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Polarons in Degenerate Semiconductors
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The second-order self-energies of an electron in a degenerate Fermi gas arising from polar coupling to longi-
tudinal optic phonons and from both piezoelectric and deformation-potential coupling to (Debye) acoustic
phonons are evaluated exactly and analytically. Numerical calculations of the resulting density of states
for optical phonons exhibit logarithmic singularities at the Fermi energy p and at @+coo. Similar structure
due to the electron s interaction with acoustical phonons is exhibited by the proper self-energy but is
smoothed out in the density of states by the nonvanishing imaginary part of the self-energy. The singu-
larities at the Fermi surface are removed by the random-phase-approximation screening of the electron-
phonon interaction due to mobile charge carriers. These results indicate that several proposed explanations
for low-bias conductance anomalies in tunnel diodes are inapplicable.

I. INTRODUCTION

'UNNELIXG experiments, originally introduced
in semiconductors and given new impetus by the

reported work on the tunnel diode by Esaki, ' have
been utilized extensively to study the bulk properties
of other materials, notably superconductors. Despite
their success in probing the modifications in the density
of states of superconductors wrought by many-body
eftects, the analysis of tunneling experiments in semi-
conductors has been confined to independent-particle
models of the tunneling process. ' However, no satis-
factory explanation, based on any models, has been
proposed for the anomalously low conductance near
zero bias in tunnel diodes, originally observed by Hall,
Racette, and Ehrenreich, ' and more recently studied by
several other workers. 4 '

The original interpretation of these anomalies at-
tributed them to the polar interaction between the
electron and optical phonons. It was argued that, if n
denotes the polar-interaction coupling constant and coo

the longitudinal optic (LO) phonon energy, then an
electron or hole must give up the polaron binding
energy Zo ——ncoo before tunneling, and a correlation was
noted between Zo and the size of the anomaly. This
argument is incorrect for several reasons. One reason is
that the self-energy of an electron near the Fermi energy
in a degenerate semiconductor is not moo. This expres-
sion is only appropriate for a single electron in an insu-
lator. For degenerate semiconductors, the electron's
self-energy is altered by exclusion-principle effects, and
also by the mobile charge screening of the electron-
phonon interaction. In Sec. III we give the quantitative
calculation of this e8ect using the dynamic dielectric
function evaluated within the random-phase approxi-

' L. Esaki, Phys. Rev. 109, 603 (1957).' See, e.g. , R. T. Shuey, Phys. Rev. 137, A1268 (1965).
3 R. N. Hall, J. H. Racette, and H. Ehrenreich, Phys. Rev.

Letters 4, 456 (1960); R. N. Hall, in Proceedings of the Inter
national Conference on Semicondnctors, Pragne, f960 (Academic
Press Inc., New York, 1961),p. 193.

4 R. A. Logan and J. M. Rowell, Phys. Rev. Letters 13, 404
(1964).

' R. M. Williams and J. Shewchun, Phys. Rev. Letters 14, 824
(1965); ibid. 15, 160 (1965).

mation. Secondly, the number of phonons is quantized,
so that any energy change of a polarization cloud must
be moo, where e is an integer. The argument that Zo
must be furnished by the external battery hinges on the
assumption that the electron is suddenly removed from
one side of the junction to the other. In calculations of
the tunneling current based on the usual concepts of
perturbation theory, the tunneling process is treated
as an energy-conserving one for which questions con-
cerning the rapidity of the transition cannot be pre-
cisely dehned. Furthermore, such calculations' lead to
the result that polaron effects cause a decreased current
through the junction at all values of the bias and not
low-bias anomalies. Therefore, we feel that the original
interpretation of the experiments is unsatisfactory.

An alternative explanation of these anomalies is that,
in analogy to the description of tunneling in super-
conductors, they are caused by structure in the density
of states on one or both sides of the diode. Even in the
absence of a collective initial or final state, if the tunnel-
ing probability is a constant, the tunneling difI'erential
conductance is proportional to a two-dimensional
weighted projection of the joint density of states and
thereby reQects structure exhibited by the single-
particle density of states. Therefore, we have calculated
some of the many-body properties of electrons and holes
interacting with phonons in degenerate semiconductors.
The self-energies of these quasiparticles interacting
with phonons through the polar, piezoelectric, and de-
formation-potential interactions have been calculated
analytically and exactly in second-order perturbation
theory. Other authors, ~ ' noting that in metals this is
a strong-coupling problem, have attempted to solve a
Dyson's equation for the one-electron propagator. How-
ever, their models'0 or approximations render the calcu-

' W. A. Harrison and C. B.Duke (unpublished).
7A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinsky,

hIethods of Qttantum Field Theory in Statistical Physics (Prentice-
Hall Inc. , Englewood Clips, New Jersey, 1963), Chaps. 2 and 3.
This reference is hereafter referred to as AGD.

S. Engelsberg and J.R. SchrieHer, Phys. Rev. 131,993 (1963).' T. Holstein, Ann. Phys. (N. Y.) 29, 410 (1964).
"The Engelsberg-Schriefter and AGD approximations of a

constant density of states used in evaluating the one-electron seM-
energies is in e8ect a model electron-phonon coupling.
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lations equivalent to second order perturbation theory.
An outline of this reduction is given in Sec. II of
Holstein's paper. ' Furthermore, as these authors have
been primarily concerned with metals, they typically
neglect dielectric screening and usually consider just one

type of interaction. Their approximations~ ' concerning
the nature of the interaction and the constancy of the
density of states may be adequate in metals where the
Fermi energy is much larger tha, n the phonon energies.
They are not suSciently accurate in lightly doped de-
generate polar semiconductors. Our calculations yieM
structure in the proper self-energy which wouM be
missed if the standard approximations were employed.
Furthermore, we believe that the underlying physics of
our model is more soundly based than in metals. In
lightly doped degenerate semiconductors, in contrast
to the situation in metals, the Debye model adequately
describes the acoustical phonon spectrum for those
phonons of importance in the self-energy calculations.
As the polar and piezoelectric coupling constants are
small in III-V compounds, we anticipate that the per-
turbation-theory results are applicable even in the
absence of an explicit Migdal's theorem. ~

We also investigate the inRuence of the screening of
the electron-phonon vertex"" on the structure in the
density of states, and show that the screening eliminates
logarithmic singularities predicted at the Fermi energy
using the bare vertices.

Keldysh and Kopaev (KK) have advanced an ex-

planation of the conductance anomalies based on
logarithmic singula, rities in the density of states in the
bulk semiconductors due to polar electron-phonon
interactions. " That such singularities may arise in
second-order perturbation theory for a system of degen-
erate fermions interacting via an appropriate vertex
through an intermediate boson 6eld is a well-known
result. "However, as indicated above, we shall show in
this paper that a consideration of the eRects of the
screening of the electron-phonon vertex in the random-

phase approximation eliminates the Keldysh-Kopaev
singularities.

Further studies by Logan and Rowell4 of Si and Ge
diodes indicate that the conductance anomalies are
not confined to polar materials. Williams and Shew-
chun' have emphasized that a wide variety of "anoma-
lies" can occur in the conductance. These anomalies
seem quite sensitive to the structure of the particular
diodes. " Similar phenomena have been observed by

"A. Ron, Phys. Rev. 132, 978 (1963).
'~ J.R. Schrieffer, Theory of SNpercondlcHvify (W. A. Benjamin,

Inc. , New York, 1964), Chap. 6.
"L.V. Keldysh and Yu. V. Kopaev, I"iz. Tverd. Tela 5, 1411

(1963) LEnglish transl. :Soviet Phys. —Solid State 3, 1026 (1963)j.
"In other contexts see, e.g., A. H. Wilson, The Theory of Metals

(Cambridge University Press, Cambridge, England, 1953), p. 77;
R. Balian and D. R. I'red%. in, Phys. Rev. Letters 15, 480 (1965)
(He atoms interacting through zeroth-sound bosons).

'~ J. Conley and J. J. Tiemann (private communication).

Wyatt" in Al oxide —Ta junctions. Kim' has proposed
an explanation based on a magnetic scattering (spin-

flip) mechanism suitable for metals. However, there are

many possible mechanisms for the anomalies. Kim's
explanation needs detailed calculations and comparison
with data, and its relevance to semiconductors has not
been established.

As the bulk-polaron eRects in the density of states do
not seem to be the cause of the observed conductance
anomalies, we have considered other mechanisms in

detail. One of these is the nonlinearities in the tunneling
probabilities calculated in the independent-particle
models. ' Although several interesting eRects are found,
their energy scale is that of the Fermi energies involved,
and they cannot account for the narrow zero-bias eRects
discussed herein.

In Sec. II of this paper we collect the results in the
Matsubara formalism needed as a starting point for our
calculations. In Secs. III and IV we study the eRects of

optical and acoustical phonons, respectively, on the
density of states. We conclude in Sec. V with a brief
summary of our results.

II. FORMALISM

We calculate the density of states of a degenerate
electron gas. One interest is in structure caused by
interactions with phonons. The lowest order self-energy

by perturbation theory is~ "

z (p,ip.)=—rg
d'q V(q)

(2sr)' e'(tl, iso )

KpT 1
e(VZ)=1+ 1+ L4eett —(Z—eo)'1

2q' Se '"Q tt

(
Z—e,—2(e,p)'t' 1

+ I 4eot —(Z+ee)'1,
Z—e +2(e )'ts Se '"ate

(Z+e,+2(e,~)"')

kZ+ e,—2 (e,tt)'t'I
(2 2)

The Fermi energy is denoted by p, , the kinetic energy

by e,= q'/2ttt, and the Fermi-Thomas wave vector by
Ks T' ——6xees/e(~)tt. Equations (2.1) and (2.2) are well

known to describe screening in the high-density limit. "
"A. I. G. %yatt, Phys. Rev. Letters D, 401 (1964); L. Shen

and J. M. Roweii, Bull. Am. Phys. Soc. 11, 224 (1966)."D. J. Kim, Phys. Letters 18, 215 (1965).
"D. J. BenDaniel and C. B. Duke (to be published).

&& $(tl, iso„)gism (p+tl, ieo„+iP„) . (2.1)

Dielectric screening has been included in shielding the
interaction. We use the random-phase-approximation
dielectric function arising from electron-electron
Coulomb interactions in a medium with a dielectric
constant e(ro):
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The criterion for the validity of this limit is that
ra (—9—s/4)'~'(Eii/p)"' be small. For lightly doped
e-type III-U semiconductors the shallow-donor binding
energy is E& 5 meV and Fermi energies are p 100
meV. Thus, rs —,

' and Eqs. (2.1) and (2.2) adequately
describe the screening. However, for lightly doped
p-type III-V semiconductors, E& 25 meV for the
heavy-hole band whereas p, 30 meV. Thus rz 3, and
the high-density limit is inva, lid. However, Eq. (2.2) is
still valid in the long-wavelength region where the elec-
tronic potential energy induced by the phonon is much
less than the Fermi energy.

In the random-phase approximation (RPA), the
phonon propagator is also screened" ":

~(E)=
(2s.)'s.

dsqA (q,E) (2 6)

phonons it makes the LO and TO (transverse optic)
phonons nearly degenerate in the long-wavelength
limit. 20

After 6nding the self-energy, the retarded Green's
function is found by making the analytical continuation
ip„+II~E+i5, and the spectral function is

2 (p,E)= —2 ImG„g(p, E)
= —2Zz/[(E —ep —Zz)'+&z'g ~ (2 5)

The derisity of states is

&(q) '= &"'(q) ' —LI'(q)1' (q)/s(q) j,
(2.3)

~.(q) =L»/(2 )'jr. d'~S. (~+q)O. (~)

For a lightly doped semiconductor it is possible to
ignore the effects of the electron gas on the phonons,
and (2.3) can be approximated by

which, in the limit that Zg —+ 0, becomes

tts p (E)/w'h'
~(E)=

BZg(p, E))
1+

&.(s)-

E=.,+~.(p(E),E)

(2.7a)

(2.7b)

X)(q) = n&'&(q) = —2a),/ (o „'+(u,') . (2.4)

For acoustical phonons the electron-phonon interaction
serves mainly to alter the speed of sound. "For optical

The limit Zg —+0 occurs at the Fermi surface, but
(2.7) is a generally useful approximation near/the
Fermi energy.

We proceed by doing the Matsubara sum in (2.1):

z(p'p )=
E,

U(q)
(2 )' &p + (q) — + +u

1Vp(p+q)

N,+1
Ret e

—'(q co )j+ Ret e
—'(q —oi,)1

zp„—u(q) —sp+s+p

2oi(q)

"(q ~p- ep+s+p) (&p- ep—+s+I )' ~'(q)— „2si ee"—1 o~' —ro'(q)

Imge '(q, oi+ib) j+Sp(„,„. (2.8)
&ps+& e p+q+p

The contribution of the plasmon pole is indicated in the
last term. The second from last term comes from the
branch cuts of the dielectric function (2.2). Note that
the frequency dependence of the dielectric function is
different for the various terms. The phonon terms,
which depend upon the thermal occupation proba-
bilities 1V, and 1V,+1, have the phonon frequency
governing the dielectric response. The term depending
upon the electron occupation Ep has a frequency de-
pendence governed by the difference of the electron's
initial energy (ip„+@~ E) and final energy e„+,. The
dielectric medium responds with a frequency deter-
mined by the energy transferred by the electron to the
various excitations of medium.

The term containing 1Vr in (2.8) is the one most
likely to cause structure near the Fermi energy. The

"A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962).

other terms have reference to the Fermi energy only
indirectly through the dielectric function. The integral
around the branch cuts in (2.8) is examined in the

Appendix, and it is shown not to be singular at the
Fermi energy. The wave-vector integration of the
phonon terms also involves integrals around branch
cuts. These branch-cut contributions have also been
examined and do not lead to singularities. The plasmon
pole is like a high-frequency unscreened phonon, which
contributes nothing peculiar to the density of states

"R. A. Cowley and G. Dolling, Phys. Rev. Letters 14, 549
(1965); W. Cochran, R. A. Cowley, G. Dolling, and M. M.
Elcombe (to be published). %'e have made calculations of the
phonon propagator using the full RPA Po(q). For PbTe our results
reproduce the dispersion relation given in Fig. 2 of the above
reference. The dynamic limit used by KK is valid only for wave
vectors q such that bqsz ja&z(t which for Cowley and Dolhng's
PbTe samples requires q (10' cm '. In such materials Eq. (2.4) is
valid if the Lo and To energies are nearly degenerate.
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near the Fermi energy. Thus, the main structure arises
from the X2 (P+q) term, which we designate Zs.

screened by
e(P+k;, E—es,) . (2.12)

Z2 (pz) =— d'klan p (k) V(p —lt)

(22r)' e(P—ir, Z—22)'

2co(p —Ir)
(2.9)

(Z—s&)'—ro (p —li)'

Although e is not a meromorphic function, it can be
approximated by one in the vicinity of the poles of
interest, and the form (2.12) can still be employed. This
approximation allows us to evaluate the eBect of screen-

ing on the various singularities which occur in the
density of states.

Changing the angular variable to x= (p—lt)2 gives

Zp(p, z) =—
2 (22r)'p

dS
(„g,) e2(x, Z—es)

X
(Z—ss)' —~'(~)

(2.10)

& (p,z)= —2 (pz)/2

/I 24' 6y —gg

(p+k) I (p+k)
kdk

e(P+k, Z—e2)2

o&(p+k)
(2.»)

(Z—es)' —ce(P+ k)'

We obtain the retarded function by letting Z —+ E+25.
The integral in (2.11) cannot be done exactly because

of the complicated functional form of e. However, our
interest is primarily in logarithmic singularities of
(2.11), which come from poles in the integrand. Were
e(P+k, E—es) a meromorphic function, then a loga-
rithmic singularity caused by a pole at k= k; would be

To find the quasiparticle density of states, we take the
derivative of the real part of Zr (p,E) with respect to 2„:

III. OPTICAL PHONONS: POLAR COUPLING

The density of states near the Fermi energy
IE—pI((~&, was evaluated by Keldysh and Kopaev"
(KK) for polar coupling to optical phonons. They
neglected the dielectric screening of the electron-phonon
vertex. Their result, which had a sign error, predicted
logarithmic singularities in the density of states at the
Fermi surface. However, it is shown below that these
logarithmic singularities at the Fermi surface disappear
entirely when screening is included in a realistic approxi-
mation. These singularities are caused by long-wave-

length phonons which are screened out by the plasma.
Note that the frequency dependence of the dielectric
function in (2.11) depends upon E es (after int—egra-
tion, upon E e~) an—d not upon ~s. The function

e(q, &os) does Not screen out long-wavelength phonons.
For optical phonons, polar interaction,

M(g) =Ms, (3.1a)

P (q) =
I
47ro&gs@2/(2') r12q2). (3.1b)

If screening is neglected, the self-energy integral (2.8)
may be done analytically. The part depending upon Sp
is expressed in terms of Euler's dilogarithm function:"

L2(X)=— ln(1 —t)d&/t . (3 2)

This function is well behaved at x=1, but it has a
logarithmic singularity in the derivative at @=1.

The relevant self-energy is

Z2 (p,z) =
2m. e„'~'

—rr Q)p i p+k2' p —Z—los e&
—Z+Gos p pF i p+pE)

ln ln +L2-
p k2 e —Z——(es p —Z+&op — p+y —) p+y —~

P E P P F F
+~21 ~21 ~21 +~2 ~21

— +~21, (3 3)
&p

—y- &p
—y — &p+y+ p+y+ &p y+ &p y+— —

where
y+ = L2m(Z+~ )]212 (3.4)

The approximate result given by KK had just the 6rst
term of the above and with an incorrect sign."The
"Higher Transcendental Functions, edited by A. Erdilyi

(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1,
p. 31.

"The first term of (3.3l appears with the same sign as the same
term in (1.10}of Ref. 13.However, we have defined Zy with the
opposite sign, so the two results diBer.

dilogarithm functions do cause structure, but not at
the Fermi energy. This structure is a discontinuity in

ReZz(P, E) at E=e„&~& for P(P2. The self-energy
from the phonon term has an equal and opposite dis-
continuity at E= 2~+A& for all p. So the total real un-

screened self-energy has a discontinuity at E= e~—coo

for P (Ps and at E= 2~+a&s for P)P2. There is also a
logarithmic singularity in ReZF(p, E) at E=p&(vs.
None of this structure is eliminated when screening is
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E(p) near e„=p, in (3.3)

=e.—»/s)" (ep ~)»I2pp/(p —pp) I (3 6)

I

l

l

l

l

l

I

l

I

I Ep

I'ze. 1.A schhematic representation of the 'p
ning is neglected. T

ln
g . Dielectric screeningggera e in the fi ure.

approximation eliminates thi's insta i 'ty.

The right-hand side of (3.6 is lop otted schematically in

, w ic s owsthatE hasa
minimum

as a maximum and a
m near t e Fermi ener . Th

,„& is easily found by setting BE(p)/Bs„ to

E-~=A(&~«pL-&-(~/ )(p/ o)'"j) .
An electron gas with this dispersion relation is u
b 1 to bo th F

h o i hi
' b'1'is insta ility, which onl oyo
e se -energy.

To find the densit of st
'

y s ates from (2.7a) we need the

X ln
Mo —(E s) p+p-

(E+~o)'" pp —y+
&o+E—ep ps+y+

(E to )I/2 p

ooo—E+op pp+y
(3.8)

included, since none f 't do i epends u on
a Rex, SZ

length phonons. F' ll

g 0! GOO

ina y, we note that the
p long-wave-

the perturbation th

6y 2 6y 2' fyBQ

ion eory expansion for ener ie
o, ~+0/ pj~rather than just n.

sing the unscreened self-ener ~3.3' w

b I
'

th
a ion. e instabilit is demo

quasipartic e dispersion relation

E(p) = e„+Z(p,E(p)) . (3.S)

This isis is evaluated approximately by settin E
the self-en r a d r

'p ytt oti 1 hoop onons, since the imaginary part of the total
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I.8

l.6

l.4

l.2

1.0

p„(KI

.8

.2
P

pI i I i I i I i l i I t I i I I I

0 .4 .8 l.2 l.6 2.0 2.4 2.8 5.2

F

Fro. 3. The reduced electronic density of states pn=w%p/mph
calculated using the unshielded polar interaction between the
electrons and longitudinal optical phonons. The introduction of
screening eliminates the singularity at E=p but not those at
E=II,~o)0 ~ The coupling constants and phonon frequencies are
indicated in the figure.

unscreened Z vanishes for
I
Z —p I

&res. Screening
changes this result by including contributions from
phonon-induced electron-hole pair production, which
are usually small. Near the Fermi surface, E= c„=p,,
and the density of states is dominated by the singular
term

8 ReZp/Be„=

+(~/~)(~s/u)'" »I (p pp)/(p+pp) —
I (3 9)

This is the same result as derived by KK" except for
their sign error.

In order to appreciate the type of effects which may
occur, we have numerically evaluated the density of
states using the unscreened self-energies. This includes
Zp in (3.3) and the self-energy from the phonon pole,
both taken at zero temperature. In Fig. 2 is shown a
"reduced" density of states pz = (s'A'/happ) p for
~o=0.2 p and +=1.0 and n=0.1. In the quasiparticle
"window" IZ —pI &rap the density of states is obtained
from (2.7a), while in the regions where ImZNO the
results are found by numerical integration. The central
peak is caused by the term in (3.9), and is eliminated
(or very smoothed over) when screening is included.
The peaks at E=p~~o remain when screening is in-
cluded although their sign and magnitude depend on the
value of r, . Figure 3 shows a similar calculation for
e=0.1 and coo ——2.0 p. The central peak does not occur at
the unperturbeed Fermi energy because ReZ is nonzero
&n this region. A self-consistent calculation, which

accounted for the renormalization of the Fermi energy,
would place this peak at the Fermi energy. "

We now show that the singular term (3.9) in the
density of states at the Fermi surface is screened out.
That is, the singular term (3.9) is eliminated when
screening is included. We use (2.11) and (2.12) to show
that the result (3.9) is screened by a dielectric function

8 ReZp
(p,Z) = (n/~)(~s/u)'"1/e(O, Z—e,)'

86@
xl I(p—p)/(p+p)I. (3.10)

The function c(0, E e„) —diverges as E~ ep, which
means that the above term vanishes on the mass shell.
Thus screening does eliminate this logarithmic singu-
larity in the density of states at the Fermi surface. This
also eliminates the instability which depends upon this
logarithmic singularity.

The other singular terms in (3.8) at E=IJ+M p remain
when screening is included. The magnitude and sign of
the coefficient of these logarithmic terms depends upon
the screening parameters. The polaron self-energy and
density of states were evaluated analytically using
Fermi-Thomas screening. The results for n=1 and
coo

——0.2 p are shown in Fig. 4. Various values of r, are
indicated in the figure. The r, =0 limit corresponds to
Fig. 2. The peak in the density of states at the Fermi
energy vanishes at r, greater than 10 '. The peaks at
E=p+coo remain but diminish in intensity as r, is in-
creased. The coeS.cient of the peak at E=p —~0 appears
to change sign as r, is increased. However, the peaks at
E=@~coo have additional structure which cannot be
shown on the scale of Fig. 3. We conclude that the
nature of these singularities at E=p&cop can vary
among different electronic systems, since they depend
upon both the screening parameters and the ratio (op/p.

IV. ACOUSTICAL PHONONS: PIEZOELECTRIC
AND DEFORMATION-POTENTIAL

INTERACTIONS

The polaron self-energies and density of states are
now evaluated for acoustical-phonon interactions. We
will show that, as in the preceding optical-phonon case,
there are logarithmic singularities near the Fermi
surface from the piezoelectric interaction which are
screened out by the dielectric function. There are also
logarithmic singularities at E=p+2ppC, which are
broadened by the imaginary parts of the self-energy.
The latter results apply to both the piezoelectric and
deformation-potential interactions. The deformation-
potential coupling is the strongest interaction in most
cases.

Since for electrons with p -..pp the phonons have wave
vectors g(2pp, and pp is not large in a semiconductor,
it is possible to use the Debye model for acoustic

"C.S. Duke, Phys. Rev. 136, 859 (1964).
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l.8 I I I I ~ I I I I

FxG. 4. The reduced electronic den-
sity of states ps =7r'Ap/srpr calculated
using the polar interaction between
electrons and longitudinal optical pho-
nons. The dielectric screening of the
plasma was included in the Fermi-
Thomas approximation. Different
values of the standard density param-
eter r, are indicated in the figure. For
increasing values of r„ the coefficient
of the logarithmic singularity at
E=IJt—c 0 changes sign. For values of
r, &0.1, the logarithmic singularities
at E=p~cv0 are not discernible on the
present scale of the 6gure.
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phonons, cp(q) =C,q. The two vertex interactions are

Piezoelectric interaction V(q) =2s.gts'C, s/~ q~, (4.1a)

deformation potentiat V(q) =DP&it q~/2pC' (4 1b)

The dimensionless piezoelectric constant g equals the
electromechanical coupling constant times e'/AC, ,ep

and we use an isotropic form for the interaction. '4 The
deformation-potential constant is Dp, and p is the
density of the semiconductor.

When screening is neglected, the self-energy (2.1) can
be evaluated exactly. These results are of interest and
are presented below. The deformation potential self-
energy has been estimated by Holstein, ' but we present
the exact result as Eq. (4.9).

Without screening, the result for the piezoelectric
interaction is

(p,~)=(g/2 )(./ )'" 2 (—)"'f+(,i)
i, j=l

&&f ( J) 1.Lf.(',J)/f (',~)l, (42)
f~('i ) = (&+( )'C.p+"j"—

+ (—)6/ e,WV'ti, (4.3)
e, =mC, s/2.

The real and imaginary parts can be found by letting
Z —+ E+iI For E= e.„, the functions f vanish at

E=ts) s+2 i (4 4)E= (lt ~24")'=t ~2C.pr,"C, B.Duke and G. D. Mahan, Phys. Rev. 139, A1965 (1965).

The self-energy is well behaved because of the f ln(f)
form for f &0. Howeve—r, the density of states can have
structure. The main contribution near the Fermi energy
in the quasiparticle approximation is"

This has four logarithmic singularities. However, the
two singularities at E=p+C, (p pr) cancel at p= pp-.
It will be shown below that these two singularities,
which are caused by long-wavelength phonons, are
screened out when the dielectric function is included.
The other two singular points, at E=p+C, (P+Pr),
remain even when screening is included. There is not,
however, an actual logarithmic singularity at these
points because the imaginary part of the self-energy is
finite here. At Ep= tr&2C, p&, the imaginary part of the
self-energy is

ImZ(p, Ep)~—2ge, , (4.6)

which is generally larger than ReZ at this point.
The contribution to the self-energy from the phonon

poles in (2.8) has also been evaluated at zero tempera-
ture. The q integral for this term must be cut oB at the

~' There are additional logarithmic terms whose coefficients are
smaller by C,/pr.

8ReZr g f e)
8ep 2pr k e&l

E tr+C, (p pr)—E ti C—,(p+pr) ———
&(In (4.S)

E Is+C. (p+pp) —E p C, (p pp)—— —
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FIG. 5. The real and imaginary
parts of the electron's self-energy
Z„h+Z», (4.7) and (4.2), for un-
screened, piezoelectric, acoustical-
phonon interactions. The parameters
are e,=0.01 p,, p=0.5 pg, and T=O.
The down arrows (J,) point to the
Kohn-type anomalies when the f
functions vanish in (4.2). The up
arrow (I) is where h vanishes in (4.7),
which occurs at 8=a„.The imaginary

art of Z vanishes approximately for
z—I I &c.lp —p»I.

—.050—

Debye wave vector qD. However, the important terms
depending upon qL either change Z by a constant, or
else change the effective mass. We can omit such terms
and use the measured effective mass and band mini-
mum. The remaining terms in Z from the phonon poles
are

k(z, g)=l e +(—)'0 e,

+(—) zl+(-)'C. p+.,y.
(4.7)

The terms depending upon the phonon thermal occu-
pation S, should be unimportant at low temperatures.
The magnitude of S, depends upon the average mag-
nitude of Aoi, /kT. For the degenerate case, (q) (p) =p»,
and (Ac,g/kT)= (e,zz)'I'/kT))1. This is quite different
from the nondegenerate case, since here (q) = (p)
= (2zzzk T)'I"- and (Aced, /k T)= (e,/k T)"'«],.

Sample numerical calculations were also performed on
the spectral densities and density of states for degen-

erate electrons with piezoelectric interactions. Figure 5

shows the real and imaginary part of the total un-

screened self-energy Z»+Zuh, calculated for e,=0.01@,,
p=0.5p», g=1, and zero temperature. The places
where the four f functions vanish are marked by
arrows (Q, and a Kohn type anomaly is evident. The
k functions vanish at E= e„, which is also marked ($).
Although the real part of Z shows much structure, the
most interesting result is that for a fixed value of p the
imaginary part of the self-energy vanishes for value of

E near the Fermi energy. This quasiparticle window

extends approximately from zi
—C, l p—p» l

to
ii+C, l p —p» l; it vanishes at p= p» and scales with C,.
If one plots ImZ(P, E) as a function of P for a fixed E,
then ImZ is nonzero in the region around p» from

P=P» I& ~l/C «P=P—»+IZ I l/C. . The imagi-—
nary part of Z has a similar window for deformation

potential scattering. This structure was not reported in
previous discussions~ ' of electron —acoustical-phonon
interactions, which demonstrates the desirability of
avoiding unnecessary approximations.

Numerical integrations have been performed to
obtain the density of states p(e) for e,/hz=0. 1 and 0.001
and g=1. No structure appears at Z=zi&2p»c„and
the singularity in 8Z/Be„ is undoubtedly smoothed out
by the large value ImZ. The structure at E=p is not
discernible on an energy scale of DE=10 'p, . As g=1,
e,/zz =0.001 is a strong-coupling situation for the
valence band electrons, we conclude that the piezo-
electric interaction with acoustic phonons is not an
important source of structure in the electronic density
of states.

We introduce screening by using (2.11) and (2.12).
For acoustical phonons, the frequency dependence of
the dielectric function can be ignored since vp»C, . This
gives

Re Zp~—

&—
z
—C.(p+p»)

Xlog
&—zz+C. (p+ p»)

(4.8)

The terms at E=zr+2c,p» a,re screened by a dielectric
function e(2p», 0), showing that q=2p» phonons are
principally involved in causing this term. The singu-
larities at 8=p, have as an effective dielectric function
e(0,0) —+~, so these singularities are screened out. The
singularities at the Fermi surface are caused by long-
wavelength phonons, which are screened by the de-
generate electron gas. Were it not for the damping (4.6),
this logarithmic term would also lead to instabilities in
the excitation spectrum near E=p+2c,p»..

The electron self-energy for deformation potential
coupling is (for ¹

denoting the atomic density of the
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impurity atoms)

Do'&o 1
Zp (pZ)= —p Z 206+

4pc,'p 16', (pe )'"

+(E I )'j—»Lf+/f j -(4 9)

There is no singularity in the unscreened density of
states at E=IJ, since setting f =0 and E=IJ, causes
BZz/Be„ to vanish identically. The terms at

E=p&2C,pg
are

B ReZ p Do'm' E p C,(p+—p p—)
ln (4.10)

Be„2x'pC,k' E—p+C, (p+pp)

These are not really singular because of the 6nite
imaginary part of Z at this energy. It is interesting to
note that the prefactor of this term is independent of the
electronic density. Screening just adds a e(2pp, 0) 2

factor to this result, as it did for the piezoelectric case
(4.7). Thus, for deformation-potential interactions with
acoustic phonons there are no singularities in the
density of states at the Fermi surface.

V. SUMMARY AND CONCLUSIONS

In this paper we have obtained two new analytical
results. For the unscreened electron-phonon vertices we
evaluate analytically the second order self-energy asso-
ciated with an electron in a degenerate Fermi gas inter-
acting with LO phonons via polar coupling and with
(Debye) acoustical phonons via piezoelectric and de-
formation potential coupling. From these self-energies
we calculate the electronic density of states. For optical
phonons the calculation was performed numerically and
sample results given in Figs. 2, 3, and 4. The unscreened
interaction led to logarithmic singularities at the
energies p and p~coo. For acoustical phonons we both
performed numerical calculations and investigated
analytically the possibility of singularities in the elec-
tronic density of states. This investigation was carried
out by use of the quasiparticle approximation in which
singularities in the density of states are associated with
singularities in BZ/Bp. We found that singularities in
BZ/BP occur at the energies p&2C,Pp for both piezo-
electric and deformation-potential coupling. At these
energies the quasiparticle approximation is not rigor-
ously valid because ImZ is nonzero, which tends to
smooth out the structure. Numerical calculations for
piezoelectric interactions did not reveal singularities at
E=p&2C,pI . Piezoelectric coupling causes two cancel-
ing singularities at E=p whereas deformation-potential
coupling does not yield any structure at E=p.

The singularity in the density of states at E=p, in-
duced by optical phonons is an old result deduced by
KK" (except for a sign error). Our second major result
is the demonstration that, contrary to the claim of KK,
the dielectric screening associated with the degenerate
electron (hole) plasma eliminates this singularity.
Although the remark of KK that the screening does not
severely modify the phonon propagator (it renormalizes
the optical-phonon frequency) is invalid in PbTe,"the
primary effect which they failed to consider was the
alteration in the electron-phonon vertex wrought by the
screening.

The primary conclusion to be drawn from our results
is that neither the originap nor the KK" explanations
for the conductance anomalies in tunnel diodes are
quantitatively applicable. We feel that these anomalies
are riot due to bulk-polaron efFects.
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APPENDIX: BRANCH-CUT INTEgRAL

The Matsubara sum of the polaron self-energy was
evaluated by means of a contour integral. One term in
the result (2.8) came from the integral around the
branch cuts of the RPA dielectric function. We now
examine this term in detail to show that it does not
contribute a singularity in the density of states at the
Fermi surface. This analysis differs from that of Quinn
and Ferrell, " ' who have considered similar cut inte-
grals in the theory of Coulomb interactions in Fermi
systems. They used time-ordered functions, in contrast
to our retarded functions, which changes the path of
the contour around the cut. Secondly, they were inter-
ested in deriving systematic corrections to the correla-
tion energy, whereas we merely wish to reduce the inte-
grals to a form which demonstrates that nothing
peculiar occurs in this term at E=y and p= pp.

The integral is

d'pe) 2' (q) V(g) 1

(2n.)' e&"—1 oP —a) (q)'

1 —46gerx — . (A1)
~p~+~ ~u+e+&

2' J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
27 D. F. DuBois, Ann. Phys. (Paris) 7, 174 (1959);8, 24 (1959).
28 D. J. %'. Geldart and S. H. Vosko, J. Phys. Soc. Japan 20,

20 (1965).
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parts of the dielectric function are

Ape'
en(y, s) = 1+

2kp' (s+y)'
1

X 1+ (1—y') ln
2(s+y) ~1+y

1+a
(1—s') ln

2(s+y) Ii—S
(A»)

xkpz'
er(y, s) = ()t'-y') .

4ks'(s+y)'
(A12)

A singularity at the Fermi surface will occur if f(s) is
discontinuous at a=1. From its definition it is easy to
see that f(s) is continuous at a= 1, so that (A9) has no
logarithmic singularity at p=1. This cut integral does
not contribute any singular behavior to the density of
states at the Fermi surface.
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Infrared Lattice Vibrations in GaAs„P& „Alloys

H. W. VKRLEUR AND A. S. BARKER, JR.
Bell Telephone Laboratories, iVurruy Bill, S'em Jersey

(Received 25 April 1966)

The infrared lattice-vibration spectra of mixed crystals of GaAs„PI „have been measured by reQection
techniques. These crystals exhibit two distinct reststrahlen bands whose strengths and frequencies depend
on y and which show considerable Gne structure. A harmonic model has been developed to accoUnt for the
significant features of these spectra. The main features of the model are (1) the inclusion of a clustering
eifect or nonrandom distribution of anions on a microscopic scale, (2) the existence of 5 distinct molecular
complexes which leads to 2 groups of 4 closely spaced optical phonon modes, and (3) effective ionic charges
that have both local and nonlocal parts. The model provides the frequencies and strengths of the optical
phonon modes which with suitably chosen damping constants yield a good Gt to the reQectivity spectrum
over the entire range of solid solutions.

rich or GaP rich, should have some characteristic effect
on the optical-phonon modes since they depend strongly
on nearest-neighbor force constants.

We intend to show in this paper that a detailed analy-
sis of the infrared reAectivity spectrum of GaAs„P1 „
supports the assumption of short-range clustering. A
harmonic-oscillator model of the lattice dynamics of the
alloy is developed including a short-range order param-
eter which accounts quantitatively for the significant
features of the reQectivity spectrum. The characteriza-
tion of the lattice modes serves as a useful basis for
other work. It will be shown that the composition y of
an unknown sample can be determined from the infrared
spectrum. Also, additional infrared effects such as free-
carrier susceptiblity can be properly evaluated only by
first taking account of the pure lattice modes.

The extra degree of freedom provided by the com-
position y allows us to probe other features of the lattice
dynamics of III-V compounds. Srodsky and Burstein
have suggested' that the usual assumption of a localized,
effective ionic charge on each ion, while probably correct
for such ionic crystals as the alkali halides, cannot be
properly applied to the III-V compounds. The reason
they advance is that the valency electrons of the ions
in these compounds have extended wave functions and
that, thus, the effective ionic charges of the ions should

INTRODUCTION

'IXED crystals (or alloys) of GaAs„pr „can be
- ~ grown over the entire composition range y=0 to

1. These alloys are interesting for several reasons, one
being their electronic band structure. GaAs is a direct
gap material while GaP has an indirect gap. For the
alloy, as y is increased, the band structure near the gap
appears to change continuously, the central k =0
conduction-band minimum falling relative to the other
valleys until near y= 0.6 the k =0 minimum becomes the
lowest valley changing the material from indirect to
direct gap and drastically aGecting the threshold for
laser action and the luminescence properties.

Whereas it is known that the alloys have the same
crystal structure as the parent crystals GaP and GaAs
(i.e., zinc-blende), the distribution of the constituent
ions over the sublattices is not known. One usually
assumes that the structure consists of a Ga fcc sublat-
tice and an interpenetrating fcc sublattice over which
the As and P ions are randomly distributed. It has been
suggested, however, ' that there may be a tendency for
like-negative ions to cluster around positive ions. Such
clustering, which tends to make small regions GaAs

'M. Brodsky and E. Burstein, Bull. Am. Phys. Soc. 7, 214
(1962).

* Work performed in partial fulfillment of requirements for the
Ph. D. degree, New York University.

'T. L. Larsen, E. E. Loebner, and R. J. Archer, Bull. Am.
Phys. Soc. 10, 388 (1965);Y. S. Chen and G. L. Pearson, ibid 10, .
369 (1965).


