-frequency components. 3-M maintained that
their theory was of "unquestionable accuracy" in the
high temperature, low density limit, and while this
assertion is definitely valid, it remains unspecified as
to how one quantitatively defines that region of applic-
ability. In view of the fact that only pair correlations
were considered, and that these were handled through
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the Debye-Huckei pair-correlation function (and some-
times the linearized version of that function), it seems
desir'able to re-examine the problem with a view toward
generating an alternative approach which would
extend into the higher density, lower temperature
regions.

With these goals in mind, the present theory is
constructed. In this first paper, the plasma treated is
assumed to consist of X-charged particles moving in a
uniform neutralizing background; this corresponds
to the 3-M high-frequency case. The problem of
the low frequency case will be the subject of a later
communication,

Each of these E particles is assumed to interact with
one another through a Coulomb potential. When treat-
ing the problem of the electric field distribution at a
charged particle, an additional (/+1)st particle,
conveniently placed at the origin of the reference frame,
must be included. It will be shown that the field dis-
tribution at a neutral point is just a special case of the
charged-point development.

Section II of this paper deals with the development of
the formalism. The numerical results and analysis,
including a comparison with the 8-M theory, are
discussed in Sec. III. Final conclusions are presented in
the fourth and last section. Supplementary to the main
text is an extensive Appendix. Where at all practicable,
detailed calculations have been relegated to this
Appendix.

II. FORMALISM

Define Q(e)de as the probability of finding an
electric field a, at a singly charged or neutral point, due
to a collection of X-charged particles moving in a
uniform neutralizing background, and contained in a
volume 'U. Then if Z represents the configurational
partition function, we may write

Q(e)=Z-' ." expL —Pl'(r "r )3

Xb( +P(er, /r, ')) II dr;, (1)
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FIG. 1.A comparison of two T(l)
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present theory of the electric
micro6eld distribution function
P(e) (charged point case). /See
Eqs. (A50), (A51).) e is in units
of 6p.

Although these integrals appear formidable, they may be readily reduced, through the use of collective coordi-

nates, to an approximate expression involving only a one-dimensional integral. The accuracy of this approximation
is discussed later in this section. Collective coordinates are defined, and the nature of the evaluation indicated, in

Appendix A. The final result is just stated here

I&(l) =e[h&(l) —hr(0)]=3 dx x'e~"
sin [LG (x)]—1 —3
. [I.G(x)]

sin[Lq (x)]
dx x'e"' (29)

The functions which appear in the integrands are defined a,s follows:

x= r/rs,
8

Ii(x) =— rtn'e '~ e-'—)
3X1 Q

0 A 1
G(x)= [e ~~'—ne '*]—+ [ne ~'~ n'e ~—~], q—(x)= [e ~" e~']—[e '*—ne ~—"]- —

A S S 1 Q X x

The second teil in the series exponent is given explicitly a,s

Is (t) =—'e'[hs (l)—hs (0)]=-'e' gs(l)X(t, 1)X(l,2)dr&dr& — gs(0)&(0, 1)X(0,2)drrd rs (31)

When the g&(l) and gs (0) functions appearing in this equation are evaluated in Appendix A, it is found that they
have a particularly interesting form. Eq. (A44) gives the following expression for gs(l):

gs(l) ='O'Q&(/, 1)Q&(l,2) exp g
—c$12 1 ~

3xgg

a similar expression is found for g&(0). The exponential term in brackets is just the nonlinearized Debye-Hiickel
pair-correlation function, while the entire content of the bracket is just the tvro-body "cluster" function in an

Ursell cluster expansion. "This is not a surprising result in view of the fact that studies of the radial-distribution
function by collective coordinate techniques have indicated that when the entire potential energy of such a system
is treated by collective coordinates, the result is the nonlinearized Debye-Huckel pair-correlation function. "This
has special significance in this theory in that it implies that noncentral, two-body correlations, included through

the mechanism of collective coordinates, are of the same accuracy as the nonlinear Debye-Huckel result. This

K. E Salpeter, Ann. Phys. (N. Y.) 5, 214 (1958).
"H. L. Sahlin, dissertation, Department of Physics, University of Florida, 1963 (unpublished).
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procedure allows one to use a simpliIIIed cluster expansion such as that employed in this paper. That the expansion
converges very rapidly may be observed by noting that each term consists of the digerettee between two h; func-
tions; each of these is a j-dimensional integral over a product of (1) a term representing the jth "cluster" function,
(2) j of the X functions, and (3) j of the Qi terms [see for example Eq. (32)].

Each of these factors not only aids convergence of the integrals themselves, but also contributes to making the
series of h; terms rapidly convergent. The vahdity of this assertion is further indicated by a direct numerical
comparison of the relative importance of the first and second terms in the expansion (see Fig. 1).

Using the result shown in Eq. (32) in Eq. (31), and performing a collective coordinate calculation (see Appendix
A), we find

I2 (l) = -'222[h2(l) —h2(0)] =Qk( —1)'+'3 (2k+1)a2{ },

Ik+i/2(ttx2)[e jk[LG(x2)] Jk[Lt/(x2)]lx2

+k+2/2(tixi)[ '""jk[LG(»)]—jk[L&(»)]}»'"d» dx2

e'&*2~Ii 2(gx2)[e e~» —1]x 2/2 e'&*t~gi 2(gxt)[e erato —1]x 2/ dx dx

(33)

Two of the functions in the integrands, G(x) and q(x), have already been defined. Functions remaining to be
speci6ed are

P2t2~o=
6 o2 c2

e
—earl 0 2 (X.) — [e—arf e

—aari]
3+io ~ 0! 3+i

(34)

I and Z refer to modified Bessel functions of the first and third kind, respectively, while jk(—) specifies a
spherical Bessel function of order k."

Thus
T(l) = exp[—yL'+I (l)+I (l)],

where Ii(l) is given by Eq. (29), and I2(l) by Eq. (33).This result is used in Eq. (6) to calculate I (e) at a charged
point.

In the event that E(e) is desired at. a neutral point, the charged point equations are easily adapted to accomplish
this purpose. Modifications are necessitated by the fact that we no longer have any central interactions to include
in the potential energy of the systein. Although this fact does not alter the expression for Te(l)/Te(0), it is reflected
in the final equation for Ii(l) since both F(x) and hi(0) must be set equal to zero. Therefore,

sin[LG (x)] sin[Le(x)]-
It(l)neutral = 22ht(l)neutral =3 dxx

— LLG(x)] [LV(x)]—
(36)

Applying the same physical arguments to I2(l) we find that

I (l) 2tr nein= 2a@ h2(l)neutrai=gk( 1)"+3(2h+ 1)a { }

Ik+t/2(~x2) [jkLLG(»)]—jk[Lv(»)]j»'"

&2+i/2(e»)f jk[LG(xi)]—jk[Lq(x,)]]x,"'dxt dx, . (37)

At this point it is possible to observe that in the
infinite temperature limit, T(l) and hence E(e) go to
the correct Holtsmark limit. From Eq. (26) we see that

"The BateInan Manuscript Project, Higher Trmsscendeetul
Functions (California Institute of Technology, Pasadena, Cali-
fornia, 1953), Vol. II, Chap. VII.

as the temperature becomes inhnite, u goes to zero,
Applying this result to the equation for T(l), in Eq.
(24), we find that only the factor exp{22[hi(l) —h, (0)]}
remains. In this limit, all other terms in the series
exponential go to zero, since g;(j)1) goes to zero, while
the factor Te(l)/Te(0) becomes unity. It may be
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verified by direct substitution that in this case,

T(l) = exp —3
-sin (L/x')

1&x
— (L/~')

2 (2~) '"
=exp — — L'"~ . (38)

5

I= . exp{——', Q~LAkX~'+2MI j)&Jie die

=constXexp(2 p„b„'/(1+2~)}

xP—.+.— ], (»)

This last relation is just the Holtsmark expression
for T(t).

Two approximations have been made in this theory.
The first of these is the termination of the series appear-
ing in the exponential, with the second term. Justifi-
cation for this step has been given previously, and
numerical aNrmation of its validity will be presented in
Sec. III. The second approximation, which we will now

consider, is concerned with the collective coordinate
evaluation of the many-dimensional integrals occurring
in this theory.

As is shown in Appendix A, Eq. (A16), the evaluation
of the many-dimensional integrals involved in the
calculation of T(l) may be transformed into integrals
over collective coordinates which have a rather simple
form. These collective-coordinate integrals, along with
their solutions are given below

where 3~ and bj, are specific functions of k, the XI,'s
represent collective coordina, tes, and J is the Jacobian
of the r~X transformation. The series of terms in
brackets represents the possible higher order corrections
to the first Jacobian approximation. In the ca.lculations
made thus far, a3, as well as all other Jacobian correc-
tion terms, have been neglected. The assumption is of
course that they really are negligible. However, if these
calculations are to be taken seriously, the correctness of
this last assumption must be verified. This has been
done in several ways.

The first step in using, and in evaluating the present
theory, is to determine the adjustable parameter n.
Perhaps the best choice of o. is the one which results in a
minimum error due to the combined effect of the cluster-
expansion termination error and the Jacobian error. An
even better choice of o. would be one which resulted in
the error due to each of the two major sources being
negligible, if this is possible. A clear indication that such
a circumstance had occurred would be the existence of
a distinct and extended range of n values over which the
T(l) curve, and hence the P(e) curve, would remain
stationary; the requirement of such a range would
virtually rule out any possibility that the two errors had
merely cancelled one another. The latter choice was
shown to be possible, and was the one chosen to deter-
mine the best value of n, specifically, an n value lying
at the approximate center of the stationary range was
the one chosen.

Rather than rely solely on the above argument, this
criterion was subjected to several tests. First, the second
term in the cluster expansion was calculated, and is
shown in Fig. 1 to contribute less than 2% to any point
on the P(e) curve in a "worst case" situation. Similarly,
the a3 term in the Jacobian correction series was eval-
uated. It is seen in Fig. 2 that, in the n region chosen for
the calculation, this term, which indicates skewness of
the collective coordinate distribution, is negligible.
From the related structure of a4, the kurtosis, ' it may
be deduced that the same choice of o, will also Inake a4
negligible. In an e6ort to also rule out the possibility
that although a3 and a4 are small, the entire series is
appreciable, a special case is considered.

Since the theory of B—M should indeed be valid for
dilute systems at suKciently high temperatures, P(e)
curves predicted by both theories at a=0.2, should
agree quite well (a=0.0 corresponds to the Holtsmark
case). It is shown graphically in the next section that,
in this instance, the present theory without Jacobian
corrections yields a P(e) curve almost identical to thai,
predicted from the B-M theory. The assertion is that
in this case, a3, a4, and the entire Jacobian correction
series are really negligible. Figure 2 indicates that
freedom to choose the correct e value corresponding to
a given a results in a3 having at least the same order of

'4 R. Van Mises, Mathematica/ Theory of ProbaNlity and
Statistics I'Academic Press Inc. , 1964), Chap. III-A, p. &29.
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magnitude for c&0.2 as it did when a=0.2. If the n

variation aBects a3 and a4 in this manner, it is plausible
to expect the entire series to be similarly affected. Thus,
by this argument too, we expect the present theory
without Jacobian correction to be valid for ra, ther high-
density, low-temperature regions (e.g., @=0.8).

A final attempt at verifying the procedure is shown
in Fig. 3. Here we see a comparison of the results of a
Monte Carlo calculation of P(e) for a=0.8 (the largest
deviation from the Holtsmark distribution considered
in this paper) and the corresponding curve for this
theory. It is seen that while the curve predicted by the
present theory peaks at the same e value as does the
Monte Carlo curve, it is approximately 3% higher at
this point. The qualitative features of this difference
appear to be indicative of the difficulties, inherent in
any Monte Carlo calculation concerned with long-range
potentials" ":In such calculations, it is necessary to
choose a finite cell size and hence to neglect some of the
more distant contributions to the total field strength at
a point; this fact, together with the normalization
requirement, will result in the probability of weaker
fields being underestimated, which is the observed
effect. Regardless, the agreement is sufBciently close to
further substantiate the present theory.

Actual numerical results are discussed in detail in the
next section.
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III. NUMERICAL RESULTS AND ANALYSIS

It should again be emphasized that all studies of the
a Qatness region indicate that in this range the dis-
regarded corrections due to both major sources of error
are indeed negligible. Figures 1 and 2 show these
results. While Fig. 1 is self-explanatory, Fig. 2 may be
understood as follows: We may write'

as ——a~' —y'I.'. (40)

Since a3 is not a function of / and since, in addition, it
is very small compared to unity (=10 ') for all cases
considered, it is set equal to zero in all further dis-
cussions. In order to gain some impression of the
importance of the a3 correction, we consider its inhuence
on the calculated. values of Tp(t)/T p(0). In view of the
fact that y' is quite small, it is permissible to write

To(~)/To(0)=—pl —L'}L1+ 'L'j
=exp( —(y —y')L') . (41)

A measure of the importance of the correction due to as
in this instance may be given by plotting the ratio of
y'/y versus n for a values of interest. It is clearly seen
from Fig. 2 that in the regions of fatness, a3 amounts to
an insigni6cant correction.

Figures 4 and 5 show graphs of P(e) versus e for
several values of a, while Figs. 6 and 7 indicate the

"D. D. Csrley, J. Chem. Phys. 43, 3489 (t963l.
16S. G. Brush, H. L. Sahlin, and K. Teller, University of

California Radiation Laboratory Report No. UCRL-14467- T, 1965
(unpublished) .

sL P(e) values for e =7.0, 8.0, 9.0 and 10.0 were calculated using the first
approximation to T(l) which is given by Eq. (A51); the largest error in
these values should not exceed 5%. For a discussion of asymptotic expres-
sions for P(e), see Refs. 5 and 6.

differences occurring between the 8-M theory and the
present theory for cases characterized by a=0.2 and
a=0.8. It will be noticed that the difference between
the two theories increases as the magnitude of a
increases, and that the 8-M theory favors weaker fields
than does the proposed theory. One possible explanation
for the direction of the difference between the two may
lie in the fact that in Baranger's second correction term
to T(l), expLL'~'Ps(aL'")), the linearized pair-correla-
tion function is used instead of the non-linearized form.
It has been argued by 3-M that the difference between
the two functional forms should not really matter since
the procedure was "also in the spirit of the Debye-
Huckel theory. "'7 However Fig. 8 illustrates that the
effect of a reduction in Ps(uL'~') on the Anal P(e) curve
may be very large. A similar reduction in the second
correction term in the present theory leads to an almost
imperceptible change in the P (e) curve under identical
conditions; this may be deduced from Fig. 1. A reduc-
tion in the magnitude of fs is what one would expect if
the nonlinearized Debye-Huckel function were used
instead of the linearized version; this is because the
linearized form underestimates the contribution to the
pair-correlation function from strong fields and hence

'7 B. Mozer, dissertation, Department of Physics, Carnegie
Institute of Technology, 1960 (unpublished).
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FIG. 6. A comparison of the
electric micr ofiel distribution
function (at a charged point)
determined by B-M, with that
predicted by the present theory;
& is in units of ~o.
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FIG. 7. A comparison of the
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~ is in units of e(I.
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FIG. 8. A comparison of two T(l)
approximations as applied to the
B-M theory of the electric micro-
field distribution function E(e)
(charged point case). I See Eqs.
(ASO), (A51).g s is in units of sQ.
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TAax.z II. Probability distributions P(e) at a neutral point for

several values of a. The electric field strength & is in units of ~0.a

a =0.4 u =0.6 a=0.8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2,5
3.0
3.5
40
4.5
5.0
6.0
7.0
8.0
9.0

10.0

0.00533
0.02097
0.04587
0.07840
0.11649
0.15785
0.20012
0.24109
0.27882
0.31178
0.33889
0.35952
0.37349
0.38098
0.38248
0.37865
0.37033
0.35837
0.34362
0.32688
0.23474
0.15816
0.10622
0.07313
0.05229
0.03879
0.02322
0.01493
0.01028
0.00746
0.00552

0.00647
0.02538
0.05524
0.09377
0.13816
0.18534
0.23230
0.27631
0.31519
0.34737
0.37191
0.38850
0.39736
0.39911
0.39464
0.38501
0.37132
0.35461
0.33587
0.31593
0.21795
0.14454
0.09670
0.06715
0.04853
0.03649
0.02257
0.01462
0.01012
0.00738
0.00546

0.00758
0,02965
0.06424
0.10838
0.15845
0.21062
0.26127
0.30729
0.34632
0.37687
0.39829
0.41064
0.41458
0.41113
0.40156
0.38720
0.36933
0.34913
0.32760
0.30556
0.20476
0.13431
0.09005
0.06250
0.04553
0.03463
0.02191
0.01431
0.00995
0.00728
0.00541. -

0.00877
0.03419
0.07373
0,12358
0.17922
0.23598
0.28964
0.33676
0.37498
0.40301
0.42060
0.42829
0.42719
0.41876
0.40455
0.38613
0.36487
0.34120
0.31847
0.29504
0.19343
0.12595
0.08441
0.05863
0.04302
0.03309
0.02132
0.01401
0.00980
0.00719
0.00535

a P(e) values for e =7.0, 8.0, 9.0 and 10.0 were calculated using the first;
approximation to T(l) which is given by Eq. (A51); the largest error in
these values should not exceed 5'P0. For a discussion of asymptotic expres-
sions for P(e), see Refs. 5 and 6.

overemphasizes the fo term. It would be necessary to
carry out a calculation of P& using the nonlinearized
function before the actual magnitude of the reduction
could be ascertained.

Tables I and II list some tabulated values of P (o) for
reference.

IV. CONCLUSION

The main text of this paper has attempted for the
sake of clarity to describe the procedure and results of
a new theory of electric microfield distributions in
plasmas without interjecting too many detailed calcu-
lations. However, in all instances the author has
endeavored to give complete references, and many of
these are to the attached Appendix. It is hoped that
this procedure has proved to be both acceptable and
helpful to the reader.

The theory developed here has been shown to be
effective in determining electric microfield distributions
in plasmas of the type described, over a wide tempera-
ture-density range; it goes to the Holtsmark limit as
T —+ ~, and at a=0.8 it has been shown to predict a
reliable result. A comparison of this method with that
of B-M clearly indicates that while the latter theory is
good at high temperatures and low densities (a=0.2) it
becomes progressively inaccurate as a is raised from 0.2
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APPENDIX A

In this Appendix we are concerned with evaluating
the expression LEq. (24))

T(l) =LTo(l)/To(0)) exp(Q, (e&/j!)Lh;(l) —h, (0))}
through the second term in the series exponent.

The evaluation is accomplished by introducing a
variation of the Broyles' collective-coordinate tech-
nique. 5 We write

V= Vo+P,w, o,

where, as indicated in Sec. II,

4ze2
V P~P e ikr;;

'U & '&2 k2

(A1)

(A2)

(A3)

Again, the prime indicates the exclusion of the k=0
term in the summation over k. In all subsequent
formulas, the prime will be dropped, with the under-
standing that the 4=0 term will always be excluded in

to 0.8. The net result of these calculations is that for the
charged-point and the neutral-point cases, the distri-
bution curves generated by the present theory favor
stronger fields than does the theory of B-M.

Perhaps equally as important as the actual numerical
results revealed in this paper, is the method of including
noncentral forces through the mechanism of collective
coordinates. Exactly how good this Inethod is, is
evidenced when the second term in the cluster expansion
is calculated; here one finds that the noncentral, two-
particle correlations are included, through the use of
collective coordinates, to the approximation of the
nonlinear Debye-Huckel result. Since this second term
is only a small correction to the theory, even in the case
of high a values, such an approximation must be
considered highly accurate. Furthermore, during the
derivation of the general formalism, especially that
part relating to the cluster expansion, the fact that it
was not necessary to explicitly mention noncentral
interactions resulted in much simplification. This
method of development should also be applicable to
other problems involving long-range forces; perhaps the
partition function for a Coulomb system wouM be
amenable to such a treatment.
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all subsequent k summations. Using the identity

Q e'~ "/=Q[cos(k. r;)cos(k r, )

We now use this collective-coordinate notation to
calculate T(l). Consider first the factor Tp(l)/Tp(0).

+sin(k r,)sin(k r,)], (A4)

(AS)

and further defining a function

S(k r,)=cos(k r,), k,)0;
=sin(k. r,), k, &0,

Tp(0) f f expL —PV,]II dr,

f .f exp[ P—Vp+i(1/e) VpVp] g dr,
Tp(l) j=1

. (A15)

we write

V=

Recasting this equation in terms of collective coordi-
nates, we find

2xiVe' 1 2

Tp(l) f fex (—-'Pg[A/X '+2b/, (l)X/, ])J g/, dx/,

T (0) f f exp{——'P [A X '+2b„(0)])Jg dx

then

Xi—= (2/1V)'/PP;5;,

X/. ' ——(2/1V) P S;S,.
s'il

(A7)

(AS)

where

Al, =
(8,)'

(A16)

In terms of these XI„

g (2 4/2

V =—Q A/, X/„.'+9~ — Q A/, X/, 8Q Ai, —(A9)
2 ~ (1V

kz& 0

where

A/, ——(kX)
—', and g=kT.

2 '"f(k)
b/i. (0)= — X1, k, &0,

1V (B,)'

Xo, &&0

k, &0,

(A17)

By similarly Fourier expanding both P, w, p and Vp,

and by introducing the X& notation, we may write X[—i(l/e) k] k, &0

and

x,
Pw;p ——8—

iV & P k)'+n'
kz) 0

0 1/2

V,=- P A,X,'+8~ — P [f(k)A,X),]
k k&v

kz& 0

(A10)
and J represents the Jacobian of the transformation
from r coordinates to X coordinates.

The nature of this Jacobian is considered in detail in
Ref. 5, as is the nature of this integral evaluation. Here
we just outline the results pertinent to this calculation.

Integrals of the form

where

—0+ A p, (A11)
k I= exp( ——,

' +[A X '+2b„X„])Jg dx (A1S)

can be evaluated by collective coordinates to give(k) =
(kX)'+n' I= constX exp fzP~ b/, '/(1+A /)) [1—a,+a4-

(A19)The evaluation of the gradients of V, Vp, and P, w, p

with respect to the coordinates of the origin, can also be
where

expressed in terms of the XI„. thus,

( 2 i/2

VpV=8i — P k X/„
icy ~ (ky)'

(A12) and

ap ——[2/3'U (2N)'/'] Jj'dr

q= P,[b/, S(k r)/(1+ A 4)].

and

4/2 f(k)
VpVp=o — Q k X/, ,

1V i (B,)'
kz &,0

(A13) It can be shown that a4 also involves integrals over
powers of q.

Using this method to evaluate Eq. (A16) we find

1/2

v'p[P;w;p]=0 — P k X/, . (A14)
1V I [(B,) '+n']

k, &0

Tp(l)—=exp —,
' P

Tp(0)

b/, '(l) —b/, '(0)

1+A/,
(A20)
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From the definitions of b~(l) and bq(0), this may be and that
shown to reduce to (3e/W, )= a&.

Tp(l)

To(0)

02 f'(k)1.k

cVe' & (B,)'[1+(1/B,)']
k, &0

(A21)
To(l) —g

—y (l ep) 2 —e
—y I 2

To(0)
(A23)

We make use of these identities, with the result that

X—
(n+1)' 48~XX'e'

(A22)

This may be further simplified by recognizing that

(S/4~~e2) =X&

If we replace the sum over k by an integral, and carry
out this integration, we find that the exponent becomes

where pp ——e/rpo, and where y=n'a/4(n+1)'.
In the evaluation of both the second and third

factors in T(l), integrals of the type Q appear

Q-(l) = (& /To(l))

X exp[—PV+Z(I/e) VoVp] g dr, . (A24)

Again, introducing collective coordinates, we have

'U"f f exp{——', Qg[A)Xk'+2b(XA]} g dr,
2 =m+1

N

f exp{ ;'+~[A„X—k'+2b~, X„]}g dr,

(A25)

In this expression we must deal with an E—m dimensional integral, as well as with one of dimension S. In order to
adapt the collective coordinate formalism to this case, we change from the collective variables XI, to a new set,
XI,'. The X&' are related to the XI, by the equation

(A26)
v, here

I/2

ap ——— P 5(k r;).
, V

By making this change of variables we remove from collective consideration all terms involving the coordinates of
particles 1 through m. Thus the collective coordinate exponentials take the form

—
o 2k[A aXI'+2bI Xa]= —

o K~[A I XV+2 (a& I +bI )XI,'+ai'A a+ 2aI bI ].
Now we use this procedure in both the numera, tor a,nd denomina, tor of Q (l). Hence

(A27)

'U"f f exp{——', P [A X "+2(a A,+b,)X„']} P dr,
j=ns+1

f exp[—Q a b,]{f f exp[ —-,'P [ ..AX+ ( 2arA+b. )X']] g «,}g dr,

(A28)

This may be reduced to

m

f exp{+o Zz[[(aIAA+bI)'/(1+A, )]—a„'Aq —2akk]} g dr,
1=1

exp{—&~[a%/(1+A.)]}

f f exp{—+~[a b/(1+A )]}g dr,
j=l

Carrying out the collective coordinate integration, we kind

'U"' exp{+-' Q [[(a A,+b )'/(1+A, )]—a„.'A —2 kb~]}
(A29)

(A30)
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which, in the limit ItI —+ ~, 'U —+ oo with lq'/'U —+ zz, can be shown to equal

Q-(1)=exp( —2 [~ b /(1+~.)3.
In order to proceed further, it is necessary to insert the appropriate expressions for a&, b&, and A&, to replace the

sum by an integral, and to carry out the integration. We now deal with speci6c cases.
Consider the second factor in the T(l) expression

exp[Iz (l)]=
exp [rz[hz(l) —hz(0) ]j,

Iz(l) = zz 'U1Qz(/, 1)fexp[ &zezo+ (1/e) Vozozo] —1]—Qz(0, 1)[exp[ Pzezo] —1]1dr~,

l'2 '" S(k r))bA„
Qz(i, 1)= «p —~—

1+Au

(A32)

If we carry out explicit evaluation of the exponent by the method previously discussed, we And that

S(k r,)b,

1VI ~ 1+Ay,

dk k'

[ 'y(B,) ][1+(kX)']
cos (kr& p) dzz+i9 [(1/e) .k]sin(krzzz)diaz (A33)

which, expressing rz in units of ro(xz ——rz/ro) and evaluating the integrals, becomes

2 '" 5(k r)b,.—= s(x))+iLq(xz) =
iV ~ 1+HA,

o.2 82

[e—o'zl e—(xszl]+zI
1 Q 3$ Q

(A34)

where the cos8 term comes from the 1 k factor, and where

1 g
g
—0!Cg] g

—QgI g
—QSI ~g—cxCgI

SJ $1

Thus we may write

Qz (1,1)= exp[s (xz)+iLq (xz) cos8].

Expressing Pzezo and Vozezo in terms of xz, we may evaluate I&(l). Thus

(A35)

where

Il(l) rz[bl (l) hl(0)] 3 dxzxz e
-sin[LG (x,)]

~ 2~'(x1)

[LG(xg)]

sin [Lq (xg)]—1, (A36)
— [Lq(»)]

0
I"(xz) = s (xz) —p~zo = X- [n'e- *' e -"]-, —

3$y 1

G(x,) = q(xg)+e-'ze, o' ——

0! 0

1 1 1
e
—cxQ I ~2g—QZI ~g

—AQ I ~2e-—Q;"I

1 0! SI
(A37)

s(x)) =—
&& [e—":"'—e

—™1],q(x, ) =-
1—o.~ 1 —A x1 $1

0"
PzDyo= —e

3$1

1
e
—'zero'= —e

—-"[1+naxz].
SI

Equation (A36) is just Eq. (29) appearing in Sec. II. The second factor then becomes exp[I&(l)].
The third, and last factor which we consider is of the form exp[Iz(l)], where Iz(l) is given by

I,(l) =-', rz'[h2(l) —h, (0)], hz(l) =—
go (l)X(l,1)x (l,2)d r,d r, ,

(A38)

~(l,') = l-.p[—l,.+'(1/ ) ~.-,.]—11, g. (i) = ~'[Q. (l, 1,2) —Q. (l, 1)Q (l, 2)]
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We first consider g&(l), and here we concentrate on Q&(l) since Qi(l) has already been calculated.

Qp(l) =
T, (l)

exp[—PVp+i(1/e) VpVp] g dr/. (A39)

Introducing collective coordinates again, it can be shown in a straightforward manner that

Now

therefore

Q2(l, 1,2) =exp —Q — — e -"
1+A/, 3xi2

a = (2/Ã)'/p[5(k ri)+5(k rp)],

2 '" 5(k ri)b/, 2)'" 5(k r2)b/, a'
Qp(l, 1,2) = exp —— P ——

~ P ——e
—'*»

X / 1+Ay cV) / 1+A/, 3xip

(A41)

(A42)

This clearly implies that we may Anally write

Qp(l, 1,2) =Qi(l, 1)Qi (l,2)exp—

Thus,
a

a-(l) = 'O'Qi(l, 1)Q/(l, 2) exp—

e
—Q212

3X]9

(A43)

3iY19

This result was written down as Eq. (32) in Sec. II, and its signi6cance discussed.
If this expression is substituted back into the equation for kp(l) in [Eq. (A38)] we note that the integrand of

the double integral is a product of functions of (l,rp), and those of (l,ri), that is with the exception of the xip cou-
pling term in g/(l). In order to readily continue our calculation, and in view of the fact that this third factor should
be a small correction, we proceed to linearize the Bebye-Huckel pair-correlation function. Then

exp e
—cx]2

3$1$ 3X19
e
—cx12 (A45)

In order to uncouple the x~, x2 or r1, r~ dependence in this coupling term, we expand it in spherical harmonics"

where Ut, is given by

V(rip) = —P (2k+1) V/, (ri, r2)P&(cos0/. ),
k=0

Vi (a /3) liIC i+ 1/2 (r l/~)Ii+1/2 (r2/~)/ (rlr2)

(A46)

with ri)r2 and k=0, 1, 2 . This method of handling U(rip) allows the expression for

I,(l) =-.', e'[k2(l) —k, (O)] (A48)

to be reduced to a particularly tractable type of double integral

I2(l) =Q/, (2k+1) (—1)'+'X3a'[ )

e' *"I,„.r+, /, (ax,) [e
—e""ji[LG(x2)]—j.[Lq(xp)]]x2'"

$2

e~&'»E', +i/, (ax„)[e
—e~»j, [IG(xi)]—j&[L/I(xi)]]xi' 'dxi dx,

e"'"I (ax )(e e""—1)x ' ' e"'"K (axi)(e e"" 1)x ' 'dx dx— (A49)
0 Qn

W J SWlRt'CCk 1
p

Pl OC ROg SOC {LO116011) A2{)5p 238 {1951)
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With this expression for Is(l), the third factor becomes expLIs(l)]. Finally, terminating the series exponential
in Eq. (24) with the second term, we get

T(l) = expL vL'+It(l)+Is(l) j.
If we omit the Is(l) term from this expression the result

T (l)—exp l —yL'+It (l) )

(A50)

(A51)

is referred to as the Erst approximation to T(l). Then in this sense, the second approximation to T(l) is given by
Eq. (A50).
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Investigation of Electronic Recombination in Helium and Argon
Afterglow Plasmas by Means of Laser

Interferometric Measurements*
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Two helium-neon laser interferometers were used to obtain the electron and neutral-atom densities in an
afterglow plasma. The interferometric technique utilized allows one to obtain both the spatial and temporal
dependence of the electron decay. The two gases studied were helium and argon at 2—8 Torr and 0.3—0.8
Torr, respectively. The electron density was in the range of 2&10' &N, &10 5 cm and the electron tem-
perature in the range 1000 &T, &7000'K. The electron temperature was measured by comparing the relative
atomic line intensities and by inference from the recombination coefticient. The electronic recombination
in helium, argon, and helium-argon mixtures was found to be consistent with the predictions of Bates,
Kingston, and McWhirter for collisional-radiative recombination. The electron temperature inferred from
the measured recombination coefbcient indicates a pronounced electron temperature gradient across the
tube which is believed to be due to electron heating effects in the afterglow.

Q7TTRODUCTION

I-ECTRONIC recombination in gaseous plasmas
~ has been the subject of numerous studies dating

back to the early part of the twentieth century. In
spite of the tremendous amount of attention focused on
this phenomenon, there are still many questions that
remain to be answered. One of the major advance-
ments made in the understanding of electronic recom-
bination was the proposal by Bates' that dissociative
recombination may play a leading role in the recombina-
tion process. Whereas the importance of this phe-
nomenon is well documented, it has become increasingly
apparent that other processes may be of significance.
One of these is the three-body collision of two free
electrons and a positive ion resulting in an excited
neutral atom. Also of great importance is the effect of
electron collision which excited atoms. It has been
shown that inclusion of such collisions enhances re-

*EVork supported by the U. S. Army Research Once, Durham,
North Carolina.

f Submitted in partial fulfillment for the degree of Doctor of
Phi1.osophy.

f Present address: Sandia Corporation, Albuquerque, New
Mexico.

i D. R. Bates, Phys. Rev. 77, 718 (1950).

combination. ' ' The net effect has been coined collisional
radiative recombination.

Collisional-radiative recombination was put on a firm
theoretical foundation by Bates et al. ' It was sub-
sequently shown, within a limited range of plasma
parameters, that their results described the recombina-
tion process in helium, ' hydrogen, 4 and cesium. '

In this work we extended the range of plasma parame-
ters over which collisional-radiative recombination is
expected to be the dominant recombination process in
helium plasmas. The results of Bates are also shown to
apply to argon and helium-argon plasmas.

In the work described here, the plasmas were formed
in helium and argon gases in the pressure ranges 3—8
Torr and 0.2—0.8 Torr, respectively, by an electrode
type of capacitor discharge. This resulted in a plasma
with an electron density N .= 1015 cm ' and T,=7000'K
immediately after cessation of the active discharge.
Both iV, and T, subsequently decay during this after-
glow.

' E. Hinnov and J. G. Hirschberg, Phys. Rev. 125, 795 (1962).' D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc.
Phys. Soc. (London) 83. 43 (1964).

i W. S. Cooper and W. B. Kunkel, Phys. Rev. 138, 1022 (1965).
Vu. M. Aleskovskii, Zh. Eksperim. i Teor. Fis. 44, 840 (1963)
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