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Exact Solution to Optical-Model Equations for
Quasi-Elastic (p, n) Reactions*
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The coupled optical-model equations describing quasi-elastic (P,rs) reactions are solved exactly and the
results are compared with distorted-wave Born approximation (DWBA) solutions. It is shown that for
reasonable values of the isobaric potential the DWBA deviates only slightly from the exact solution. Fits
to experimental data are presented for Ti (P rs)V V"(Pn)Cr@ and Cr '(P e)Mno~.

'HE optical-model equations proposed by Lane' to
explain the neutron spectra found by Anderson

et ttl. ' in (p,l) reactions included a term of the form
(Ur/A)t T. This term, among other things, brings
about a charge exchange so that the process can be
thought of as quasi-elastic. The solution to this optical-
model equation is complicated by the fact that the
neutron and proton channels are coupled, and that
if no approximations are made, the equations cannot be
decoupled by any transformation.

Two approximate solutions have been made. The
first, which was investigated by Hodgeson and Rook, '
neglected the Coulomb potential and the Coulomb
energy difference between the target and residual
nuclei. In this case, the equations decouple and can be
numerically solved by existing one-channel, optical-
model codes. The second approximate solution was a
DWBA calculation carried out by Satchler et al.4 Both
approximations led to the conclusion that the (p,rt)
cross section scales as the square of the strength of the
isobaric potential U~. Further, Satchler et u/. , in fitting
the experimental results of Anderson et a/. ,

' found
values for the isobaric parameters to give best fits.

In view of the work of Robson, 5 Fox et al. ,' and
Richards et ul. ,~ who have shown the importance of this
optical model to (p, p) scattering and its consequent
usefulness as a spectroscopic tool, it was thought im-
portant to solve the coupled equations exactly without
neglecting the Coulomb potential or the Coulomb
energy difference between target and residual nuclei.
This would be done to check on the conclusions drawn
from the approximate solutions relating to the propor-
tionality of the (p,m) cross section to the square of Ut
and the actual values of the parameters.

Solution uf tlte equatiorts The couple. d equations, as

given by I.ane ' are
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TAsrz I. (p,l) cross sections as a function of
isobaric potential strength.
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where T is the kinetic energy operator. The boundary
conditions state that the proton asymptotic wave func-
tion should be the incident wave plus outgoing scattered
wave while the neutron asymptotic wave function
should consist only of the outgoing wave, there being no
incident neutron wave.

Using the standard partial-wave decomposition, the
boundary conditions for the /th partial wave are

+t '-Ft(rt, k„r)+Ct +$Gt(rt, k,r)+iFt(rt, k„r)7, (I)

e,"'-(.t"'L—k„ry, (k„r)+ik„rj,(k„r)7. (2)

If the continuity of the logarithmic derivative is
imposed on%'~, one obtains a proper asymptotic proton
wave function. This cannot be applied to the neutron
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wave function, however, since the absence of an incident
neutron part would result in cancellation of C»" .
Therefore, since the method used to satisfy the bound-
ary conditions in the one-channel optical model does
not work here, a brief description of the method used
is presented.

The method used was to solve the coupled equations
twice, with different initial conditions chosen so as to
give two independent solutions. The general solutions
are a linear combination of the two independent
solutions:

10.0

It is important to note that the same constants Ai
and A2 are used in the proton and neutron wave
functions, since if C~& and %i" are solutions for given
initial conditions, then A~%'~2' and A~%"»" are also
solutions.

Using partial waves, in the usual manner, one can
write the boundary conditions

Ar l +1 l +A s~rs l

=F,(rI,k,r)+Ct" PGg(rl, k„r)+iFg(ri, k~r) j,
A 1,l+l, l +A s, l +'2, l

=C, 'L—k„ry, (k„r)+ ik„rj,(k„r)J.
These equations, together with their derivatives, can
then be solved as a system of four complex equations
for the four complex unknowns A~, »+, A2, »+, C»&+, and
C n+

In Table I we show the cross sections for diferent
strengths of the pure volume and pure surface isobaric
potentials for V"(p,e)Cr". The nonisobaric parameters
used in this table are those considered reasonable for

(p,p) scattering and not necessarily the best values for
fitting the experimental data. It is seen that for values
of Ur currently thought to be reasonable (Ut=100
MeV), the proportionality of the (p,n) cross sections to
U~' is reasonable, although the deviation starts to in-
crease rapidly for higher values of U~.

To compare the exact solutions with Satchler's, we
ran the problem for Ti4s(P, e)V~ with the following
parameters (Es——1.25A't')

(1) Central real potential: —49.4/$1+e&"—~»"'sj
MeV,

(2) Central imaginary potential: —10.0e—I'—n»1'"&'

MeV,
(3) Spin-orbit factor: 25.5 (corresponding to 7 MeV),
(4a) Isobaric potential: 81.0/p1+e&~n»~'ss] (vol-

ume),
(4b) Isobaric potential: 84.0e &&~"0&~"'&' (surface).

The strength of 84 MeV for the surface isobaric inter-
action was obtained by inserting Satchler's value of
96 MeV in his formula (15) and then dividing by four,
since Satchler's isobaric form factor when multiplied by
four approximates case (4b) above.
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FIG. 2. Ti"(p,e}V"differential cross section.

While it is true in general that when comparing the
D%BA and exact solutions, the parameters used in the
exact solution should be readjusted from the DNA
so as to give the same elastic scattering, in this case the
coupling is sufficiently weak so that the elastic scatter-
ing is changed very little.

The results of our calculation are given in Fig. 1.
If we compare our results with those in Satchler's
paper, 4 we see that the general shape of the DKBA
follows that of the exact calculation for both volume
and surface isobaric potential. Quantitatively, however,
the exact solution for volume isobaric potential pre-
dicts higher cross sections for larger angles than does
the D%BA. Although for all nuclei investigated, surface
isobaric potentials give better agreement than volume
isobaric potentials, the exact volume isobaric potential
comes closer to the experimental values than does the
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FIG. 3. V"(p,l)Cr" differential cross section.
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Fro. 4. Crs'(p, N)Mnss differential cross section.

DWBA with volume isobaric potential. This difference
between the exa,ct and D%BA solutions is not so great
for surface isobaric potential.

The preliminary best fit for Ti4s(P, Is) V4', V"(P,N) C r",
and Cr"(p, ts)Mn" is shown in Figs. 2, 3, and 4. Al-
though the results are still preliminary, we seem to be
getting a better 6t with a small admixture of volume
isobaric potential to a predominantly surface isobaric
potential. Also, a charge-exchange radius parameter
slightly larger than the usual nuclear radius para, meter
of 1.25 F seems to be preferred.

The form factors used in these figures are

Central realpotential: Wood-Saxon (diffuseness pa-
rameter =0.65, radius = 1.252 "s),

Central imaginary potential: Surface-centered
Gaussian (width =0.98),

Isobaric potential (volume): Wood-Saxon (diffuse-
ness parameter=0. 65, radius= 1.27),

Isobaricpotential (surface): Gaussian (width= 1.05,
radius= 1.27).

The parameters are

Fig. 3 Fig. 4
—50.0 MeV

Flg. 2

Central real potential: —54.0 MeV —54.0 MeV
Central imaginary

potential:
Spin-orbit parameter:
Surface isobaric

potential: 110 MeV
Volume isobaric

potential: 10 MeV

—12.0 MeV —12.0 MeV —11.0 MeV
27.7 27.7 27.7

130 MeV

10 MeV

140 MeV

0 MeV

The author would like to thank Dr. Joseph Lepore
and Dr. Robert Riddell for helpful discussions.


