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A singularity at the Fermi surface will occur if f(s) is
discontinuous at a=1. From its definition it is easy to
see that f(s) is continuous at a= 1, so that (A9) has no
logarithmic singularity at p=1. This cut integral does
not contribute any singular behavior to the density of
states at the Fermi surface.
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H. W. VKRLEUR AND A. S. BARKER, JR.
Bell Telephone Laboratories, iVurruy Bill, S'em Jersey

(Received 25 April 1966)

The infrared lattice-vibration spectra of mixed crystals of GaAs„PI „have been measured by reQection
techniques. These crystals exhibit two distinct reststrahlen bands whose strengths and frequencies depend
on y and which show considerable Gne structure. A harmonic model has been developed to accoUnt for the
significant features of these spectra. The main features of the model are (1) the inclusion of a clustering
eifect or nonrandom distribution of anions on a microscopic scale, (2) the existence of 5 distinct molecular
complexes which leads to 2 groups of 4 closely spaced optical phonon modes, and (3) effective ionic charges
that have both local and nonlocal parts. The model provides the frequencies and strengths of the optical
phonon modes which with suitably chosen damping constants yield a good Gt to the reQectivity spectrum
over the entire range of solid solutions.

rich or GaP rich, should have some characteristic effect
on the optical-phonon modes since they depend strongly
on nearest-neighbor force constants.

We intend to show in this paper that a detailed analy-
sis of the infrared reAectivity spectrum of GaAs„P1 „
supports the assumption of short-range clustering. A
harmonic-oscillator model of the lattice dynamics of the
alloy is developed including a short-range order param-
eter which accounts quantitatively for the significant
features of the reQectivity spectrum. The characteriza-
tion of the lattice modes serves as a useful basis for
other work. It will be shown that the composition y of
an unknown sample can be determined from the infrared
spectrum. Also, additional infrared effects such as free-
carrier susceptiblity can be properly evaluated only by
first taking account of the pure lattice modes.

The extra degree of freedom provided by the com-
position y allows us to probe other features of the lattice
dynamics of III-V compounds. Srodsky and Burstein
have suggested' that the usual assumption of a localized,
effective ionic charge on each ion, while probably correct
for such ionic crystals as the alkali halides, cannot be
properly applied to the III-V compounds. The reason
they advance is that the valency electrons of the ions
in these compounds have extended wave functions and
that, thus, the effective ionic charges of the ions should

INTRODUCTION

'IXED crystals (or alloys) of GaAs„pr „can be
- ~ grown over the entire composition range y=0 to

1. These alloys are interesting for several reasons, one
being their electronic band structure. GaAs is a direct
gap material while GaP has an indirect gap. For the
alloy, as y is increased, the band structure near the gap
appears to change continuously, the central k =0
conduction-band minimum falling relative to the other
valleys until near y= 0.6 the k =0 minimum becomes the
lowest valley changing the material from indirect to
direct gap and drastically aGecting the threshold for
laser action and the luminescence properties.

Whereas it is known that the alloys have the same
crystal structure as the parent crystals GaP and GaAs
(i.e., zinc-blende), the distribution of the constituent
ions over the sublattices is not known. One usually
assumes that the structure consists of a Ga fcc sublat-
tice and an interpenetrating fcc sublattice over which
the As and P ions are randomly distributed. It has been
suggested, however, ' that there may be a tendency for
like-negative ions to cluster around positive ions. Such
clustering, which tends to make small regions GaAs

'M. Brodsky and E. Burstein, Bull. Am. Phys. Soc. 7, 214
(1962).

* Work performed in partial fulfillment of requirements for the
Ph. D. degree, New York University.

'T. L. Larsen, E. E. Loebner, and R. J. Archer, Bull. Am.
Phys. Soc. 10, 388 (1965);Y. S. Chen and G. L. Pearson, ibid 10, .
369 (1965).
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FIG. I. ReQectivity spectra of GaP, GaAs,
and GaAs„P1 „(y=0.72).

have a considerable nonlocal portion. The model de-
veloped below supports this assumption and values for
the local and nonlocal portions of the effective charge of
GaAs and GaP are obtained as "best-fit" parameters to
the experimental re6ectivity curves. Values for certain
force constants are also obtained.

Finally, we believe that the model developed here can,
with minor modifications, be used to study the micro-
scopic structure of other mixed crystals.

EXPERIMENTAL WORK

Sample Preparation

Samples of GaAs„P~ „with low carrier concentra-
tions (not exceeding 10" carriers/cms) were obtained
covering the entire range of y. Some of the samples were
grown at Bell Laboratories while others were obtained
from the Monsanto Company. Whereas the details of
the growing techniques of the two suppliers di6ered
somewhat, all crystals were grown from the vapor phase
at temperatures around 1100'C.

The Bragg peak from the (111) planes was meas-
ured using a double-crystal x-ray spectrometer. The
average composition of each crystal, that is the value of

y, was determined from this measurement. The lattice
constant was assumed to vary linearly with composition
(Vegard's Law) from its value for GaP (5.45 A) at y=0
to its value for GaAs (5.65 A) at y= 1. A few samples
with high phosphorus concentration showed broad over-
lapping double peaks whose width almost spanned the
Bragg angle between 13'39' (pure GaAs) and 14'10'
(pure GaP) suggesting segregation on a macroscopic
scale. These samples were not studied further. Typically
the mixed crystals had (111) lines whose width at half-
maximum height was 5 to 7 min. Pure GaAs samples ex-
hibited a (111)half-width of 1 min and pure GaP about
1.7 min.

The samples were oriented to have their major face
parallel to a (111) plane Lor in one case parallel to a
(211) plane). They were mechanically polished to a
mirror-like finish as well as chemically etched to remove

any surface damage. A careful examination of the crys-
tals whose infrared reQectivity spectra were measured
showed no large scale clustering of As or P or other
inhomogeneities in average composition. The tech-
niques used to arrive at this conclusion were:

1. Study of the photoluminescence of the crystals to
determine excitations due to possible inclusions of pure
GaAs. None were found. The excitations that were
found corresponded to band-to-band transitions at
energies intermediate to those of pure GaAs and GaP
and consistent with the known composition of the
crystals. The question to be answered here, of course, is,
how large a region of pure GaAs must exist before one
can observe GaAs band-to-band transitions. Melcher'
has considered the simple model of a free electron con-
fined to a cubic container of edge L He arrived at the
conclusion that the volume of this container should be
on the order of microns before the difference in adjacent
energy levels can be approximated by an energy con-
tinuum. This approach probably gives a high estimate
in view of the fact that the wavelength of a thermal
electron in the conduction band in GaAs (assuming
m*=0.1 m„T=300'K) is about 200 A. It appears then
that this experiment does not allow us to probe regions
extending over only a few atomic diameters. We can
conclude that in the GaAs rich samples no regions of
pure GaAs extending over one or two microns exist.

2. Study of x-ray fluorescence by means of an electron
beam microprobe which allowed us to examine areas as
small as three microns in diameter. No variations in
composition at this scale were observed and no Quores-
cence characteristic of pure GaAs or GaP was detected.
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Fro. 2. Ref|ectivity spectra of three mixed crystals
GaAs„P1 „(y=0.15, y=0.44, y=0.94).

~ A. G. Melcher, The University of Michigan Engineering Sum-
mer Conferences on Semiconductor Theory, 1965 (unpublishedl.

Re6ectivity Spectra

The infrared reRectivity spectra for unpolarized light
at normal incidence were measured over the frequency
range from 100 cm ' to 450 crn ' by means of a con-
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ventional spectrometer. The general method of taking
data has been discussed by others. ' The experimental
conditions allowed a resolution of 2.5 cm ' for prac-
tically all wavelengths investigated. This resolution
yields sufhcient energy to measure reQectivities with
uncertainties of &0.5%%u~. Reruns of a sample which in-

cluded repositioning gave consistent results to within
&1.0jq. The results are shown in Figs. 1 and 2.
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Discussion of Experimental Results

A preliminary report of the reAectivity spectra was
given previously. ' We list here the characteristic fea-
tures that are to be explained by the model we are about
to develop.

1. Two main bands of relatively high reflectivity
exist between approximately 250 cm ' and 410 cm ' for
the entire range of solid solutions, that is, for all values
of y. (See Fig. 2.)

2. The strength of each band depends on y.
3. The high-frequency band shifts as much as 30

cm ' to lower frequencies with increasing values of y,
whereas the low frequency band remains stationary to
within 2 or 3 cm '.

4. Both bands, especially the high frequency one,
show considerable fine structure.

We note here that while the reRectivity at the maxi-
mum of each reststrahlen band depends on the surface
treatment of the specimen (polished or etched), the
treatment did not affect the one structure. In other
words, the latter is not due to surface damage, but is an
intrinsic property of the crystals. An example of this is
shown in Fig. 3 where the peaks of the high-frequency
bands are compared for a polished and etched specimen

(15' As).
Figure 3 also shows the effect of cooling to 90'K. The

hne structure is not temperature-dependent; however,
the entire band shifts to higher frequencies on cooling.
A consideration of possible two-phonon sum or difference
bands shows that even the most temperature-insensitive
combination would predict a reduction in mode strength
of at least a factor of 2 on cooling which could easily
have been detected.

A Raman-scattering study of one of the mixed crystals
(y=0.15) using the helium neon 6328-A laser was used
to check that the lattice vibration modes are not de-
pendent on surface effects. The Stokes-shifted light
was collected from about 0.25 mm behind the front
surface of the crystal. While the signal-to-noise ratio for
this experiment was poor because of large Rayleigh
scattering, the Raman spectrum showed the two main
bands and also the strongest fine structure feature at
the same frequencies as they appear in the infrared
spectrum of this sample.

4W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324
(1961).

5 H. W. Verleur and A. S. Barker, Jr., Bull. Am. Phys. Soc. 10,
72 (I966).
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FIG. 3. Comparison of peaks of the high-frequency reRectivity
band of GaAs„pi „(y=0.15) for a polished surface and an etched
surface at room temperature and an etched surface at 90'K.

These results and arguments support in part the con-
clusions later to be drawn that the 6ne structure is due
to new fundamental vibrational modes of the mixed
crystal.

6 J. M. Cowley, J. Appl. Phys. 21, 24 (1950); N. Norman and3. E. Warren, ibfd 22, 483 (1951)..

THEORETICAL MODEL

Description of a Disordered AIIoy

Before describing the model with its basic vibrating
units it is appropriate to consider the possible structural
configurations of a GaAs„P~ „mixture. We take the
gallium sublattice to be perfect, and so we are really
discussing the binary alloy As„P& „whose atoms must
be distributed over a fcc lattice. Two extremes of be-
havior are at once apparent. There can be complete
segregation where all of the As atoms cluster in one re-
gion and all the P in a second region. All anion-anion
bonds in the alloy are then As-As or P-P except for the
few across the interface separating the regions. For this
extreme of behavior the word "alloy" is inappropriate.
One other extreme of behavior is the alloy with perfect
long-range and short-range order for which y=0.25
or y= 0.75 and cubic symmetry is preserved. The availa-
ble sites divide into two unique groups: the face centers
and the cube corners. Putting As ions on all face centers
and P ions on all cube corners gives GaAsp, 75Pp, 95 This
structure can repeat indehnitely in space. In this struc-
ture, half of the anion-anion bonds are As-As and half
are As-P. There are no P-P bonds. These are far difer-
ent proportions than for a segregated mixture of the
same composition. Fcc alloys of Cup. 75Aup. g5 have been
studied' and found to exhibit the type of order described
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FIG. 4. Simple model
of the alloy, assum-
ing independent As-
ion and P-ion sub-
lattices which interact
only with the Ga-ion
sublat tice.

here, but with a transition to a more disordered state
as the temperature is raised. The partially disordered
state covers the considerable intermediate ground be-
tween the extremes mentioned. The appropriate param-
eters used for its description are short-range order
probabilities. For example, if we pick a P ion in the
Aso. 75PO 25 ordered alloy the probability of finding an As
ion as nearest neighbor is 1.0 and as second-nearest
neighbor is 0. In the segregated mixture these probabili-
ties are both zero. We can picture an almost random
alloy where this probability approaches 0.75 for far-dis-
tant neighbors (just the average concentration of As)
but retains a value of almost 1.0 for nearest neighbors,
indicating that As ions prefer to cluster around a P
ion as nearest neighbors but that there is not enough
energy gained from this configuration to force the whole
crystal into this pattern. Probability considerations such
as these will play an important part in the model de-
veloped below.

Matossi has discussed the optical vibrations of a 50:50
ordered binary alloy using a linear chain model. ' With
such perfect order one can choose a larger unit cell and
proceed as in the case of any perfect lattice. This ap-
proach appears to give good accord with the optically
active lattice vibrations in some mixed alkali halides
where the mixed crystal has one strong infrared mode.
Another approach close to this involves the analysis
of a virtual crystal which has the same structure as
pure GaAs but in which each anion site is occupied
by an idealized composite atom which has a mass
M=ym, +(1—y)m~ and is bound by a potential which
is also the appropriate average. This type of model
gives only one optically active mode intermediate to the
frequencies of pure GaP and pure GaAs. Neither of
these approaches is appropriate here.

Purely random alloys have been treated with a linear
chain model by Dean and co-workers. ' For this model,
many characteristic frequencies occur as small spikes
in the density of states which can be identified with
ordered clusters of 2 atoms, 3 atoms, etc.

The appearance of the reQectivity spectrum of
GaAs„P~ „with its characteristic GaP band and GaAs
band suggests that there is a high degree of independence
between Ga-As and Ga-P interactions. As a first approxi-
mation, we could take a model of the alloy which has a
rigid Ga subla, ttice vibrating independently against both

~ F. Matossi, J. Chem. Phys. 19, 161 I,'1951).
' P. Dean, Proc. Roy. Soc. (London) A260, 263 (1961);P. Dean,

Proc. Phys. Soc. (London) &4, 727 (1964).

a rigid As and a rigid P sublattice (see Fig. 4). If we do
not consider any interaction between As and P, or be-
tween Ga atoms and a combination of As and P atoms,
this model would yield two reststrahlen bands. The
strength of each band would indeed depend on the
amount of As and P present, but the observed de-
pendence of the frequencies on concentration and the
fine structure of the bands would not be explained by
this simple model.

To obtain these last two features, we must include as
a perturbation of the basic model the effect of P on the
Ga-As interaction and of As on the Ga-P interaction
as well as the interaction between second neighbors
(As-As, P-P, Ga-Ga and As-P). To describe the degree
of relative independence of the As and P interactions
with the Ga sublattice we introduce a parameter p.
As applied to our model, P specifies the degree of clus-
tering of like negative ions around a Ga ion. We stress
that in the usual language of alloy structure, P would
more properly be called a disorder parameter. The two
experiments, previously mentioned, do not support any
large-scale clustering but would not necessarily con-
tradict the existence of clusters of like negative ions
around Ga ions extending to nearest or next-nearest
neighbors only. We will, however, even in our model
not treat order beyond the nearest neighbors of Ga
atoms, since we rapidly approach the situation de-
scribed by Dean with many more frequencies than are
observed in our spectra.

Basic Units

Each Ga ion has four nearest neighbors which, in the
mixed crystal, may be either As or P. Figure 5 shows the

FIG. 5. Basic units
of nearest-neighbor ions
around a Ga-ion site.
Units 2, 3 and 4 must
occur in other orienta-
tions besides those pic-
tured here to agree
with the observed opti-
cal isotropy of the
mixed crystals.
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6ve possible con6gurations that can exist in the crystal.
The As and/or P ions form a tetrahedron with the Ga
ion at its center. The entire lattice of the mixed crystal
is built up from these Ave basic units. Since each nega-
tive ion is shared by four Ga ions, each unit contains
two ions, viz. , a Ga ion and one quarter of each of this
ion's nearest neighbors. The number of each unit pres-
ent depends, of course, on the average concentration y.

Units 1 and 5 have the full symmetry of pure GaAs
(or GaP). Units 2, 3, and 4, however, have lower sym-
metry since the corners of the tetrahedron are occupied
by different atoms. Yet, the reQectivity spectrum of the
mixed crystal is invariant under rotation about any
axis (i.e., the crystal is optically isotropic). This is, of
course, due to the fact that throughout the crystal the
units 2, 3, and 4 occur randomly in all possible orienta-
tions, giving isotropic behavior on a macroscopic scale.

If we now fix our attention on a single bond, say be-
tween a Ga and an As ion, we expect that the strength
of this bond will in part depend on the other three ions
associated with the same Ga ion. In other words, we will

represent this bond by a different spring constant de-
pending on the unit this ion pair belongs to. This will
take account of the change in overlap forces and dis-
tortions of the bonds arising from the introduction of
different ions at the corners of the tetrahedron.

Returning to our simple model of Fig. 4, we can no
longer consider the As and P ions to form two rigid
sublattices, vibrating against a Ga sublattice. For Ga
ions we recognize the five different nearest-neighbor
environments (or units shown in Fig. 5) and thus intro-
duce five Ga ion coordinates w, (i), i =1 to 5. Since we
deal only with long-wavelength (k=0) vibrations, these
coordinates each represent the rigid motion of an entire
sublattice of a given type of Ga ion. For As or P ions,
the nearest neighbors are always four Ga ions, so one
would have to go to second neighbors to dehne different
environments. Rather than considering the large number
of distinct As ions and P ions de6ned by these different
second-neighbor environments, we instead associate
with a given Ga ion one quarter of each of the As and P
ions that make up its nearest neighbors, thus forming a
basic unit. We then consider the As and P ions of this
unit to be bound to the Ga ion of the same unit by a
strong, i.e., erst-neighbor force. The fact that each As
and P ion is shared by three other units is then accounted
for by an additional interaction between the As and P
ions of the unit under consideration and the Ga ions
of the surrounding units. We thus introduce four As-ion
and four P-ion sublattice coordinates, w, (i), (i=1 to 4)
and w„(i), (i=2 to 5). Although there are Qve basic
units, unit 1 contains no P ions and unit 5 contains
no As ions.

Like negative ions belonging to different units can
now vibrate out of phase. Hence, second-neighbor inter-
actions will be considered between As-As, P-P, and be-
tween Ga-Ga when these ions belong to different units.

(I-~(j))r k5

kp(i, )
)fjkq

kI (i. )

UNIT I,

UNDER
CONSIDERATION

ea
+As
0 ~

~(j) f~k&
ONE OF

SURROUND I NG

UNITS

FIG. 6. Schematic diagram of forces on ions in a typical unit type
i. All force constants are indicated. The actual force on an ion is
the result of weighting by the probability of occurrence of the bonds
shown in the 6gure and summing over all surrounding ions.

Similarly, we expect second-neighbor interactions be-
tween all As and P ions.

In Fig. 6 we have shown all nearest-neighbor and
second-neighbor interactions between a unit of type i
and a unit of type j. The nearest-neighbor force con-
stants are kq(i) for As-Ga in unit i and k2(i) for P-Ga
in unit i. The second-neighbor force constants are k3
for As-As, k4 for As-P, k5 for P-P, and k6 for Ga-Ga in-
teractions. The additional forces between the Ga ions
in uniti and the As ions and P ions in surrounding units
j are represented by k7 and k8, respectively. As men-
tioned, these forces take account of the sharing of As
and P ions by neighboring units.

The actual force on an ion results from weighting the
force constants according to the probability of occur-
rence of all bonds attached to the ion. Figure 6 shows
the weighting factors which include the probability
coefficients J,; f; is the probability of occurrence of
basic unit type i. We also introduce a fractional coefFici-
ent x(i) to take account of the fact that each negative
ion is shared by four units. If there are E ion pairs in
the lattice and f;1V units i, then there are g(i)f~ As
ions belonging to units i, where x(i) takes on the values
1, 43, 2, ~, and 0 for units 1, 2, 3, 4, and 5, respectively.
Consequently, the force constant between the ith As
sublattice and the ith Ga sublattice in our model nor-
malized to one ion pair is x(i)f/~(i) and between the
ith P and Ga sublattices it is (1—x(i))f,k2(i).
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We stated earlier that we will consider possible devia-
tions from a random distribution of negative ions up to
nearest neighbors of the Ga ions only. This means that
we will assume that all negative ions see the same
average set of second neighbors, viz. 12y As ions and
12(1—y) P ions. These ions are distributed over the
various units such that the fraction of As ions among
second neighbors is y=P; x(i)f, and the fraction of P
ions is (1—y)=P L1—x(i)]f;. Turning again to our
model, this means that the normalized force constant
between the ith As sublattice and the jth P sublattice
is given by x(i)(1—xLj])f;fk4, with similar relations
for the other force constants.

Probability of Occurrence of Basic Units

If one examines the occupancy of a randomly chosen
negative ion site in the crystal next to a given Ga ion,
the probability that one will find an As ion there is y,
and a P ion, 1—y. This follows from the demonstrated
macroscopic homogeneity of the crystal. If the crystal
were also microscopically homogeneous, or in other
words, if the As and P ions were indeed randomly dis-
tributed over their sublattice, then the probability of
finding another As ion associated with the same Ga ion
would again be y. It would be independent of the pres-
ence of the 6rst-found As ion. We will now assume that
this is not necessarily the case. We de6ne the following
relations for the probability of finding an As ion next to
another As ion (P„)and for the probability of finding a
P ion next to another P ion (P»),

P „=1 P„=(1—y)(1——P),

P„=1—P =y(1—P'),

and note that it follows from the identity

yP,„=(1—y)P„,

(3)

(4)

that P=P'. We call P the clustering parameter. After
finding these two initial ions of the nearest-neighbor shell
around a Ga ion, the probabilities for 6nding the third
As or P ion are

P-=y+P(1 y), —

P..= (1 y)+P'y—,

where we have introduced the clustering parameters P
and P'. Note that the effect of P is to increase the
probability of finding an As ion next to a given As ion.
The complementary relations for 6nding a P ion next to
an As ion (P„~) and for finding an As ion next to a P
ion (Pr,) are

Finally, we need the probabilities for the fourth ion to
complete the nearest-neighbor shell of anions.

Peaug= y+Ps(1 y) q

~aaay ~ ~aa.aa y

~ayaa ~aa y

~a@ay ~ ~aa y

~ncaa ~aa y

~yaay ~ +aa y

Penn. = 1 y+-P4y

I'nnn. =&-I'~urn

~u-uu=~uu

I'y~u~= & +un ~

~.uuu= ~~u

I~nu~= ~

We can express Pi, Ps, Ps, and P4 in terms of our basic
clustering parameter P by using the follow ing identities:

pi:

ps:

yPaaPaay yPa+ays y

(1—y)P„,P„„.= (1—y)P„.P„.„
ps yPaaPaaaPuaay yPa+apaPayuu q

P, : (1 y)P„~„,„—P„„„.=(1 y)P„.P,.„P—„.,„.
Using these probability relations, we can then obtain
the following expressions for the fractional distributions,

f,, of basic units containing 4, 3, 2, 1, or 0 As atoms,
respectively:

fi=y(Paa y+yPae ) p

y, =4ysP..(1 P..), —

fs 6y'(1 P——)'—
f4 ——4(1—y)'P„„(1—P„„),
fs= (1 y)(P.u 1+y—+(1 y)—P.n')—

The f; must satisfy the following expressions:

fi+ fr+ fs+ f4+ fs = 1,
fi+4fs+s fs+ ', f4=y. -

(6)

Examination of the probability expressions shows that
when P= 0 the distribution of As and P ions is random
depending on the average concentration y only. When

P = 1, the crystal consists of units 1 and 5 only and there
is a maximum amount of clustering of like negative ions
around the Ga ions.

Normal Modes and Dielectric Constant

We will consider only forces on the ions arising from
pure stretching or compression of the bondsbetween
ions. If we restrict ourselves to vibrations in the direc-
tion of an externally applied electric field, the potential
energy per ion pair of the system (Fig. 6), is given by

P-.=y+P (1—y),
+a@a

~uaa=P ~

P-.=1-y+pry,

P...= (1—y),
P".=(1—y).

' Note that the suhlattice force constants k&(i), 4(i) etc. each
contain geometrical factors. kq(i) for example represents the e8ect
of four bonds extending from the center to the corners of a tetra-
hedron. ks and the other second-neighbor sublattice force con-
stants represent the sects of twelve bonds connecting an ion with
its twelve second neighbors.
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2V= Q x(i)f;kg(i)(w, (i)—u.(i))'

+Z (1—x(i))f;k2(i) (w.(i)—w.(i))'+2 2 f;xU)fk7(w. (i) w.U—))'
i~1 j=I

+P P f;(1—x(j))f;ks(w, (i)—w„(j))'+g P f;f;k8(w, (i)—w, (j))'
i=1 j=1 i=1 j~l

+P Q x(i)x(j)f f k3(w, (i) w,—(j))'+g g x(i)(1—x(j))ff k4(w, (i)—w~(j))'
i=I j=l i=1 j=1

6 5

+Q p(i.—x(i))(1—x(j))ff k,(w„(i)—w„(j))'—2 Q f (x(i)e,+I 1 x(i)je—~) w(i) E, «
i=1 j=l

+2 g f;x(i)e,w, (i)E,«+2 g f;(1 x(i))e~—w(i)E, « '$E «', (11)

where w, (i), w, (i), and w„(i) are the displacements from equilibrium oi the Ga, As, and P ions, respectively. The
e, and e~ are the total effective ionic charges for As and P. It is assumed that the effective charge on the Ga ion is
the 1inear combination of e and e„ that makes the unit neutra1.

Upon introducing the ionic masses m„m„and m~, the kinetic energy of vibration is

2T=g f;m,w, (i)'+g x(i)f;m,w, (i)'+g(1—x(i))f;m„w~(i)', (12)

and the equations of motion can now be written down from Eqs. (11) and (12) by using

fgmgw'g(i) =-
Bwg(i)

and similar re1ations for the As and P equations. Ke obtain

f;m,w ,(i)= —x'(i)f,kg(i)(w, (i)—w.(i))—(1—x(i))f;k2(i)(w, (i)—w„(i))

f;k7 Z *(i)f—(w.(i)—w.U))—f'k~ Z (1—x(j))f'(w. (i)—w.(i))

x(i)f;m,w, (i)=x(i)f;kg(i)(u g(i)—w, (i))

—f;k6 P f;(w, (i) w, (j))+f;Lx—(i)e +(1 x(i))e~jE «—(13)

+x(i)f;k7 Q f,(w, (j) w, (i)) x(i)f;k—a Q x(j—)f;(w, (i)—w, (j))

(1—x(i))f;m„u, (i)= (1—x(i))f;k2(i)(w, (i)—w„(i))

—x(i)f'k4 Z(1—x(j))f~(w.(i)—w.(i))—x(')f'e.E.«y (14)

+(1—x(i))f;k8 g f;(w,(j)—u„(i))—(1—x(i))f;k4 g x(j)f;(w~(i)—u, (j))

—(1—x(i))f;k& P(1—x(j))f,(w~(i) —w„(j))—(1—x(i))f;e„E,ff (15)
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There are live equations (i= 1, 2, 3, 4, 5) of type (13)
since there is a Ga ion in each unit. Equations (14) and
(15) each stand for four equations since units 1 and 5
contain no P or As ions, respectively. We expect these
13 equations to yield 12 optic modes and 1 acoustic
mode when the dynamical matrix is diagonalized.
This procedure is carried out in the Appendix. Be-
fore proceeding to the solution however, vre must
eliminate the local Geld E,«which appears as a driving
force.

In the usual treatment for a diatomic cubic crystal'
the effective or local electric Geld is given by

from the local effective charge:

I'i"=& Z f L(xU)e. +L1—x(j)le. )~.U)

—*U)' .U) —(1—U))" .U)3 (2o)

We can now eliminate E,« in the equation of motion to
obtain the mode amplitudes in terms of the driving force
E. Elimination of the mode amplitudes between the
equation of motion and the polarization equation gives
P in terms of E.The dielectric constant is defined in the
usual way

E,n ——E+(4'/3) P, (16) e(a),y,P) =1+ 4~8/ E, (21)

where E, is the macroscopic electric Geld and P is the
macroscopic polarization. For our model the di.electric
polarization is obtained from Eqs. (11) and (12) by
differentiating the energy density vrith respect to E,ff
and multiplying by E

5

I'= & 2'f L(x(j)e.+I:1-x(j))e.)~.(j)

x(j )e,rr, (j—) (1 x(j))—e~w„—(j )j+ErrE, rr. (17)

The first term in this expression is the polarization due
to the atomic displacements and the second term repre-
sents the contribution from the electronic polarization
of the atoms. E is the number of units or ion pairs per
unit volume and depends on y since X=4/ao'. For this
structure ao the lattice constant varies linearly with y.
0. is the electronic polarization per basic unit.

Since upon averaging the basic units, to conform to
the isotropy requirements, we take a virtual ion,
(x(i)As+I 1—x(i)]P) to exist at each negative ion site
in the lattice, Eq. (16) for the local field might also be
used in the present case if the ions could be approxi-
mated by point charges. As mentioned earlier, however,
for the III-V compounds the valence electrons have ex-

tended vrave functions. This fact suggests that the
effective field is closer to E than to E+4m P/3. Following
Burstein and Brodsky's suggestion we divide the effec-
tive ionic charge into a local and nonlocal portion

ea=ea)+ea )i

er = e~,+e~„,.

The effective Geld acting on the nonlocal charge is then

just E, vrhereas

(19)E,rr =E+ (4~/3)P)„

is the effective Geld experienced by the local charge.

P~„ is the atomic displacement polarization arising

'0 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954), Chap. 2, Sec. 9.

"K. Burstein, in Phonons and Phorion Interactions, edited by
Thor A. Bak (W. A. Benjamin, Inc., New York, 1964), p. 276.

vrhere we have explicitly shovrn the frequency de-
pendence, the concentration and clustering dependence.
In the Appendix we obtain e(M, y,P) in terms of classical
oscillators, or modes, arising from the diagonalization
of the dynamical matrix. The 13 modes arising from
the 13 degrees of freedom break up into one acoustic
mode, four optic modes of almost zero strength and
rather low frequencies ( 100 cm ') and eight infrared
active modes in the frequency range 240 to 380 cm '.
The four inactive modes consist predominantly of en-
tire units vibrating against each other vrith little rela-
tive motion of positive and negative ions. Modes of
this type have been discussed by Matossi in his work
on the 50:50 linear chain of mixed alkali halides. ~

We add damping to the infrared active modes so that
the mode parameters are 4~p, , co,, F;, the strengths,
frequencies, and damping factors with j=1, 2, -. , 8.
The high-frequency dielectric constant was computed
from the known constants of GaP and GaAs by the
assumed, relation,

1/2 —1 2

E((o,y,P) =
g&&2+ 1

(23)

and compared vrith the experimental data. The un-
known constants involved in the computation of
Z(~,y,P) are the eight nearest-neighbor force constants,
plus the tvro corrections k7, and k8, the four next-nearest
neighbor force constants, the local effective charges of
GaP and GaAs, and the clustering parameter P. Finally,
the I'; are chosen to obtain a best fit to the reAectivity
curves. The fitting consisted of successive trials varying
the unknown constants, to obtain a best Gt to the ex-
perimental reQectivity. The general technique of re-
Qectivity fitting, with adjustable mode parameters, has
been discussed by others. "The method used here of

12 W. G. Spitzer, D. A. Kleinman, and D. Walsh, Phys. Rev.
113, 127 (19S9);W. Spitzer, D. Kleinman, and C. J. Frosch, i'.
113, 133 (1959).

e„(GaAs„P& „)=ye„(GaAs)+(1 —y) e„(GaP). (22)

The theoretical reQectivity is calculated from
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TABr.z I. Physical constants used in the calculations of the model.

Mass

Charge

Dielectric
constant

Lattice
constant

Ion pair
density

Constant

e„
e„(GaAs)
~„(GaP)
ao(GaAs)
ap(GaP)
+GaAs
+GaP

Value

11.6X10 "g
12.4X10 "g
5.1X10 "g

10.75X10 "esu
9.7X10 "esu

10.9
8.457
5.65 &
5.45 z
2.22X1022 cm '
2.47X1022 cm 3

380-

370

360

3SO

—Ps y5---P-0

FORCE CONSTANTS AND CHARGES
USED IN FITS

The large number of unknown constants, as well as
the requirement that a good fi.t to the experimental
data be obtained for any value of y, makes this trial and
error procedure a lengthy one. We present, now, some
of the considerations that were helpful in establishing
orders of magnitude of these constants before an actual
fit was attempted. This involved some calculations using
data other than reAectivity measurements to compute
some of the 6tting constants independently. We have
listed the known physical constants used in these cal-
culations, in Table I.

There are three sets of force constants, namely, the
eight first-neighbor force constants ki(i) and ks(i), the
two corrections to these force constants which take
account of the atom sharing of neighboring units, ky

and ks, and the four second-neighbor force constants,

TABLE lI. Classical oscillator parameters
determined by curve 6tting.

Nearest-Neighbor Force Constants (g/sec')
Symbol Ga—As force constant Ga—P force constant

ky (1)
k (2)
kg(3)
k (4)
k2(2)
k (3)
k (4)
kp(5)
k7
kg

12.82 X 104
13.52X 104
14.82 X104
18.82 X104

5.0X104

15.5X104
14.5X104
13.7X 104
11.5X104

5.5X104

Next-nearest-neighbor force constants (g/sec')
Symbol Between atoms Force constant

k3
k4
k5
kg

As-As
As—P
P—P

Ga-Ga

—2.0X104—1 OX104
2.75X104
2.0X104

charges (esu)
5.0X10 "
1.0X10-&o

Local effective ionic
e,&

e»

adjusting force constants and charges requires some
additional comments which are given below.

I

"340-
CJ
R'
4l

~ 330„-
LL,

270—

260—

240—

0
GLP

I

.2
I

4
I I

.6 .8 I.O
GaAI

FIG. 7. Mode frequencies versus composition (y) computed from
the model for P =0 and p =0.75. Frequencies are labeled to indicate
the principle vibrating ions, i.e., m, l is frequency of mode con-
sisting mainly of As vibrating against Ga in unit 1, etc.

k3 k4 k5 and k6. We expect the three sets to be related
as follows:

4~ ) r m,m. ~-'ls
(
ki(l)+kv ——&e.i' I ( ( . (24)

We can obtain the short-range force constants in this
expression from their relation to the empirically known

' G. Boiling and J. L. T. Waugh, Lattice Dynamics (Pergamon
Press, Inc. , Oxford, England, 1965), paper A2.

kr(i), ks(i) &kr, k, &k, , k4, k„k, .
The shell-model calculations by Boiling and Waugh"
for GaAs suggest that second-neighbor force constants
are atmost «'~ of the erst-neighbor force constants and
can be positive or negative. For these magnitudes, the
requirement of a stable lattice (i.e., no imaginary eigen-
frequencies) implies that the first two sets of force con-
stants must be positive.

From available data on the pure materials (GaAs and
GaP) we can now establish starting values for some of
the fitting constants. The transverse optic (TO) fre-
quency of GaAs for our model is given by
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2.0
2.07

2.0
2.07

I.8 I.8

I.6 I.6

l.4 I.4

I, 1.2

I-
C0

~+ I.O

I

I l.2

ZI-

IsI I.O

.8 .8

.6

.4 4

.2' .2

I.O.60
GaP

,4 .8I.O
GaAI

.6.20
GaP V Y Gaka

(a) (b)

FIG. 8. (a) Mode strengths versus composition (y) computed from the model for p= 0. Labeling corresponds to Fig. 7; (b) mode
strengths versus composition (y) computed from the model for p =0.75. Labeling corresponds to Fig. 7.

compressibility':

kt(1)+kr ——4ue/Bo, g„ (25)

IOO

90-

where ao is the lattice constant, listed in Table I, and the
compressibility Bo,z, ——1.32X10 "cm'/dyn. '4

This gives for kt(1)+kr an approximate value of
17.12)&10' g/sec'. Using the known TO frequency for
GaAs (270 cm '), we can now solve for e„from Eq. (24)
ancl 6ncl

e,=4.1X10 "esu.
Since the derivation of Eq. (25) completely ignores

van der Waal's forces as well as overlap forces between

80-
70-

~O0

0-60-I-
I-—50-
4J
C3

~40-
tt
UJ~ 30-

20-
to-

Ql 477P
272 3 .OI
365. I.65
377.5 .06

IOO

90-
80

o 70

&- 60
I-
& 50
I-
1st 40
4~ 30

4'

0 I I I I 'I

I 50 I 80 2I0 240 270 300 330 360 390 420 450
FREQUENCY ( cm ' )

Fro. 9. Theoretical fit (solid line) to experimental reflectivity
data for y =0.0j.. The oscillator parameters and P value are shown
in the Ggure.

'4 G. L., Pearson and P. L. Vogel, I'rogress in Semiconductors
Uohn Wiley 8z Sons, Inc., New York, 1962), Vol. 6, p. 9.

20—

IO—

0 1 I I I I I I I

I50 I 80 2IO 240 270 300 330 360 390 420 450
FREQUENCY (cm ')

FIG. 10. Theoretical fit (solid line) to experimental reflectivity
data for y=0.15.The oscillator parameters and P value are shown
in the Ggure.
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IOO

90-
80-

70-
0~O

&- 60-
& So-
I-
w 40-
ts

I:isa 30

IO-

rss 4~p
245.4 .03
247. I .02
255.5 ~ 09
270.2 .47
353.I .7I
364. , 07
366.9 02
370.3

r
.03
.03
.035
.026
.023
.02

P Y &ro

.75 .44 9.53

IOO

90-
80-

70
~O

60

50

40
LU~ 30

20—

10—

.94 I0.76
4' r

25 I .4 . I 5 .OS
269 7 I 67 .OI45

8 .045
.02

I .OIS
I .02

0 I I I I l I I I I

l50 l80 2 I0 240 270 300 330 360 390 420 450
FREQUENCY (cm-t)

Fro. 11. Theoretical 6t (solid line) to experimental re6ectivity
data for y =0.44. The oscillator parameters and p value are shown
in the figure.

0
I50 180 BIO 240 270 300 330 360 390 420 450

FREQUENCY (cm"I)

Fro. 13. Theoretical 6t (solid line) to experimental re6ectivity
data for y=0.94. The oscillator parameters and p value are shown
in the figure.

4~ ~ r m,m, ~-'~s
I &s(5)+&s——&'e. '

I

3 & km, pm, J
(26)

which is equal to 365 cm '. When we solve this for e„„
we obtain e»=5.2X10 ' esu.

The values finally chosen to give a best fit to the re-
fiectivity curves are, ks(5)+ks=17.0X104 g/secs and
e»= 1.0)&10 '0 esu. The diGerence between startiog and
final values here is considerably greater than in the case

IOO

P v
.75 .72 l0,280"

~ 70

w 60
I-
& 50

tat 40

K
~ 30

20-

cu 4~@

243.5 .02
245.7 .02
253.6 . I 7
270. I I.

.05

.05

.05

.02

IO-
00

0 I l l I I I I

l50 ISO 2IO 240 270 300 330 360 390 420 450
FREQUENCY (cm-I)

Fzo. 12. Theoretical ht (solid line) to experimental reRectivity
data for y=0.72. The oscillator parameters and p value are shown
in the figure.

"R. Weil (private communication).

second neighbors and deviations from the ideal ionic
structure, a discrepancy can be expected. The values,
finally chosen to give the best fit to the reAectivity
curves for all values of y, are kt(1)+br=17.82X10s
g/sec' and e„=5.0X10 's esu (see Table II). In this
case, the starting and final values are indeed quite dose.

In the case of GaP, the compressibility has recently
been measured by Weil. "He obtains SG&p =1.12&(10 "
cms/dyn. Using the value for ns of GaP from Table I,
we obtain

ks(5)+ ks = 19.5 X 10' g/sec'.

The TO frequency of GaP for our model is given by

of GaAs. The small value we find for e„, is consistent
with the unusually small ionicity of GaP observed by
others. "

The other nearest-neighbor force constants were
selected to give the fine structure observed in the rest-
strahlen bands which is due to the presence of more than
two modes. The high-frequency band (P band) consists
of a relatively strong mode and weaker modes of higher
frequencies. The low-frequency band (As band) has the
weaker modes at lower frequencies; they are clearly
discernible only at the lower values of y. (See Figs. 1
and 2.)

In our first attempts to obtain the mode frequencies
we neglected the second-neighbor force constants, and
chose P=O. k& and e„determine the frequency shift
eith concentration of the main As mode. Values for
these constants can be determined by fits to the main
As mode frequency at the extremes of the concentration
range. Similarly, k8 and e„,can be established by fitting
the main P mode frequency.

To obtain the observed frequency shifts of the weaker
modes, it was necessary to choose nonzero values for
the second-neighbor force constants.

It is found that the choice of force constants has a
small effect on the relative strength of each mode.
The mode strengths, are mainly controlled by the clus-
tering parameter P. In Figs. 7 and 8 we have plotted the
strengths and frequencies of the eight modes as func-
tions of y for P=O (the random case) and P=0.75, but
for the same choice of force constants and local charges.
Whereas there is some effect on the frequencies (Fig. 7),
the main effect of P is to reduce the number of mixed
basic units in the crystal and thus to suppress the
strengths of the modes arising from the presence of
these units. The final reQectivity fits included adjust-
rnents of P as well as small changes in all the force con-
stants to give good fits for all concentrations. All force
constants and changes are listed in Table II.

In Figs. 9 to 13 we compare the theoretical fit with
the experimentally obtained reQectivity spectra for five
mixed crystals. The strengths, frequencies and line-
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widths of the modes as well as e„ for each case are
listed in the 6gures.

In Figs. 14(a) and 14(b) we present renectivity curves
for P=O, and P=1, respectively, when y=0.44. Com-
parison with Fig. 11 shows the importance of varying
only P, the clustering pa, rameter. All other constants
were taken the same in these three cases. Even though
we could improve the fit in the P= 0 case somewhat by
a variation of the other constants, a good 6t could be
obtained only for P=0.75 as used in Fig. 11.

LOCAL MODES

It is possible to make some contact with the theory of
local impurity modes for the cases of low concentrations
of As in GaP and low concentrations of P in GaAs.
Tractable theories for impurity modes are available only
for low concentrations and for impurities which are
mass defects. "This last condition is violated to some
extent in the GaAs-P case where we 6nd that the near-
est neighbor Ga-As bond has about 5%%u~ more strength

"P, G. Dawber and R. J. Elliott, Proc, Roy. Soc. (London)
A273, 222 (1963); also Proc. Phys. Soc. (London) 81, 453 (1963).

lo-
oo

0 I 1 I I I I I I I

150 180 210 240 270 300 330 360 390 420 450
FREQUENCY (cm I)

(b)

Fro. 14. (a) Theoretical 6t (solid line) to experimental reflec-
tivity data for y=0.44. The force constants and charges are the
same as in Fig. 11, but P=O, which results in a complete redis-
tribution of strength between the modes; (b) theoretical fit
(solid line) to experimental reflectivity data for y=0.44. The
force constants and charges are the same as in Fig. 11, but P =1,
which yields only two infrared active modes.

than the Ga-P bond. We discuss first the case of P in
GaAs. Since we are replacing As by a lighter ion we have
the possibility of two local modes; one rising out of the
acoustic band and one out of the optical band. Since
GaAs apparently has no gap, "the only possibility for a
sharp local mode is the optical-band mode. To And the
frequency for this mode, one needs the eigenvectors and
eigenvalues for the unperturbed (GaAs) lattice. To get
a crude estimate we note that Ga and As have about the
same mass so that, as in the case of silicon and ger-
manium, we do not need the eigenvectors. The eigen-
value information is contained in the density of states.
A shell model has been 6t to neutron data for pure GaAs
and a density of states is available. "A study of this
density of states shows that it is very similar to that of
silicon" if all silicon frequencies are multiplied by 0.57.
(Straight scaling according to the mass would suggest
multiplication by 0.62.) Dawber and Elliott have given
the local-mode frequencies in silicon as a function of the
mass defect parameter e." In our case, e=+0.57. In
silicon, this value gives a local mode at 628 cm '. In
GaAs then, by simple scaling we expect a local mode at
628&(0.57=357 cm '. If we examine our reQectivity
6ts for the lowest concentration of P in GaAs which was
studied (y=0.94) we find that the strongest of the im-

purity modes is at 352 cm '. Furthermore, our calcula-
tion of the eigenvector of this mode shows that its
amplitude is mostly composed of P vibrating against
Ga in unit type 2 (a unit with three As ions and one P
ion surrounding a Ga-ion). This type of vibration cor-
responds most closely to our notion of a localized vibra-
tion with a single P ion in an As environment. The theory
of Dawber and Elliott can also be used to predict very
roughly the strength of the local mode. Using their dis-
placement matrix element, for silicon at &=0.57, we
find that our case of 6 j~ P in GaAs predicts that the
352 cm ' mode should have an oscillator strength of
4wp=0. 1.This strength can be expected to be low, how-

ever, since it is derived from a theory of vibrations in a
homopolar lattice. The impurity mode in an ionic lattice
will move the surrounding ions somewhat giving an
effectively larger dipole moment. Calculations of the
impurity vibration in GaAs using the Boiling and

Waugh density of states have recently been carried out

by Taylor. This work predicts a local mode of strength
47rp=0. 15 at 347 cm '. Our fits to the 6'P~ P in GaAs

sample give a mode of strength of 0.11 at 352 crn '.
This is reasonable agreement though we must recall that
because of the clustering effect, there is a second im-

purity mode at 339 cm ' with strength 0.08. If we had
set P=O in our calculations these two impurity modes
would merge and have a total strength of 0.2 compared
with the 0.15 given by the local-mode calculation.

We now turn to the case of As impurities in GaP.
Experimentally we observe an impurity mode at 272
cm ' with a strength of 0.01 when the concentration is
about 1% (Fig. 9). Neither a density of states nor
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neutron-diGraction dispersion curves are available for
GaP so any estimates must be very qualitative. Since
we are replacing a light ion with a heavy one, we have
the possibility of a local mode dropping from the optic
band into the gap (if it exists) between the optic- and
acoustic-mode frequencies. An examinatioD of second-
order infrared absorption'7 and Raman scattering data'
shows that there may be a gap in the phonon spectrum
of GaP extending from approximately 200 to 350 cm '.
Jaswal has considered the corresponding local-mode
problem in NaI. ' NaI has a gap in the phonos spectrum;
unfortunately while it serves as an example of a diatomic
lattice with unequal masses, the masses are much more
disparate than in GaP. We would also expect the phonon
dispersion curves to be somewhat different for the two
materials. Jaswal's calculation does show that for a
mass defect parameter of —1.41 (corresponding to As
replacing P) a local mode would appear in his NaI model
about centered in the gap. For our estimate of the possi-
ble gap io GaP, this result suggests a local mode at about
275 cm ' if simple frequency scaling is valid. The ex-
perimentally observed impurity mode in GaAso. oyPo. gg

occurs at 272 cm '. It appears then that the weak modes
in the low concentration alloys, at both ends of the
concentration range, are consistent with simple local-
mode theory. The purpose, of course, of the model de-
veloped in this paper is to take account of interactions
and finite concentration effects which are not included
in the usual local-mode theories.

CONCLUSIONS

We have established a model that can account
for the significant features of the reQectivity spectra of
GaAs„P~ „for all values of y. An essential feature of the
model is the tendency towards clustering of like ions on
the anion sites. For example, with P=0.75, the f; have
the following value for the 50:50 alloy (y=0.5)

ft 0 38, —— .
fs= 0.11,
fs——0.02,

f4= 0.11,
fs= 038.

These may be compared with the probabi1ities of occur-
rence when p=D

fr=0.0625,

fs=0 25, .
fs= 0.375,
f4= 0.25,

fs =0.0625.

' D. A. Kleinman and W. G. Spitzer, Phys. Rev. 118, 110
(1960).

'8 M. V. Hobden and J. P. Russell, Phys. Letters 13, 39 |',1964)."S.S. Jaswal, Phys. Rev. 137, 302 (1965).
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Fro. 15. Frequency
of the short-wavelength
reAectivity minimum
as a function of alloy
composition. The solid
curve is calculated from
the model and the
points are taken from
the experimental re-
Qectivity shown in pre-
ceding figures.
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Our original observation, based on the reRectivity data,
that there appears to be a high degree of independence
of the Ga-As and Ga-P interactions led us to a model
which required clustering of like-negative ions to give a
reasonable fit to the experimental data. Whereas the
theoretical fits are by no means exact they show the
significant features of the spectra and we consider them
satisfactory in view of the simple, harmonic force model
used.

The shift of the GaP band with y can serve as a meas-
ure of the arsenic concentration in a mixed crystal. '0

The spectral feature easiest to observe is the high-
frequency reQectivity minimum which occurs very close
to the highest frequency longitudinal optic phonon
mode. Figure 15 shows the frequency of the reAectivity
minimum calculated from the model; and some ex-
perimental points where the reQectivity minimum is
measured and the concentration is determined by the
x-ray method. For an insulating mixed crystal of
GaAs„P& „, a measurement of the frequency of the re-
Rectivity mioimum can be used together with the in-
formation in Fig. 15 to determine the composition y.
For crystals with 10'~ or more carriers present the
longitudinal optic phonon and the reQectivity minimum
are shifted to higher frequencies. A determination of the
composition can still be made, however, using the
strongest transverse phonon frequency in the GaP
band. This frequency is practically unaffected by the
presence of carriers but it is somewhat harder to de-
termine experimentally without curve fitting.

One might object that with the high value of P(0.75)
used in most cases, our second assumption, that each
negative ion has the same average set of second neigh-
bors, is not valid. For example with P=0.75 and y=0.5
the 12 second neighbors of a negative ion are 6
As and 6 P ions divided as follows:

4.56 As(1) ions,
1.0 As(2) and 0.33 P(2) ions,
0.12 As(3) and 0.12 P(3) ions,
0.33 As(4) and 1.0 P(4) ions,

4.56 P(5) ions.
'o T. S. Benedict, J. Electrochem. Soc. 110, 264c (1963).
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The unphysical fractional ions arise from our proba-
bility approach. It would seem that with the high values
of P used in the fits, regions of pure GaAs and pure Gap
must exist over several atomic diameters. Such regions
are in violation of our assumption that any anion sees
the same average distribution of anions as second
neighbors. An improved approach would be to consider
as basic units a negative ion with its 4 nearest and
12 next-nearest neighbors. Applying similar proba-
bilitv arguments to these large basic units we would
have 31 modes and a 31X31 dynamical matrix. The
fitting of 31 modes is obviously not justified by the
reQectivity data. Thus the determination of cluster-
ing beyond nearest neighbors is probably dificult
though the extension of the model is straightforward
conceptually.

A physical reason for the appearance of small clusters
in vapor grown crystals may be the transport of As and
P as As4, As2, P4, and P2 molecules in the vapor
phase. ~' The molecules in the vapor must, of
course, break up to form the bonds with the Ga ions.
Little is known of this transitionary stage between vapor
and solid, and it is possible that our suggestion that the
constituent ions remain close together, is incorrect. Yet,
whatever the mechanism of formation, our results
establish a strong case for the actual existence of the
clusters.

The confirmation of the existence of nonlocal and
local portions of the effective ionic charges of GaP and
GaAs is a second important result of our work. The
smallness of the local charge of GaP as compared to the
one for GaAs is somewhat surprising but is in line with
the low ionicity of GaP.
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+f x(j)e,tw, (j )+f (1 x(j ))e»w—„(j)j (A1)

where we have eliminated P&., using Eq. (20). Because
of the neutrality requirement, the Ga-ion charge in the
ith unit is the linear combination of As ion and P ion
charge that makes the unit neutral. We have therefore

e,(i) =e„(i)+e,„,(i),
eg, (i)=+x(i)e„+(1—x(i))e„„

e,„,(i)=+x(i)e,„,+(1—x(i))e„„„
(A2)

as used earlier in Eqs. (13) and (17).
We now write out the first equation of motion to

show the types of terms which appear. For the restor-
ing force on a Ga ion in unit 1 we have

APPENDIX: NORMAL-MODE STRENGTHS
AND FREQUENCIES

To proceed with the solution of Eqs. (13), (14), and
(15) to obtain the infrared active modes, we restrict
the wave vectors of all waves to be zero and substitute
exp( irot—) for the time dependence of all variables. The
driving term in the equations of motion consists of two
parts for transverse waves. E (the macroscopic 6eld)
which acts on the total ion charge and 4srEi„/3 which
acts only on the local part of the ion charge. A typical
driving term LEq. (13)g is therefore expanded as

fico~ ff fieg &~

4xE 5

+fie. &+ & Lf e. (j)w.(j)
3 i=l

—a&'fimgwg(1) = —fi(x(1)k i(1)+$1—x(1))km(1) +ykr+ (1—y)kg+kg)wg (1)

+fiLE(kgf wgU)+k»(i)fsw. (i )+kst;1 *U)jfsw. U)H—

4m 5

+—Ã[fie«(1) P(f e«(j )w, (j) f x(j )e„w,—(j) fsg1 x(j )7—eo wo(j—))1+f&eg(1)E. (A3)
3 j=l

The first two terms on the right side of Eq. (A3) are
the restoring forces from short-range interactions; the
third term contains the additional restoring force
arising from dipolar effects. Note that this term con-
tains local charges only. The last term shows that the
macroscopic field drives the total charge.

"J. N. Friend, Textbook of Issorgamso Chemistry (Gritiin,
London, 1934), Vol. 6, pts. 2 and 4.

It is convenient now to relabel the ion displacements
as w(j) with j=1 to 13.The firstfive w(j) give the Ga-
ion displacements in units 1 to 5, the next four give the
As ion displacements in units 1 to 4 (there is no As in
unit 5), and so on. Using this 13-component displace-
ment vector the equations of motion are compactly
written as

—&o'Mw= —Kw+(4rrX/3)Cw+eZ, (A4)
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—cu'u = —D'n+ e'E. (A6)

Since D' is real and symmetric it can be diagonalized
to yield the 13 eigenvalues co; by the similarity trans-
formation 5.

Transforming to the diagonal representation we have

—co2v=—

0

v+ e"E, (A'1)

where we have defined the (diagonal) mass matrix
M(Mn ——f~m„M22 ——fye„etc.), and the charge vector
eLeq ——fqe, (1),em= f2e, (2), etc.j.K and (4m1V/3) C are the
short-range and dipolar force constants. %e thus have
the standard harmonic lattice vibration problem with
the exception that the masses, forces, and charges are
not Axed. These quantities all depend on concentration

y and clustering P through the recurring probability
factors f;, f,x(i) and f;(1—x(i)).

To solve Eq. (A4) we combine the short-range and
dipolar force matrices to form the dynamical matrix D.

D= K—(4~1V/3)C . (A5)

The mass is eliminated from Eq. (A4) by left multiplica-
tion by M '~2 and insertion of the identity matrix
I =M—"'M' '. Carrying out these steps we obtain

ar'M—+'"w= M —'"D—M-'"M+'"w+ M-'"eE

Thus with new coordinates u=M't'w and a redefined
force matrix and charge vector we have the standard
eigenvalue problem

The diagonalization has been carried out with a com-
puter to yield the eigenvalues co;. These are the required
mode frequencies. To obtain the mode strengths we
transform the polarization equation to the diagonal
representation and evaluate the dielectric constant. In
our matrix notation the polarization is

P=1Ve w+1VnE.

Transforming to the diagonal representation we obtain

P=1Ve" v+1VnE

1V(eg")'E 1V(ega")'E
+ + +1VnE. (A9)

o)g' —(o' COy3
—0)

The dielectric constant is given by

e =1+4'/E
4~1V(eg")' 4~1V(e2")' 4mlV(egg")'+. +

CO] —M (02 0) COyg
—N

+(1+4m 1Vn) . (A 10)

The diagonalization has thus separated the dielectric
constant e into a sum of independent modes with the
frequencies co, and strengths 4m p;=4m1V(e;")'/cvP using
the usual notation. In addition to the oscillator modes,
there appears the frequency-independent term 1+4m 1Vn

which we call e„. Since our model does not include
damping, we enter a dimensionless phenomenological
damping constant I', for each mode so that we have

where
v= 5—~u= 5—~M»2w

e"=S 'e'=5 'M '~'e.

4Ãp~M&'

e(co,y,p) =e„+Q
GO

' —M —ZCOF 'M
(A11)

The solutions of Eq. (A7) are simply

vg ——(eg",0, 0)E/((aP —cv'),

v)3 ——(o,o, e)3")E/(~ps' —(o').

The y and p parameters are shown explicitly since the
mode frequencies and strengths depend on them. Values
for co; and 4xp; resulting from diagonalizing the system
are given in the 6gures for the various GaAs„P~ „
alloys studied.


