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A new collective model of the nuclear breathing mode is presented which avoids the usual assumption of a
constant nuclear ground-state density. The 20.4-MeV 0+ state in “He is treated as an example of such a

breathing-mode state.

I. INTRODUCTION

E have developed a simple collective model of the

nuclear breathing mode, assuming a vibration
of the ground-state-matter density distribution accord-
ing to a coordinate scale factor. A quantization of this
oscillation leads to an expression for the vibrational
amplitude in terms of the (empirical) energy of the
“breathing” excited state and gives the electromagnetic
form factor for the transition from the ground state as a
derivative with respect to momentum transfer of the
elastic form factor. Using this model, we treat the
20.4-MeV, 0+, T=0 excited state in ‘He as an example
of the breathing-mode state; reasonable agreement with
the experimental® form factor is obtained (from inelastic
electron scattering) both as to magnitude and to ¢ de-
pendence. We also treat the second excited state as a
dipole state and show that a 2=, T'=0 assignment is
consistent with the electron scattering data.

Of the four familiar types of vibration of nuclear
matter,? assumed to consist of interacting fluids of
p1, pl,n1, and #| (the arrows indicating spin direction),
those with some of the fluids vibrating 180° out of
phase with others have recently been discussed in con-
nection with electromagnetic® and weak* interactions.
The T=1 excitations have been observed® either
directly, as in photo-excitation, or indirectly, as in total
muon capture rates. The breathing mode (or compres-
sional) vibration® where all four nuclear fluids move in
phase and the T=0 spin waves have never been ob-
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served, and thus it seems to be most interesting that
these states may occur in “He where the simple spectrum
facilitates identification.

II. COLLECTIVE MODEL

Authors in the past have developed models of the
breathing mode” in which the ground state density is
taken to be constant out to a sharp nuclear “edge.”” Our
model avoids this assumption by describing the oscillat-
ing excess density in the same way in which Ferrell and
Visscher® and Griffin? originally generated the wave
functions of the breathing mode state. That is, we
describe the breathing mode vibration by introducing
a time-dependent coordinate scale factor into the
ground-state-matter distribution po(7) and write for the
vibrating density

p(r,0)=N (m)p[7(R—n)/R]=po(r)+p'(r,)). (1)

To first order, 7(;) represents the displacement ampli-
tude at the rms radius R. The normalization

[ o= [ oten=1

determines N () and we find to first order in 7 that the
excess charge density (the classical analog of the quantal
transition charge density) is

@

71d
o )= ——— —;[73/30(7)] : @)

R d

If now 7 is considered to be the position variable of a
harmonic oscillator with Hamiltonian

H= o™y’ 4-5pi?, 4)

which we subsequently quantize, we obtain in terms of
creation and annihilation operators

1= (2uw)™[armi+ (=1)"a1,m]. )

The mass parameter u is easily shown to be the total
mass of the nucleus, mA. The equation of continuity

p(6)=—v-(ov) (6)
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is satisfied to first order by v=7r/R, p=po. Then the
kinetic energy is +10 e
T=%mA/d3r pov? w8l
Ground State
61 ¢
=%mA1}2/R2/d3r por® (7
+4 1~
1 A .2 ;‘ 2
=5 = 42
man”. Iy
The cross section for inelastic electron scattering may 0 -
be written® to sufficient accuracy as \——/
_2 -
i A
do/dQ=0x(0)| Fin(a)[?, ® Excited of
-4 -
with o being the Mott scattering cross section. In h = 5 " 5.0
terms of our model, the inelastic form factor is given by DISTANCE FROM “He CM.
(10713 cM)

Fin(@) = Z{0cxs* | / d'r 7" (1) [Ognd™).  (9)

Inserting p’ (r) from Eq. (3), the final expression for the
inelastic form factor becomes

Fin(q)= (Z/R) 2mAw)~2q(dF (¢)/dyg),

where F(g) is the ground-state form factor.

(10)

III. APPLICATION TO “He

The state to which we apply our formalism is the
20.4-MeV, 0, T=0 state in ‘He. Its breathing mode
character is established both by its single-particle
description and by the fact that its energy is obtainable
directly from the model. We discuss briefly these two
points.

It has long been known!® that the lowest shell-model
excited state in ‘He which has the same quantum
numbers as the ground state and the same spatial sym-
metry, [4], has energy 2%w. (Here 7w is the shell-model
level splitting.) The linear combination of single-
particle states which eliminates the spurious center-of-
mass motion is

$V3(15)7 (25)+3 (1) (1p)". (11)

However, the state is more simply described in terms of
relative coordinates and in this description its collective
character is more clearly exhibited.

We introduce the center-of-mass coordinate, R, and
three relative coordinates, g, ri2, and Ry by the relations

R=21(ri+rotr;+1y), (12)
o=3(rtry)—rs,

Ii2=r1—1rg,
Ri=3(1+ro4-13)—r4.

Then the symmetrized internal wave function of the
excited state can be written

V=14 (14 P14 PastPs)P (Ra)Y (119,0) . (13)

10 7. P. Elliot and T. H. R. Skyrme, Proc. Roy. Soc. (London)
A232, 561 (1955).

Fic. 1. The fourth-particle wave functions in the ground and
first excited state of ‘He, taken from Ref. 11.

The P;’s are space-exchange operators, ¥ (r12,0) is the
wave function for the three unexicted nucleons, and
®(R,) is the single-particle wave function for the fourth
nucleon. In the relative coordinate system the excited
state is simply (1s)~1(2s)%. In Fig. 1 we show the func-
tion ®(Ry) for the ground state (a Gaussian consistent
with the measured rms radius of ‘He) and for the O*.
The latter function has been obtained in a resonating
group calculation! in which & was treated as a con-
tinuum wave function. It is clear from the figure and
from Eq. (13) that the transition density,

o )= (¥ z S—r)h (i) [Fena)  (14)

has a radial node in it at about a distance from the origin
equal to the rms radius. This is precisely the form of the
excess density of a breathing-mode oscillation.

An even more striking demonstration of the collective
nature of the OF state is that the energy of the excitation
can be derived from the simple model presented in the
preceding section. If one calculates the internal energy
of “He as a function of the rms radius, the following
approximate Hamiltonian is obtained for the breathing
mode.

H=imA?+3"Eins/0n%| o n°. (15)
Then the energy of this state is given by
32Eint 1/2
Eoxe= h( /mA) . (16)
In?

We take our estimate of the constant 62Eini/d9? from a
calculation of the binding energies of the three- and
four-nucleon systems by Mang and Wild.!? From Fig. 13
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F16. 2. The calculated internal energy (solid curve) as a function
of the rms radius of ‘He, derived from Fig. 13 of Ref. 12. The
dashed curve is a parabola fitted to the minimum and the maxi-
mum calculated point. The circled dot shows the experimental
energy and radius.

of the paper by these authors we have obtained the
internal energy of *He as a function of R, the rms radius,
(their curve has the oscillator parameter as the abscissa)
and have plotted this curve in Fig. 2. The dotted curve
is a parabola which passes through the minimum of the
energy curve and through the highest calculated value.
The values of the spring constant and excitation energy
which one obtains from the parabola are

O*Einy/0rP=40.1 MeV/F?,
Eeoxe=20.5 MeV.

The exact agreement with the experiment energy is, of
course, fortuitous because the ratio of the single-particle
frequencies to the collective frequency is only about 3,
hardly large enough to justify our Born-Oppenheimer
approximation in Eq. (15).

We now apply our breathing-mode model cross sec-
tion to “‘He. In applying Eqgs. (8) and (10) it must be
remembered that the Ot state is actually in the con-
tinuum of the ¢+ channel while the model implicitly
assumes a bound excited state. What is measured is a
differential cross section as a function of energy,
do/dQdE. The standard way (see the Appendix) to
“spread out” the prediction based on a discrete state
is to multiply the cross section by a Lorentz factor, i.e.

de 1 Ty
dQdE 7 (Ep+A—E)+iT,2d0

an

(18)

Since this state lies only ~0.5 MeV above the {4
threshold and ~0.3 MeV below the 3He-# threshold,
the width I', and the level shift A are rapidly varying
functions'® of the electron energy E, or of the proton

B A, M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 357
(1958).
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energy E, in the {4 p c.m. system, and the shape of the
spectrum is markedly asymmetric. In a previous
analysis of /4 p scattering! these functions have been
obtained in terms of reduced widths, for which we take
Yai=7,2=2.09 MeV, and a channel radius of 4.2 F.
Values of do/dQdE calculated with Egs. 8 and 18 have
the correct shape as compared to experiment,! but are
too large by a factor of roughly 2. We note that the
resonance extends into the energy region of the open
SHe-+# channel so that a term containing I', should also
be added to Eq. (13). However, the resonance is tailing
off rapidly at the neutron threshold so we have ignored

R (Theory)

Fic. 3. Inelastic elec-
tron scattering cross scat-
tering cross section of the
20.4-MeV state in “He and
function R(g) ; comparison
of experimental points in

Riq)
R N T

=

\551 o0 Ref. 1 with theoretical
O so curves from the breathing-
" 40 mode model and with
Q curves reduced by scale
= 30r factors as indicated.

%Lﬁ 20

.5 LO LS
qz (F®)

the neutron term. The effect of the closed neutron
channel has been included in the level shift A.

To give a convenient comparison with experiment, we
show in Fig. 3 a comparison between the cross section
from Eq. (18) integrated over energy between Ep=0
and Ep=1 MeV and the integrated experimental! cross
section. Numerical integration of the Lorentz factor
over the width of the experimental peak yields 0.76/ so
that there is an effective reduction of the strength of
the state because of its proximity to the thresholds.
(With constant T', and no level shift the integral over
all Ep would be 1.) With this factor and a Gaussian
ground state form factor corresponding to R=1.68 F,!5
the theoretical expressions for do/dQ and for the

quantity
R(@)=Fiu(g)/1—=F(q) (19)

are plotted versus ¢* in Fig. 3 and compared with the
experimental points.! Our breathing model thus yields
matrix elements for the O excited state which are about
509, too large, which is a not unsatisfactory result.!
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Isabelle, Phys. Letters 16, 169 (1965).
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It should be noted that Ferrell’s monopole sum rule?

Sol@l S belol=Ra/2m  (20)

=1

is easily shown to be 1009, exhausted by our breathing-
mode model of Sec. I. If the sum over final states be-
comes an integral over continuum states the same
Lorentz factor that appears in Eq. (18) appears inside
the integral and our model exhausts about 259, of the
monopole strength. This is still larger by a factor of 2
than the experimental strength, but is close enough to
confirm the collective nature of the state.

The “He second excited state at 22.2 MeV has been
assigned a J™=2~ by Baz’ and Smorodinskii'8; an
isospin T'=1 is ruled out by a recent He-}-p phase-shift
analysis.!® The assignment 7'=0 is confirmed by a
comparison of the experimental ee’ and p,p’ cross
sections?® shown in Fig. 4. The identification of this level
with a 2= (or 1) T'=1 spin—isospin collective mode
would, using the theoretical electron-scattering cross
section obtained by one of us,® lead to the dotted curve,
in disagreement with the experimental ¢,¢’ data. How-
ever, the electro-excitation of a 2= (or 1-) T'=0 spin-
wave mode is reduced by a factor (up~+un)?/ (Lp—pn)?
=0.035 and such a state would not appear if it were a
broad resonance as in the present case.

do
da de

e pIHE

— — Hee.)He*

! L L 1 I L

25 24 23 22 21 20

He* Excitation
(MeV)

Fi6. 4. Comparison of experimental excitation functions of *He
states by proton (Ref. 20) (solid curve, 61ap=>52°) and electron®
(dashed curve, 61.,=90°) scattering. The dotted curve corre-
sponds to the theoretical electron scattering cross section for a
T'=1 spin—isospin state at 22 MeV (with a width consistent with
that in the proton scattering).

IV. GENERAL APPLICATIONS

It is an unsettled question whether or not breathing
modes exist in nuclei other than “He. Glassgold,
Heckrotte, and Watson? found that the compressional
excitation in nuclear matter is unstable since the

17 R. A. Ferrell, Phys. Rev. 107, 1631 (1957).

18 A, J. Baz and Ya. Smorodinskii, Zh. Eksperim. i Teor. TFiz.
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(1965).
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energy per unit volume turns out to be complex. They
suggest that a physical basis for this result is a clustering
of nucleons in the rarified regions. Such clustering could
occur in nuclei heavier than “He and prevent the
breathing mode state, one in which the ground-state
wave function dilates adiabatically, from being an
eigenfunction of the nuclear Hamiltonian.

Attempts have been made in the past to associate the
lowest lying O* states in *C and %O (the first excited
state of Ca is also 0*) with breathing mode states. The
0+ state in %0 has received perhaps the most attention.
Schiff” noted that the pair production rate from this
state is an order of magnitude lower than the rate
expected from a collective monopole state, and in
electron scattering the 6-MeV Ot state exhausts only
about 49, of the monopole sum rule.! In addition, the
theoretical calculations of the energy of this state
require large admixtures of two-particle-two-hole
excitations®??¢ and/or four-particle-four-hole excita-
tions? to lower the energy to the observed value. Since
collective states are predominantly coherent admixtures
of single-particle-single-hole states the first excited
states of “He and '°O seem to be of different natures.

Estimates of the excitation energy of the breathing
mode in heavier nuclei can be obtained from the nuclear
compressibility,

K =1 (0Euni/3?) =bA .

21
Taking 72= R?= (r,4*1/3)? we obtain from Eq. (16)
Eexe= /) (b/m702)1/2A"1/3 . (22)

For 7o we choose 1.0 F (R is the rms radius, not the
uniform radius) and a reasonable range?® of values for &

is 100>5>200 (MeV). We obtain
65478 > Foxo>924713 (23)

where the lower value seems more favored by experi-

Fic. 5. Compari- -
son of the squares
of the inelastic form 6
factors for collective
dipole and monopole

~
states. The excita- 3: 4
tion energy of both  u
states is assumed to o+
be 22 MeV and the Z 2t
and A are those
of 160,
100 200 300 400
q (MeV/c)

2t Hartwig Schmidt (private communication).

22 G, E. Brown and N. Vinh-Mau, Phys. Letters 1, 36 (1962).

28 Hartwig Schmidt, Z. Physik 181, 532 (1964).

% J. M. Eisenberg, B. M. Spicer, and M. E. Rose, Nucl. Phys.
71, 273 (1965).

25T, Talmi and I. Unna, Ann. Rev. Nucl. Sci. 10, 353 (1960).

26 K. A. Brueckner, Rev. Mod. Phys. 30, 561 (1958).
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mental estimates of K. This energy is somewhat lower
than the giant dipole energy which is roughly given by
80413 and a bit higher than the monopole energy
estimated by Walecka? ~564~1/3.

It is interesting to compare the momentum transfer
values at which the breathing mode cross section is
important to those where the giant dipole state is
important in electroexcitation. One of us® has previously
calculated the inelastic form factor for the giant dipole
state and for convenience we write down the squares of
the form factors together,

ZZZ
1= |Fu(g)|®= |F(g)|?,
2mAw
(24)
22¢ 110F(g)|?
0% |Fu(g|?= —|—
2mAw R?| g

Since F(g) is the ground-state form factor the monopole
state becomes important near the first diffraction
minimum of the elastic-scattering cross section. As a
concrete example, we have plotted in Fig. 5 the squares
of the inelastic form factors for a choice of Z=8, 4 =16,
and w=22 MeV. The ground-state form factor F(g) is
taken to be that given by a normal-shell-model ground
state?” and assumes an rms radius for *O of 2.65 F.

APPENDIX

We give a derivation of Eq. (18) using the Wigner
R-matrix description of a resonance.!® In this formalism
a discrete state X g is introduced which is defined within
a certain radius ¢ to have the same shape as the con-
tinuum state at the resonance energy Er. X r is normal-
ized in the same way as any bound state but differs from
a bound state in that it is cut off abruptly at the nuclear
“surface.” One way to adopt calculations done with
discrete states to physical systems in the continuum is
to associate the model bound state with X z and use the
observed reduced widths to spread out the calculated
cross sections in energy.

To accomplish this, we use first-order perturbation
theory to write down an expression for the integrated
(over energy) differential cross section for the scattering
of an electron with initial energy E; into a final state
within solid angle dQ,

do 2

i@ n

ov [ .
V) |2
e e 230

Xo(Ei— (pv*/2u) — En— E)8 (2.~ Q).

(A1)

In the above equation, Ly, is the energy relative to Eo,
the energy of the initial state, at which the continuum
begins; py and p. are the final nuclear and electron
momenta, and u the reduced mass; (¥, Vy.) is the

27 Paul Goldhammer, Rev. Mod. Phys. 35, 40 (1963).
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nuclear matrix element of the interaction with y; the
initial bound state and ¢, the final continuum state.

We now choose X to be the same as ¥y, aside from
normalization, at the resonance energy. Xz is normal-
ized to one over a sphere with channel radius a, and on
the surface of the sphere is given by!?

XR = (3’ (a)/a)ilylm (6) ‘p)\(’int . (AZ)

Here yins is the internal wave function of the separated
fragments. The reduced width vz? is defined in terms of
the channel wave function y(a) by

vi'= (*/2ua)y*(a). (A3)

The ¢; in Eq. (A1) is normalized such that at the
channel radius

‘pf — (4,”.)1/2 (e"“i‘/kNa)
X[Fl COS&["{‘G; sin&l] Yzm\&ing . (A4)

For simplicity we assume a one-channel final state so
that the phase shift §; is real.

We now make two assumptions: (1) The matrix
element (Y7, Vi) receives no contributions from regions
of configuration space such that the fragments are
separated by more than a distance a. (2) Over the
width of the resonance ¥y has the same shape as Xg
within the interaction region. With these assumptions
Eq. (A1) can be rewritten

do 27 dBpn a3p.
_g_! (XR7V¢i)|2/ /
Q h 2rn)*J (2nh)?

[(47r)”2h Fo cosdo+Go sinao}2

|pw| y(a)

PNZ
X 5<Ei_"‘2_“—' Eg— Ee)a(ge—ﬂ) . (AS)
m

We limit ourselves to S states so that the angular inte-
gration is trivial. After integrating over all variables
except the nuclear energy, £, we obtain

do’ 27!‘ (Eq;—ER—I-l’:o)2
—=—[ (Xg, V) | >~
aQ n (2whic)?

1 iT(Ey)
X= /dEN .
m (ER'I_A(EN)—EN)Z—{—%P? (EN)

The quantities T'(£) and A(E) are related to the phase
shift 8o and to yz® in the usual way, namely

2kNa

(A6)

=z, So=obp+ta,
(F02+G(]2)1/2
(A7)
ir
0r= tan'l( > , a=— tan—?! (Fo/Go) .
Ep+A—Ey

The first factor in Eq. (A6) is the differential cross
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section for electroexcitation of a discrete state. The
second factor usually integrates to one so that the
usual procedure of associating model differential cross
section with experimental cross sections integrated over
the resonance peak is in accord with our result. How-
ever, in the specific case of the ‘He 0% state the reso-
nance falls between two thresholds and the width and

PHYSICAL REVIEW VOLUME 149,
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level shift are rapidly varying functions of energy. The
result is that the monopole strength inherent in the
internal function Xz is effectively reduced. One can
either divide the experimental cross section by the
integral in Eq. (A6) or multiply the model differential
cross section by the same integral. We have elected the
latter possibility in our comparison with experiment.
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Accurate Excitation Energies of B! States Below 7 MeV*

C. P. BRowNE AND F. H. O’DONNELL
University of Noire Dame, Noire Dame, Indiana
(Received 20 April 1966)

A recent precision measurement of gamma-ray energy made with a lithium-drifted germanium detector
disagrees with an earlier value of an excitation energy obtained by measurement of charged-particle energies.
To investigate this discrepancy and to confirm the level assignment of the gamma-ray transition, excitation
energies of B! states were measured using both the B (d,»)B!! and Be?® (He?,p) Bl reactions. Particle energies
were measured with a broad-range spectrograph calibrated with a Po?? alpha source (5304.5 keV). Ex-
citation energies determined with the data from the two reactions agree within 2.9 keV in all cases. The mean
values are (in keV) 2124.4+0.7, 4444.4+1.4, 5018.94-1.7, 6742.94-1.8, and 6792.8+4-1.8. The uncertainties
are combinations of an uncertainty in the shape of the calibration curve with the standard deviation of the
mean or the assumed internal error, whichever is greater. These uncertainties may be considered as standard
deviations. The energy difference between the last two levels was found to be 49.840.3 keV. The value
6792.8 agrees exactly with the gamma-ray energy, whereas this and the other excitation energies disagree by
as much as 22 keV with earlier values from charged-particle measurement.

I. INTRODUCTION

HE advent of lithium-drifted germanium detectors
has made possible the measurement of gamma-ray
energies with a precision comparable to that of good
charged-particle energy measurements. Thus, values of
many of the nuclear excitation energies that have been
determined with charged particles will now be subject
to new and strict comparisons. It may be expected that
some discrepancies will appear, particularly in cases
where only one precise charged-particle measurement
of excitation energies has been made. The B! level at
an excitation energy of about 6.8 MeV is a case in point,
and is the object of the present work.

The first precise measurement of excitation energies
around 6.8 MeV in B! was made by Van Patter,
Buechner, and Sperduto! using the B'°(d,p)B!! reaction.
A 180° annular magnet was used to measure particle
energies and a series of magnetic-field settings was re-
quired to cover the range of particle momenta from that
of the ground-state proton group, through that of the
proton group leading to the 6.8-MeV level, to that of the
elastically-scattered deuteron groups used to obtain
the bombarding energy. The magnetic field was meas-
ured with a current balance, and it was necessary to

* This work was supported in part by the U. S. Office of Naval
Research under Contract Nonr-1623(05).

1D. M. Van Patter, W. W. Buechner, and A. Sperduto, Phys.
Rev. 82, 248 (1951).

assume that the ratio of the average field along the
particle trajectory to the field at the fluxmeter probe
was constant for all fields. When the value used by
these authors for the energy of the calibrating Po?'
alpha particles is changed to the currently accepted
value, the excitation energy of the state in question
becomes 6.81540.013 MeV. These authors give a value
of 5042 keV for the difference in energy between this
state and the next lower state. Other values for these
excitation energies may be obtained from the work of
Hinds and Middleton? on the Be®(He?,p)B! reaction.
In this work the excitation energy of the B! state
near 444 MeV was used as a reference because the
ground-state proton group was not recorded. If the
value of Van Patter ef al.! (corrected for the change in
Po?1® alpha energy) is used for the 4.44-MeV level, one
obtains 6.81040.010 MeV for the excitation of the upper
state, whereas if the result of Jaidar et al.? is used for
the 4.44-MeV level, one obtains 6.7954£0.010 MeV.
Hinds and Middleton give a value 52 keV lower for the
excitation energy of the next-lower state.

Recently Alburger et al.* performed an experiment to
determine the parity of Be'l. In the course of this work

2S. Hinds and R. Middleton, Proc. Phys. Soc. (London)
AT74, 196 (1959).

3 A. Jaidar, G. Lopez, M. Mazari, and R. Dominguez, Rev.
Mex. Fis. 10, 247 (1961).

4D. E. Alburger, C. Chasman, K. W. Jones, J. W. Olness, and
R. A. Ristinen, Phys. Rev. 136, B916 (1964).



