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The second-order self-energies of an electron in a degenerate Fermi gas arising from polar coupling to longi-
tudinal optic phonons and from both piezoelectric and deformation-potential coupling to (Debye) acoustic
phonons are evaluated exactly and analytically. Numerical calculations of the resulting density of states
for optical phonons exhibit logarithmic singularities at the Fermi energy u and at u+wo. Similar structure
due’ to the electron’s interaction with acoustical phonons is exhibited by the proper self-energy but is
smoothed out in the density of states by the nonvanishing imaginary part of the self-energy. The singu-
larities at the Fermi surface are removed by the random-phase-approximation screening of the electron-
phonon interaction due to mobile charge carriers. These results indicate that several proposed explanations
for low-bias conductance anomalies in tunnel diodes are inapplicable.

I. INTRODUCTION

UNNELING experiments, originally introduced

in semiconductors and given new impetus by the
reported work on the tunnel diode by Esaki! have
been utilized extensively to study the bulk properties
of other materials, notably superconductors. Despite
their success in probing the modifications in the density
of states of superconductors wrought by many-body
effects, the analysis of tunneling experiments in semi-
conductors has been confined to independent-particle
models of the tunneling process.? However, no satis-
factory explanation, based on any models, has been
proposed for the anomalously low conductance near
zero bias in tunnel diodes, originally observed by Hall,
Racette, and Ehrenreich,® and more recently studied by
several other workers.*?

The original interpretation® of these anomalies at-
tributed them to the polar interaction between the
electron and optical phonons. It was argued that, if
denotes the polar-interaction coupling constant and wq
the longitudinal optic (LO) phonon energy, then an
electron or hole must give up the polaron binding
energy Zo=awq before tunneling, and a correlation was
noted between Zo and the size of the anomaly. This
argument is incorrect for several reasons. One reason is
that the self-energy of an electron near the Fermi energy
in a degenerate semiconductor is not aw,. This expres-
sion is only appropriate for a single electron in an insu-
lator. For degenerate semiconductors, the electron’s
self-energy is altered by exclusion-principle effects, and
also by the mobile charge screening of the electron-
phonon interaction. In Sec. III we give the quantitative
calculation of this effect using the dynamic dielectric
function evaluated within the random-phase approxi-

1L. Esaki, Phys. Rev. 109, 603 (1957).

2 See, e.g., R. T. Shuey, Phys. Rev. 137, A1268 (1965).

3R. N. Hall, J. H. Racette, and H. Ehrenreich, Phys. Rev.
Letters 4, 456 (1960); R. N. Hall, in Proceedings of the Inter-
national Conference on Semiconductors, Prague, 1960 (Academic
Press Inc., New York, 1961), p. 193.
(1;612) A. Logan and J. M. Rowell, Phys. Rev. Letters 13, 404

5R. M. Williams and J. Shewchun, Phys. Rev. Letters 14, 824
(1965) ; 2bid. 15, 160 (1965).
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mation. Secondly, the number of phonons is quantized,
so that any energy change of a polarization cloud must
be nwo, where » is an integer. The argument that =,
must be furnished by the external battery hinges on the
assumption that the electron is suddenly removed from
one side of the junction to the other. In calculations of
the tunneling current based on the usual concepts of
perturbation theory, the tunneling process is treated
as an energy-conserving one for which questions con-
cerning the rapidity of the transition cannot be pre-
cisely defined. Furthermore, such calculations® lead to
the result that polaron effects cause a decreased current
through the junction at all values of the bias and not
low-bias anomalies. Therefore, we feel that the original
interpretation of the experiments is unsatisfactory.

An alternative explanation of these anomalies is that,
in analogy to the description of tunneling in super-
conductors, they are caused by structure in the density
of states on one or both sides of the diode. Even in the
absence of a collective initial or final state, if the tunnel-
ing probability is a constant, the tunneling differential
conductance is proportional to a two-dimensional
weighted projection of the joint density of states and
thereby reflects structure exhibited by the single-
particle density of states. Therefore, we have calculated
some of the many-body properties of electrons and holes
interacting with phonons in degenerate semiconductors.
The self-energies of these quasiparticles interacting
with phonons through the polar, piezoelectric, and de-
formation-potential interactions have been calculated
analytically and exactly in second-order perturbation
theory. Other authors,”® noting that in metals this is
a strong-coupling problem, have attempted to solve a
Dyson’s equation for the one-electron propagator. How-
ever, their models or approximations render the calcu-

5W. A. Harrison and C. B. Duke (unpublished).

7A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinsky,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall Inc., Englewood Cliffs, New Jersey, 1963), Chaps. 2 and 3.
This reference is hereafter referred to as AGD.

8 S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).

9 T. Holstein, Ann. Phys. (N. Y.) 29, 410 (1964).

10 The Engelsberg-Schrieffer and AGD approximations of a
constant density of states used in evaluating the one-electron self-
energies is in effect a model electron-phonon coupling.
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lations equivalent to second order perturbation theory.
An outline of this reduction is given in Sec. II of
Holstein’s paper.’ Furthermore, as these authors have
been primarily concerned with metals, they typically
neglect dielectric screening and usually consider just one
type of interaction. Their approximations™ concerning
the nature of the interaction and the constancy of the
density of states may be adequate in metals where the
Fermi energy is much larger than the phonon energies.
They are not sufficiently accurate in lightly doped de-
generate polar semiconductors. Our calculations yield
structure in the proper self-energy which would be
missed if the standard approximations were employed.
Furthermore, we believe that the underlying physics of
our model is more soundly based than in metals. In
lightly doped degenerate semiconductors, in contrast
to the situation in metals, the Debye model adequately
describes the acoustical phonon spectrum for those
phonons of importance in the self-energy calculations.
As the polar and piezoelectric coupling constants are
small in ITII-V compounds, we anticipate that the per-
turbation-theory results are applicable even in the
absence of an explicit Migdal’s theorem.”

We also investigate the influence of the screening of
the electron-phonon vertex''2 on the structure in the
density of states, and show that the screening eliminates
logarithmic singularities predicted at the Fermi energy
using the bare vertices.

Keldysh and Kopaev (KK) have advanced an ex-
planation of the conductance anomalies based on
logarithmic singularities in the density of states in the
bulk semiconductors due to polar electron-phonon
interactions.”® That such singularities may arise in
second-order perturbation theory for a system of degen-
erate fermions interacting via an appropriate vertex
through an intermediate boson field is a well-known
result.* However, as indicated above, we shall show in
this paper that a consideration of the effects of the
screening of the electron-phonon vertex in the random-
phase approximation eliminates the Keldysh-Kopaev
singularities.

Further studies by Logan and Rowell* of Si and Ge
diodes indicate that the conductance anomalies are
not confined to polar materials. Williams and Shew-
chun® have emphasized that a wide variety of “anoma-
lies” can occur in the conductance. These anomalies
seem quite sensitive to the structure of the particular
diodes.!® Similar phenomena have been observed by

1t A. Ron, Phys. Rev. 132, 978 (1963).

2 J. R. Schrieffer, Theory of Superconductivity (W. A. Benjamin,
Inc., New York, 1964), Chap. 6.

B, V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela 5, 1411
(1963) [English transl.: Soviet Phys.—Solid State 5, 1026 (1963)].

14 Tn other contexts see, e.g., A. H. Wilson, The Theory of Metals
(Cambridge University Press, Cambridge, England, 1953), p. 77;
R. Balian and D. R. Fredkin, Phys. Rev. Letters 15, 480 (1965)
(He? atoms interacting through zeroth-sound bosons).

15 J. Conley and J. J. Tiemann (private communication).
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Wyatt!® in Al oxide-Ta junctions. Kim'? has proposed
an explanation based on a magnetic scattering (spin-
flip) mechanism suitable for metals. However, there are
many possible mechanisms for the anomalies. Kim’s
explanation needs detailed calculations and comparison
with data, and its relevance to semiconductors has not
been established.

As the bulk-polaron effects in the density of states do
not seem to be the cause of the observed conductance
anomalies, we have considered other mechanisms in
detail. One of these is the nonlinearities in the tunneling
probabilities calculated in the independent-particle
models.’8 Although several interesting effects are found,
their energy scale is that of the Fermi energies involved,
and they cannot account for the narrow zero-bias effects
discussed herein.

In Sec. II of this paper we collect the results in the
Matsubara formalism needed as a starting point for our
calculations. In Secs. III and IV we study the effects of
optical and acoustical phonons, respectively, on the
density of states. We conclude in Sec. V with a brief
summary of our results.

II. FORMALISM

We calculate the density of states of a degenerate
electron gas. One interest is in structure caused by
interactions with phonons. The lowest order self-energy
by perturbation theory is™

dq V(g
2 (piip)=—T% 7
Bt ==T2 | o aaion

X D(q,i0n)G @ (p+q, iwptipn) .

2.1)

Dielectric screening has been included in shielding the
interaction. We use the random-phase-approximation
dielectric function arising from electron-electron
Coulomb interactions in a medium with a dielectric
constant e(®):

e(g,2)=1+

KFT2 1
%+——~mw—@—@ﬂ,
2¢ 8¢V 1

Z—eq—2(equ)? 1
(o,
Z—eg2(equ)?/ 8™V
Z+5q+2(€qﬂ)1/2
e
Z+e—2(equ)'?

The Fermi energy is denoted by u, the kinetic energy
by e;=¢%/2m, and the Fermi-Thomas wave vector by
Kyr?=6rne?/e()u. Equations (2.1) and (2.2) are well
known to describe screening in the high-density limit."

[demu— (Z+e)"],

(2.2)

15 A, F. G. Wyatt, Phys. Rev. Letters 13, 401 (1964); L. Shen
and J. M. Rowell, Bull. Am. Phys. Soc. 11, 224 (1966).

1 D). J. Kim, Phys. Letters 18, 215 (1965).

1. J. BenDaniel and C. B. Duke (to be published).
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The criterion for the wvalidity of this limit is that
rg= (9r/4)3(Ep/u)? be small. For lightly doped
n-type I1I-V semiconductors the shallow-donor binding
energy is Eg~5 meV and Fermi energies are u~100
meV. Thus, 7s~% and Egs. (2.1) and (2.2) adequately
describe the screening. However, for lightly doped
p-type III-V semiconductors, Epz~25 meV for the
heavy-hole band whereas u~30 meV. Thus 7g~3, and
the high-density limit is invalid. However, Eq. (2.2) is
still valid in the long-wavelength region where the elec-
tronic potential energy induced by the phonon is much
less than the Fermi energy.

In the random-phase approximation (RPA), the
phonon propagator is also screened!12:

D=2 () —[V(9)Ps(9)/e(@)],

(2.3)
Po(q)=[2T/(2x)*]1X | d*kGo(k+q)Go(k) .

For a lightly doped semiconductor it is possible to
ignore the effects of the electron gas on the phonons,
and (2.3) can be approximated by

D(Q) = DO (g) = — 2w,/ (wat+wgd) . (2.4)

For acoustical phonons the electron-phonon interaction
serves mainly to alter the speed of sound.”® For optical

=(p,ip) /daq V(){ N Re[e*(g00)]
Pn) = e 5_2 Wy +
@) \ipat()—epratn Hed T
Nr(p+q) 2w(q)
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phonons it makes the LO and TO (transverse optic)
phonons nearly degenerate in the long-wavelength
limit.®

After finding the self-energy, the retarded Green’s
function is found by making the analytical continuation
ipn+u— E415, and the spectral function is

A (P,E) = "‘2 ImGret (P,E)

=—23;/[(E—e,—Zr)*+272]. (2.5)
The density of states is
1
o =—— [eaa o) 2.6
@mr)*r
which, in the limit that 2y — 0, becomes
mp(E)/m2h?
p(E)= (2.7a)
aZR(P:E)
(=0,

dep »(E)

E=e,+2r(p(E),E). (2.7b)

The limit =;— 0 occurs at the Fermi surface, but
(2.7) is a generally useful approximation near3the
Fermi energy.

We proceed by doing the Matsubara sum in (2.1):

N+1
ipa—w(q)—eprqtu
® do 1

Re[e(g, —wg)]

2(g)

€(q, 1pn—€pratu) (ipn—epyqtu)*—a?(q)

The contribution of the plasmon pole is indicated in the
last term. The second from last term comes from the
branch cuts of the dielectric function (2.2). Note that
the frequency dependence of the dielectric function is
different for the various terms. The phonon terms,
which depend upon the thermal occupation proba-
bilities N, and N,4+1, have the phonon frequency
governing the dielectric response. The term depending
upon the electron occupation Ny has a frequency de-
pendence governed by the difference of the electron’s
initial energy (ip.+u— E) and final energy ey, The
dielectric medium responds with a frequency deter-
mined by the energy transferred by the electron to the
various excitations of medium.

The term containing N in (2.8) is the one most
likely to cause structure near the Fermi energy. The

19 A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962).

—w 211 eBo—1 w2—e?(q)

—— Im[e*(g, w+i6)]+Sp1a,mon} . (2.8)
ipatw—eprqtu

other terms have reference to the Fermi energy only
indirectly through the dielectric function. The integral
around the branch cuts in (2.8) is examined in the
Appendix, and it is shown not to be singular at the
Fermi energy. The wave-vector integration of the
phonon terms also involves integrals around branch
cuts. These branch-cut contributions have also been
examined and do not lead to singularities. The plasmon
pole is like a high-frequency unscreened phonon, which
contributes nothing peculiar to the density of states

2R, A. Cowley and G. Dolling, Phys. Rev. Letters 14, 549
(1965); W. Cochran, R. A. Cowley, G. Dolling, and M. M.
Elcombe (to be published). We have made calculations of the
phonon propagator using the full RPA Po(q). For PbTe our results
reproduce the dispersion relation given in Fig. 2 of the above
reference. The dynamic limit used by KK is valid only for wave
vectors ¢ such that 7gur/wo<1 which for Cowley and Dolling’s
PbTe samples requires ¢ <10° cm™. In such materials Eq. (2.4) is
valid if the LO and TO energies are nearly degenerate.
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near the Fermi energy. Thus, the main structure arises
from the Nr(p-+q) term, which we designate Zp:

@ENp(E)  V(p—k)
(2r)  elp—k, Z—er)?
20(p—k)
(Z—a)r—o—k?

Changing the angular variable to x= (p—k)? gives

Zr(p,2)= —f

(2.9)

EF'(?yz): -

V(x)

2(2m)p
—_
E(x, Z—er)

kF (pt+k)2
X / kdk / d
0 (p—k)?
20 (x)

(Z—e)—w?(x)

To find the quasiparticle density of states, we take the
derivative of the real part of 25 (p,E) with respect to ep:

(2.10)

;; 2p(p,2)=—2r(p,2)/2¢p
1 /W kdk(p+k)V(;1>+k)
Anep e(ptk, Z—er)?
w(p+k)
(Z—eay—o(p+E?

We obtain the retarded function by letting Z — E--d.

The integral in (2.11) cannot be done exactly because
of the complicated functional form of e. However, our
interest is primarily in logarithmic singularities of
(2.11), which come from poles in the integrand. Were
e(p+k, E—e) a meromorphic function, then a loga-
rithmic singularity caused by a pole at k=£k; would be

—pp

(2.11)

pt+kr
p—kr

- w03/2
=r(p,2)=— {m

1/2
27 et
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screened by

e(ptki, E—er,) . (2.12)

Although e is not a meromorphic function, it can be
approximated by one in the vicinity of the poles of
interest, and the form (2.12) can still be employed. This
approximation allows us to evaluate the effect of screen-
ing on the various singularities which occur in the
density of states.

III. OPTICAL PHONONS: POLAR COUPLING

The density of states near the Fermi energy
| E—u|<Kwo, was evaluated by Keldysh and Kopaev?
(KK) for polar coupling to optical phonons. They
neglected the dielectric screening of the electron-phonon
vertex. Their result, which had a sign error, predicted
logarithmic singularities in the density of states at the
Fermi surface. However, it is shown below that these
logarithmic singularities at the Fermi surface disappear
entirely when screening is included in a realistic approxi-
mation. These singularities are caused by long-wave-
length phonons which are screened out by the plasma.
Note that the frequency dependence of the dielectric
function in (2.11) depends upon E—e; (after integra-
tion, upon E—e¢,) and not upon we. The function
e(q,wo) does not screen out long-wavelength phonons.

For optical phonons, polar interaction,

w(g)=wo, (3.1a)
V()= [4mrawd?/ (2m)'2¢*]. (3.1b)

If screening is neglected, the self-energy integral (2.8)
may be done analytically. The part depending upon N »
is expressed in terms of Euler’s dilogarithm function :#
Lz(x>=—/ In(1—#)dt/t. (3.2)

0
This function is well behaved at x=1, but it has a

logarithmic singularity in the derivative at x=1.
The relevant self-energy is

ln[,u—Z——wo ep—Z+wo:|+L2(P—;DF>_L2( ?-H?F)
ep—Z—wo p—Z+wo p+y— p+y—

— + - + - +
+L2(p pF)_LZ(;b pF>_L2(ﬁ ;DF>_I_L2<P pn)_L2<1> pF)JrLz(;b pF», 63
p—y— p—y-— p+y+ Py Pyt -

where
Y= =[2m(Zwo) J12. (3.4)

The approximate result given by KK had just the first
term of the above and with an incorrect sign.? The

2 Higher Transcendental Functions, edited by A. Erdilyi
(L/{”chraw-Hill Book Company, Inc.,, New York, 1953), Vol. 1,

"2 The first term of (3.3) appears with the same sign as the same
term in (1.10) of Ref. 13. However, we have defined = with the
opposite sign, so the two results differ.

dilogarithm functions do cause structure, but not at
the Fermi energy. This structure is a discontinuity in
ReZr(p,E) at E=eptwo for p<pr. The self-energy
from the phonon term has an equal and opposite dis-
continuity at E= e,+w, for all p. So the total real un-
screened self-energy has a discontinuity at E=e,—wo
for p<pr and at E=e,+wo for p>pr. There is also a
logarithmic singularity in ReZr(p,E) at E=pztw,.
None of this structure is eliminated when screening is
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Ep)
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F16. 1. A schematic representation of the dispersion relation for
a polaron when screening is neglected. The extrema near the
Fermi energy are exaggerated in the figure. Dielectric screening
in the random-phase approximation eliminates this instability.

included, since none of it depends upon long-wave-
length phonons. Finally, we note that the parameter for
the perturbation theory expansion for energies near the
Fermi energy is a(wo/u)"? rather than just a.

Using the unscreened self-energy (3.3) would predict
an instability in the electron gas near the Fermi
energy. This interesting phenomenon is eliminated
when dielectric screening is included in the random
phase approximation. The instability is demonstrated
by solving the quasiparticle dispersion relation

E(p)=e+Z(p,E(p)) . 3.5)

This is evaluated approximately by setting E(p)=¢, in
the self-energy, and retaining only the important terms
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near e,~p in (3.3)
E(p)~ ey——(wo/u) 2 (ep—is) In| 25/ (p— 1) | . (3.6)

The right-hand side of (3.6) is plotted schematically in
Fig. 1, which shows that E(p) has a maximum and a
minimum near the Fermi energy. The position of the
extremum F.y; is easily found by setting dE(p)/de,p to

zero
Eexy=p{1exp[ —1—(/a) (u/wo)*1} . (3.7)

An electron gas with this dispersion relation is unstable
because electrons above the Fermi sphere have less
energy than those above. The sign error of KK caused
them to miss this instability, which only occurs with the
correct sign of the self-energy.

To find the density of states from (2.7a) we need the
derivative

6Re2p 1ZF

zep

a wel?

27|' €p

aep
p—pr
p+or

In

—2w0V €p
{woz— (E—ep)?
(oo g_;yi)
wotE—e iprty+
e oy
wo—Ete 1prty-

The quasiparticle density of states is quite good for
optical phonons, since the imaginary part of the total

In

In

[

Fic. 2. The reduced electronic
density of states pr=n%p/mpr
calculated using the unshielded
polar interaction between the elec-
trons and longitudinal optical
phonons. The introduction of
screening eliminates the singu-
larity at E=yu but not those at
E=p=4wo. The coupling constants
and phonon frequencies are indi-
cated in the figure.

E/Eg



F16. 3. The reduced electronic density of states pr=n%p/mpr
calculated using the unshielded polar interaction between the
electrons and longitudinal optical phonons. The introduction of
screening eliminates the singularity at E=pu but not those at
E=pusw, The coupling constants and phonon frequencies are
indicated in the figure.

unscreened = vanishes for |E—u|<wo. Screening
changes this result by including contributions from
phonon-induced electron-hole pair production, which
are usually small. Near the Fermi surface, E=e,=u,
and the density of states is dominated by the singular
term

aJ ReEF/ae,, =
+ (a/m) (wo/w)*? In| (p—pr)/ (+pr) | -

This is the same result as derived by KK except for
their sign error.

In order to appreciate the type of effects which may
occur, we have numerically evaluated the density of
states using the unscreened self-energies. This includes
2r in (3.3) and the self-energy from the phonon pole,
both taken at zero temperature. In Fig. 2 is shown a
“reduced” density of states pgp= (n*?/mpr)p for
wo=0.2 4 and a=1.0 and a=0.1. In the quasiparticle
“window” | E—u] <wo, the density of states is obtained
from (2.7a), while in the regions where ImZ50 the
results are found by numerical integration. The central
peak is caused by the term in (3.9), and is eliminated
(or very smoothed over) when screening is included.
The peaks at E=p-wo remain when screening is in-
cluded although their sign and magnitude depend on the
value of 7,. Figure 3 shows a similar calculation for
a=0.1 and wy=2.0 u. The central peak does not occur at
the unperturbeed Fermi energy because ReZ is nonzero
in this region. A self-consistent calculation, which

(3.9)
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accounted for the renormalization of the Fermi energy,
would place this peak at the Fermi energy.?

We now show that the singular term (3.9) in the
density of states at the Fermi surface is screened out.
That is, the singular term (3.9) is eliminated when
screening is included. We use (2.11) and (2.12) to show
that the result (3.9) is screened by a dielectric function

ReEF

(9,E)= (/) (wo/u)"1/ (0, E—ep)?
XIn| (p—pr)/ (p+pr)| .

The function (0, E—e,) diverges as E — ¢,, which
means that the above term vanishes on the mass shell.
Thus screening does eliminate this logarithmic singu-
larity in the density of states at the Fermi surface. This
also eliminates the instability which depends upon this
logarithmic singularity.

The other singular terms in (3.8) at £=pu-w, remain
when screening is included. The magnitude and sign of
the coefficient of these logarithmic terms depends upon
the screening parameters. The polaron self-energy and
density of states were evaluated analytically using
Fermi-Thomas screening. The results for a=1 and
wo=0.2 u are shown in Fig. 4. Various values of 7, are
indicated in the figure. The #,=0 limit corresponds to
Fig. 2. The peak in the density of states at the Fermi
energy vanishes at 7, greater than 10~3%. The peaks at
E=p-w, remain but diminish in intensity as 7, is in-
creased. The coefficient of the peak at E=pu—w appears
to change sign as 7, is increased. However, the peaks at
E=p+4w, have additional structure which cannot be
shown on the scale of Fig. 3. We conclude that the
nature of these singularities at E=u4w, can vary
among different electronic systems, since they depend
upon both the screening parameters and the ratio wo/u.

€p

(3.10)

IV. ACOUSTICAL PHONONS: PIEZOELECTRIC
AND DEFORMATION-POTENTIAL
INTERACTIONS

The polaron self-energies and density of states are
now evaluated for acoustical-phonon interactions. We
will show that, as in the preceding optical-phonon case,
there are logarithmic singularities near the Fermi
surface from the piezoelectric interaction which are
screened out by the dielectric function. There are also
logarithmic singularities at E=u=42ppC, which are
broadened by the imaginary parts of the self-energy.
The latter results apply to both the piezoelectric and
deformation-potential interactions. The deformation-
potential coupling is the strongest interaction in most
cases.

Since for electrons with p << pr the phonons have wave
vectors ¢<2pp, and pr is not large in a semiconductor,

it is possible to use the Debye model for acoustic

2 C. B. Duke, Phys. Rev. 136, B59 (1964).
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1.8
16
14
i
F16. 4. The reduced electronic den- 1.2 i
sity of states pr=n2%p/mpr calculated L3
using the polar interaction between r.
electrons and longitudinal optical pho- [
nons. The dielectric screening of the __10 fi
plasma was included in the Fermi- W \
Thomas approximation. Different N
values of the standard density param- gh

eter 7, are indicated in the figure. For
increasing values of 7,, the coefficient
of the logarithmic singularity at
E=p—wo changes sign. For values of 6k
7s20.1, the logarithmic singularities
at E=uzw, are not discernible on the +
present scale of the figure.

— a:0
- @zl rs=107; (hwg/E)= 0.2 1
- a1, 15210 (hwy/ E9) = 0.2 1
weaz 112107 (hw/EYY) = 02

! 1 s L ! L e A R ' 1

phonons, w(g)=C,q. The two vertex interactions are
piezoelectric interaction 'V (q)=2mgh’C2/|q|, (4.1a)
V(9)=D¢h|q|/2pC;. (4.1b)

The dimensionless piezoelectric constant g equals the
electromechanical coupling constant times e2/%Ceq,
and we use an isotropic form for the interaction.?* The
deformation-potential constant is Do, and p is the
density of the semiconductor.

When screening is neglected, the self-energy (2.1) can
be evaluated exactly. These results are of interest and
are presented below. The deformation potential self-
energy has been estimated by Holstein,? but we present
the exact result as Eq. (4.9).

Without screening, the result for the piezoelectric
interaction is

2
2 (p,2)=(g/27)(es/ en)' 22 . (=11 G,g)

i, J=

deformation potential

X F-G) W[4 G )/ f-G)T, @.2)
fEGH=[Z+(— )iCsP-f- € ]2
+ (=)W eV, (43)

es=mCZ/2.
The real and imaginary parts can be found by letting
Z — E-+15. For E=¢,, the functions f_ vanish at
E=yu, %7
E= (Wut2Ve)!=u+t2Cpr, i=j.
24 C. B. Duke and G. D. Mahan, Phys. Rev. 139, A1965 (1965).

(4.4)

92 98 10 104 116

E/ E(: :

108 112 120

The self-energy is well behaved because of the fIn(f)
form for f— 0. However, the density of states can have
structure. The main contribution near the Fermi energy
in the quasiparticle approximation is?

d ReZp g(es)

Jdep —27r
E—utC,(p—

XlnH ptCo=pn) ] 4.5)
E—u+Cs(p+pr)

This has four logarithmic singularities. However, the
two singularities at E=u=4C,(p—pr) cancel at p= pp.
It will be shown below that these two singularities,
which are caused by long-wavelength phonons, are
screened out when the dielectric function is included.
The other two singular points, at E=u=C,(p+pr),
remain even when screening is included. There is not,
however, an actual logarithmic singularity at these
points because the imaginary part of the self-energy is
finite here. At E¢=pu=42C,pr, the imaginary part of the
self-energy is

€p
E'—,U_Cs(P'*-PF)
E—.u"‘cs (P_pF)

Im> (P,Eo)ﬁ— 2ges y

which is generally larger than ReZ at this point.

The contribution to the self-energy from the phonon
poles in (2.8) has also been evaluated at zero tempera-
ture. The ¢ integral for this term must be cut off at the

2 There are additional logarithmic terms whose coefficients are
smaller by C,/vr.

(4.6)
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Fic. 5. The real and imaginary
parts of the electron’s self-energy
Zm+2r, (4.7) and (4.2), for un-
screened, piezoelectric, acoustical-
phonon interactions. The parameters

-.030

Debye wave vector ¢p. However, the important terms
depending upon ¢p either change Z by a constant, or
else change the effective mass. We can omit such terms
and use the measured effective mass and band mini-
mum. The remaining terms in 2 from the phonon poles
are

Zm—Ge/nV ) 3 h(ig) kG g),

%, J=1

@.n
h(”’)]):V e’p+ (—)1\/ €s
(VTZ+ (=) Copt e,

The terms depending upon the phonon thermal occu-
pation N, should be unimportant at low temperatures.
The magnitude of N, depends upon the average mag-
nitude of 7w, /kT. For the degenerate case, (¢)=~(p)= pr,
and (#C.q/kT)= (eu)?/kT>>1. This is quite different
from the nondegenerate case, since here (g)=(p)
~ (2mET)Y? and (b o/kT)= (e./RT)H2<K1.

Sample numerical calculations were also performed on
the spectral densities and density of states for degen-
erate electrons with piezoelectric interactions. Figure 5
shows the real and imaginary part of the total un-
screened self-energy Zp-+2pn, calculated for e,=0.014,
$p=0.5pr, g=1, and zero temperature. The places
where the four f functions vanish are marked by
arrows (]), and a Kohn-type anomaly is evident. The
 functions vanish at E=e¢,, which is also marked (1).
Although the real part of 2 shows much structure, the
most interesting result is that for a fixed value of p the
imaginary part of the self-energy vanishes for value of
E near the Fermi energy. This quasiparticle window
extends approximately from pu—C,|p—pr| to
u+Cs|p—pr| ; it vanishes at p=pr and scales with Cs.
If one plots ImZ(p,E) as a function of p for a fixed E,
then TmZ is nonzero in the region around pr from
p=pr—|E—pn|/Cs to p=pr+|E—nu|/Cs. The imagi-
nary part of 2 has a similar window for deformation

are €,=0.01 u, p=0.5 pr, and T=0.

The down arrows (|) point to the

Kohn-type anomalies when the f_

functions vanish in (4.2). The up

arrow (1) is where % vanishes in (4.7),

which occurs at E=g¢,. The imaginary
art of = vanishes approximately for
E—p| <Ci|p—pr|.

potential scattering. This structure was not reported in
previous discussions™™ of electron—acoustical-phonon
interactions, which demonstrates the desirability of
avoiding unnecessary approximations.

Numerical integrations have been performed to
obtain the density of states p(e) for e;/u=0.1 and 0.001
and g=1. No structure appears at E=p+2prC,, and
the singularity in d2/de, is undoubtedly smoothed out
by the large value ImZ. The structure at E=y is not
discernible on an energy scale of AE=10"%u. As g=1,
e;/u=0.001 is a strong-coupling situation for the
valence band electrons, we conclude that the piezo-
electric interaction with acoustic phonons is not an
important source of structure in the electronic density
of states.

We introduce screening by using (2.11) and (2.12).
For acoustical phonons, the frequency dependence of
the dielectric function can be ignored since v7>>C. This
gives

a g/ € 1
—ReZ Fﬁ—(——)—-——
27\ e,/ €(2pr,0)

E_”'_ C, (P"*"PF)
E—u+Co(ptpr)|

The terms at E=u=+2Cpr are screened by a dielectric
function €(2pr,0), showing that ¢g=2pr phonons are
principally involved in causing this term. The singu-
larities at E=pu have as an effective dielectric function
€(0,0) — =, so these singularities are screened out. The
singularities at the Fermi surface are caused by long-
wavelength phonons, which are screened by the de-
generate electron gas. Were it not for the damping (4.6),
this logarithmic term would also lead to instabilities in
the excitation spectrum near E=pu+2C,pp.

The electron self-energy for deformation potential
coupling is (for N, denoting the atomic density of the

Xlog, (4.8)
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impurity atoms)

DOZNO

p—Z—20e+———
pC 16e; (l‘fp)m

X 5 ()L (fufm (Bmi))®

T pE—wnin/a) . @)

There is no singularity in the unscreened density of
states at E=yu since setting f_.=0 and E=u causes
902y/de, to vanish identically. The terms at

E=p+2Cpr
are

dReZr Dgm? 1 E—p—C(p+pr)
= n .
dep  21%CH |E—u+Co(p+pr)

These are not really singular because of the finite
imaginary part of 2 at this energy. It is interesting to
note that the prefactor of this term is independent of the
electronic density. Screening just adds a e(2pr,0)~2
factor to this result, as it did for the piezoelectric case
(4.7). Thus, for deformation-potential interactions with
acoustic phonons there are no singularities in the
density of states at the Fermi surface.

(4.10)

V. SUMMARY AND CONCLUSIONS

In this paper we have obtained two new analytical
results. For the unscreened electron-phonon vertices we
evaluate analytically the second order self-energy asso-
ciated with an electron in a degenerate Fermi gas inter-
acting with LO phonons via polar coupling and with
(Debye) acoustical phonons via piezoelectric and de-
formation potential coupling. From these self-energies
we calculate the electronic density of states. For optical
phonons the calculation was performed numerically and
sample results given in Figs. 2, 3, and 4. The unscreened
interaction led to logarithmic singularities at the
energies u and p-tw,. For acoustical phonons we both
performed numerical calculations and investigated
analytically the possibility of singularities in the elec-
tronic density of states. This investigation was carried
out by use of the quasiparticle approximation in which
singularities in the density of states are associated with
singularities in 82/dp. We found that singularities in
982/dp occur at the energies u==2C,pr for both piezo-
electric and deformation-potential coupling. At these
energies the quasiparticle approximation is not rigor-
ously valid because ImZ is nonzero, which tends to
smooth out the structure. Numerical calculations for
piezoelectric interactions did not reveal singularities at
E=p=42C.pr. Piezoelectric coupling causes two cancel-
ing singularities at E=pu whereas deformation-potential
coupling does not yield any structure at E=g.
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The singularity in the density of states at E=pu in-
duced by optical phonons is an old result deduced by
KK?* (except for a sign error). Our second major result
is the demonstration that, contrary to the claim of KK,
the dielectric screening associated with the degenerate
electron (hole) plasma eliminates this singularity.
Although the remark of KX that the screening does not
severely modify the phonon propagator (it renormalizes
the optical-phonon frequency) is invalid in PbTe,? the
primary effect which they failed to consider was the
alteration in the electron-phonon vertex wrought by the
screening.

The primary conclusion to be drawn from our results
is that neither the original® nor the KK explanations
for the conductance anomalies in tunnel diodes are
quantitatively applicable. We feel that these anomalies
are not due to bulk-polaron effects.
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APPENDIX: BRANCH-CUT INTEGRAL

The Matsubara sum of the polaron self-energy was
evaluated by means of a contour integral. One term in
the result (2.8) came from the integral around the
branch cuts of the RPA dielectric function. We now
examine this term in detail to show that it does not
contribute a singularity in the density of states at the
Fermi surface. This analysis differs from that of Quinn
and Ferrell,2-28 who have considered similar cut inte-
grals in the theory of Coulomb interactions in Fermi
systems. They used time-ordered functions, in contrast
to our retarded functions, which changes the path of
the contour around the cut. Secondly, they were inter-
ested in deriving systematic corrections to the correla-
tion energy, whereas we merely wish to reduce the inte-
grals to a form which demonstrates that nothing
peculiar occurs in this term at E=yu and p= pp.

The integral is

@gdw 2w()V (g) 1
z:(p)= —,/ @2r)t efo—1 wP—w(g)?

1 —4eper

X- . (A1)
ipatw—eprgtu |2

26 J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).

#” D. F. DuBois, Ann. Phys. (Paris) 7, 174 (1959); 8, 24 (1959).

2 D. J. W. Geldart and S. H. Vosko, J. Phys. Soc. Japan 20,
20 (1965).
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(a) q>26k

F16. 6. The cuts
of the RPA dielec-
tric function e(g,w)
in w space. The four
logarithmic branch
points can be con-
nected by two
branch cuts. These
cuts are distinct for
g>2kp, but they
overlap for ¢<2kp.
At the point w=0
e(g,w) is analytic be-
cause er(g,0)=0 for

Aregt 2V p
Breg- 2 Yegp

-A B -B A
— R AEOPOSher———  all values of ¢.
(b) q <2k

The integral is only taken along the real w axis where
the imaginary part of e is nonzero. Only the zero-
temperature case is considered, which restricts  to the
negative real axis because of the (expSw—1)~" factor.
The branch cuts of e(q,w) are shown in Fig. 6. The
two cuts are distinct for ¢>2kp, but they overlap
for ¢<2kp. For <0, the dielectric function for the
single-cut region is
7l'k2 FTk F3
W= _—‘[4€qﬂ_ (‘*’+€q)2] .
16¢5u

(A2)

For the region where the cuts overlap it is

TR prkp®

[—4o (A3)
16¢5u?

€q] -

1@ =—

The regions of integration where 1™ and e® are
appropriate are

2kp B 0
2¢=f dq{/ dw e‘”-l—f dwe(z)}
0 4 B
o —B
——/ dqf dwe® , (A4)
2kp —A

A= €q+2 (Eq#)llz
B=¢,—2(equ)'2.

where

It is convenient to change the variables of integration
to

x=q/pr, y= (w+e€)/2(equ)'*.

When we exchange the order of integration, the two
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€ terms in (A4) immediately combine. This gives

1
EFQ/MFW
-1

o dx o(x)V (x)er (%,3)
X o
/u+1 LQy—=x)—a(x)]a?| e® (x,y)2| K (p,x,y)

0 ! 1 v
+C0[/ dy/ dx—l—/ dyf dx:’
—1 0 0 2y

Qy—2)e(@)V(x) e

(px,y), (AS)
[Qy—af—a(a) e [e® ey *
where
1 dv
)= . (a6)
—1ipn— eptpt2ux(y—z—n»)
n= P/PF )
krr*kr
o A2y ’
and
a(x)= (wo/ux)? optical phonons,
=4e,/u acoustical phonons.
The integral in (A6) can be done to give
U ipa—eptut2ux(y—x-+n)
g(px,y)=-In ’ (AT)

1 ipa— eptut2un(y—z—n)

Our interest is in the density of states, for which we
need 9 ReZ,/de,, which means 8 Reg/de,. The deriva-
tion of the 5! term is of no interest. We take the deriva-
tive of the logarithm, and then go to the mass shell
(ipn— ep—u)
d Re 2

$ =@.——[—-2+ Y } Y J (A8)

y—a—n y—xtq

a€p Vipp € pXi

The —2 term cannot lead to structure at =1 and will
be dropped. We pursue the remaining terms by changing
variables again

z=x—y, dz=dx

and also exchanging the order of the y and zintegrations.
This finally gives

0 ReZ, 2C, % 1 1
e ﬁmﬁw+~]<m
dep er Jo gt+n z—1q
where
A W=3") w(@+9)V(z+y) )
@)= dyy %) 20 Z), (A10)
- (z+9)* (y—2P—a(y+2)? |2
A=1 for z>1
A=z for 0<3z<1.

In terms of the new variables, the real and imaginary:
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arts of the dielectric function are wkpr?
’ bt 1 a(0) = ey (A1)
eR(y,z)= 1+ F (Z'l'y)
2k 52 (z+y)? . . . . . .
A singularity at the Fermi surface will occur if f(z) is
X[H— 1 (1—9%) lnlt—y discontinuous. at z=_1. From its definition it is easy to
2(z+) 114y see that f.(z) is continuous at z=1, so that (A9) has no
1 14z logarlthm}c singularity at n=1. This cut integral does
— (1—2) ln’—“ :I , (A11) not contribute any singular behavior to the density of
2(z+y) i1—z states at the Fermi surface.
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Infrared Lattice Vibrations in GaAs P,_, Alloys

H. W. VERLEUR* AND A. S. BARKER, JR.
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 25 April 1966)

The infrared lattice-vibration spectra of mixed crystals of GaAs,P;—, have been measured by reflection
techniques. These crystals exhibit two distinct reststrahlen bands whose strengths and frequencies depend
on y and which show considerable fine structure. A harmonic model has been developed to account for the
significant features of these spectra. The main features of the model are (1) the inclusion of a clustering
effect or nonrandom distribution of anions on a microscopic scale, (2) the existence of 5 distinct molecular
complexes which leads to 2 groups of 4 closely spaced optical phonon modes, and (3) effective ionic charges
that have both local and nonlocal parts. The model provides the frequencies and strengths of the optical
phonon modes which with suitably chosen damping constants yield a good fit to the reflectivity spectrum

over the entire range of solid solutions.

INTRODUCTION

MIXED crystals (or alloys) of GaAs,Pi, can be
grown over the entire composition range y=0 to
1. These alloys are interesting for several reasons, one
being their electronic band structure. GaAs is a direct
gap material while GaP has an indirect gap. For the
alloy, as y is increased, the band structure near the gap
appears to change continuously, the central 2=0
conduction-band minimum falling relative to the other
valleys until near y=0.6 the =0 minimum becomes the
lowest valley changing the material from indirect to
direct gap and drastically affecting the threshold for
laser action and the luminescence properties.

Whereas it is known that the alloys have the same
crystal structure as the parent crystals GaP and GaAs
(i.e., zinc-blende), the distribution of the constituent
ions over the sublattices is not known. One usually
assumes that the structure consists of a Ga fcc sublat-
tice and an interpenetrating fcc sublattice over which
the As and P ions are randomly distributed. It has been
suggested, however,! that there may be a tendency for
like-negative ions to cluster around positive ions. Such
clustering, which tends to make small regions GaAs

* Work performed in partial fulfillment of requirements for the
Ph. D. degree, New York University.

1T. L. Larsen, E. E. Loebner, and R. J. Archer, Bull. Am.
Phys. Soc. 10, 388 (1965); Y. S. Chen and G. L. Pearson, bid. 10,
369 (1965).

rich or GaP rich, should have some characteristic effect
on the optical-phonon modes since they depend strongly
on nearest-neighbor force constants.

We intend to show in this paper that a detailed analy-
sis of the infrared reflectivity spectrum of GaAs,Py_,
supports the assumption of short-range clustering. A
harmonic-oscillator model of the lattice dynamics of the
alloy is developed including a short-range order param-
eter which accounts quantitatively for the significant
features of the reflectivity spectrum. The characteriza-
tion of the lattice modes serves as a useful basis for
other work. It will be shown that the composition y of
an unknown sample can be determined from the infrared
spectrum. Also, additional infrared effects such as free-
carrier susceptiblity can be properly evaluated only by
first taking account of the pure lattice modes.

The extra degree of freedom provided by the com-
position y allows us to probe other features of the lattice
dynamics of III-V compounds. Brodsky and Burstein
have suggested? that the usual assumption of a localized,
effective ionic charge on each ion, while probably correct
for such ionic crystals as the alkali halides, cannot be
properly applied to the III-V compounds. The reason
they advance is that the valency electrons of the ions
in these compounds have extended wave functions and
that, thus, the effective ionic charges of the ions should

(IZM)' Brodsky and E. Burstein, Bull. Am. Phys. Soc. 7, 214
962).



