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In fact, formula (62) can be used to describe qualita-
tively the acoustic attenuation for the entire frequency
range hcoqz(46.
"A phenomenological formula for the total acoustic attenuation

coefficient of the form
2 X3 Z OPT

3 pc3 Iz'gT 1+cv2r~

has been derived by M. Pomerantz (Ref. 1).$3 is the number of
impurity atoms per unit volume in the triplet states and 7. is a
relaxation time to be adjusted to fit the experimental data. One
sees immediately that this expression is similar to the second
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term in Eq. (62) (multiplied by X;, the impurity concentration) if
zis identified with the life time of a triplet state (I jh) '. The above
formula is no longer valid when 6' is close to 4A.

PHVS ICAL REVIEW VOLUME 149, NUMBER 2 16 SEPTEM 8ER 1966

Theory of the Third. -Order Elastic Constants of Diamond-Like Crystals

P. N. KEATING

BezzCizz Research Laboratories, Sozzthgetd, 3IichigaN

(Received 10 February 1966; revised manuscript received 23 May 1966)

A calculation of the third-order elastic constants of silicon, germanium, and other diamond-like crystals
is presented which is based on a previously published method of setting up a suitable form for the elastic
strain energy of a crystal. The six third-order constants are calculated in terms of three anharmonic first-
and second-neighbor force constants and the two previously determined harmonic force constants. The
experimental values of the six coeKcients are well fitted by the theoretical expressions involving these three
anharmonic force constants. The valence-electron interactions are discussed in the light of the values de-
duced for these force constants.

I. INTRODUCTION

" N a previous article, ' hereafter referred to as I, the
~. problem of writing down a form for the elastic strain

energy of a crystal which exhibits the necessary in-
variance properties was considered. It was shown that
one can write such a strain energy as a function of vari-
ous scalar products between the vectors representing the
relative positions of the nuclei. This method is basically
equivalent to the Born-Huang method' of imposing the
invariance requirements but the physical significance
of the different contributions is now more apparent. In
this present article, we shall use this form for the an-
harmonic strain energy as a starting point for a calcula-
tion of the third-order elasticity coeKcients of crystals
of the diamond type. Such a calculation can shed con-
siderable light on the nature of the interatomic inter-
actions in the solid state.

Interest in the third-order elasticity of crystalline
solids has arisen only fairly recently and the number of
solids for which measurements have been made is still
small. The present experimental method' ' is to meas-
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ure the changes in ultrasonic velocity (and thus in the
effective elastic constants) under various types of applied
static stress. At this time, measurements on silicon, ' 4

germanium, ' ' quartz, ' sodium chloride, magnesium
oxide, ' and fused SiO~' have been published. Formal
theoretical treatments of third-order elasticity based on
the Born-Huang formalism have been given by Leibfried
and Ludwig and Srinivasan' and a few calculations of
third-order elasticity of certain primitive cubic crystals
have been published. ' The present work is based on the
alternative formalism presented in I which has several
advantages over the Born-Huang approach, especially
when anharmonicity is included. Availability of experi-
mental data is, of course, one reason why the diamond

type of crystal was chosen for the present calculation.
The other rea, sons are (a) that the results of previous
work' "" suggest that only first- and second-neighbor
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interactions are of appreciable importance in this type
of crystal and (b) that the origin of their second-order
elasticity is now fairly well understood. '

The next section of this article will be concerned with
considerations regarding the calculation of third-order
elasticity which are general to all types of nonpiezo-
electric crystal and this will lay the groundwork for the
actual calculation, which is described in Sec. II. In the
final section, we shall compare the theoretical results
with the experimental data and discuss the origin of the
di6erent contributions. Several alternative definitions
of the third-order elasticity coefficients have been pro-
posed but the "thermodynamic" definition introduced
by Srugger" is the most useful and this will be used
throughout the present article.

II. GENERAL CONSIDERATIONS

The basis of the method of calculation which was used
in I and will be used here is a comparison of the macro-
scopic and microscopic expressions for the strain-energy
density and thus we begin by discussing the general
form of these expressions when anharmonic terms are
included.

The third-order elastic coefficients of a crystal are a
measure of the anharmonicity of the forces in the crys-
tal and are, of course, closely related to the Gruneisen
parameter. It is usual to define the third-order elasticity
coefficients as the coefIicients of the cubic terms in a
Taylor-series expansion of the macroscopic elastic strain
energy in terms of some set of strain variables. For ex-

ample, Brugger" defines them as the third derivatives
(at constant entropy and zero strain) of the internal
energy density with respect to the strain variables"

where x, q ——Bx'/BX~ if x is the position vector of a, point
in the deformed continuum and X is its position in the
undeformed solid. The label J ranges from 1 to 6; u, b, c
range from 1 to 3, and the summation convention has
been used; the relation between J and bc is the usual
one2 introduced by Voigt. Hence, the internal energy per
unit undeformed volume U' is"

2 Q cJJ'gJ + 2 cJKQJrlK+6 Z cJJJQJ
J J&E J

+k P cJJK gJ OK+ P 'cJKL'gJ'QKrIL, (i)
JgE J&X&I

where the cJz are the second-order elasticity coeKcients
and the cJ~~ are the third-order coeKcients.

It is often convenient to rewrite the above expansion
in terms of the displacement gradients Nb=Du'/BX, '
=x,b

—8 b. In this case, the macroscopic energy density
is conveniently rewritten as the sum of four contributions

U'= U'i+ U'2+ U'3+ U'4

"K.Brugger, Phys. Rev. 133, A1611 (1964).

where 0 is the unit cell volume and where xi(t), x2(t),
and x&(t) are the positions of the nuclei in three mutually
adjacent cells adjacent to cell (t) relative to the nucleus
in cell (t). The sets of coefficients {8)and {C)must be
invariant under the operations of the relevant space
group and {8)must also be positive definite. As pointed
out in I, the X „are closely related to the macroscopic
strain variables qJ and can be considered as the close
microscopic analogies to the qJ. For example, in primi-
tive structures we have the simple relation

1
X „(l)=—Q g.g(l)X„X„'.

gp a, b

(3)

One result of this equivalence is that X (l) contains
terms both linear and quadratic in the components of
the displacements of the nuclei, e (l), which are the

microscopic equivalents of the u, b and can be expressed
in terms of them. The expansion (2) when expressed in
terms of the I (t) can again be written as the sum of
four terms. The term U& is quadratic in the I and in-

volves only the 8 coefficients, while U2 and Us are cubic
in the I, U2 involving only the 8 coeKcients and U3
involving only the C coefficients. The calculational
method for the second-order elastic coeScients which
was utilized in I consists of comparing the microscopic
and macroscopic expressions for Ui(u, t) so that the
relationship between the cJ~ and the 8's is obtained.
Because of the close analogy between the expansions

(i) and (2), we can obtain the desired relationship be-
tween the cJ~~ and the C's for primitive structures
merely by comparing the microscopic and macroscopic

because of the fact that gJ contains terms both linear
and quadratic in the u', & (for example, pl= N, i+ 2M', lll j,i

g4 ——I' 3+I' 2+u' 2N; g). Thus U'i contains the
contribution to the energy density which is quadratic
in the N, b and therefore involves only the cJ~. The
terms U'2 and U'3 are cubic in the u b with U'~ involving

only the cJz and U'3 involving the cJ+I.. The term U'4

contains the contributions of higher order in the N, b

and will be of no further interest here.
It was demonstrated in I how the microscopic strain

energy can be written as a series expansion in terms of
the variables

X„„(l)= (x„(l) x„(l)—X X„)/2ao,

where the x (l) are the positions, relative to a reference
nucleus in cell (l), of nuclei in unit cells adjacent to cell

(i); ao is a unit cell dimension. For example, for primitive
structures, the microscopic strain-energy density U(t)
in the bulk of a large crystal is given by

QU(l)=-,' P P B„„.„.(l—i')X„„(l)X „(i')
lr m, n;m'n'

+6 2 ZC ''""(iii)



P. N. KEAT I N G

expressions for U3. Because of the analogy, it is not
necessary to calculate U2, if we do so and compare the

macroscopic and microscopic expressions for U~, we
merely obtain the relationship between the cJK and
the 8's already derived in I by comparing the two
forms of U1. Thus, the form (2) has this further ad-
vantage over the usual expansion [e.g., Kq. (5) of I] in
terms of the I other than those already mentioned in
I and which is a direct consequence of the very similar
way in which the pz and X „(l) are de6ned.

The above discussion requires some modification for
the case of nonprimitive crystals. Firstly, the rela-
tionship (3) between qq and X „is no longer so simple
for nonprimitive structures because I now con-
tains a term due to the internal strain between the sub-
lattices. The internal strain component $„, between the
pair pq depends on the local "external" strain 444, , and
can be written in the form

tribute to U3. Because of the internal strain, there is no
longer complete cancellation of the terms in U2 and U2'

and it becomes necessary to compare U, = Us+ Us with
Us'+Up', to obtain the desired relations for the cgrcr, .

To summarize, we shall calculate the microscopic
U, (N ',$„,') and need use only the linear part

4e„, (lin) =A„,'(bc)N',

of the internal strain; this has already been calculated in
terms of the 8 coefficients for diamond-like crystals in
I. We can thus obtain the microscopic U, = U, (e~),
(where eq is the linear part of rig and is identical with
the usual infinitesimal strain variable), which involves
the C coefIj.cients and, in nonprimitive structures, also
the 8 coeflicients via the A „,'(bc). This will be compared
with the macroscopic U', which is

Us+U s=s QCJJJeJ +s Q CJJXeJ eK
J JgZ

where v„, contains terms quadratic and higher in theI, This relationship is, of course, determined by using
the conditions

(cIU/cjoy„, ) =0,
as carried out, for example, in I; the v term is zero in the
harmonic approximation. It is interesting to note that
v„, does not contribute to U~. Its contribution would be

3 3

+ g cgrrreJexel+s g cgqeg'+s P cqrreqerc',
J&X&I J' JgK

plus terms which cannot be written as products of the eJ,
and expressions for the cJKL, in terms of the C coefficients
will thereby be obtained.

III. THIRD-ORDER ELASTICITY OF
DIAMOND-LIKE CRYSTALS

and the derivative is zero, apart from some higher order
terms which contribute only to U4, because of the re-
quirement BU/8)=0. The v~,4 do not, of course, con-

The diamond type of crystal belongs to the cubic
class and thus, because of symmetry, there are only six
distinct third-order coefficients. In this case, the macro-
scopic U', reduces to

U', =
4 c111(e1'+es'+ ep')+ s c112[er'(es+es)+ es'(ep+ e1)+es'(er+ es)]+c14pe1esep

+-,'c144(ere4'+esep'+epep')+-, 'crpp[er'(ep'+ep')+es(ep'+e4')+es(e4'+ep')]+ c44pe4e;ep

+&c11(er +es'+es')+perp[el (es+ep)+ep'(ep+er)+es'(e1+es)]. (4)

We now turn to the question of the microscopic energy
density. The most important forces between atoms in
diamond-like crystals are apparently short-range forces
due mainly to shell-shell and shell-core interactions. For
example, Cochran" obtained a good fit between theoret-
ical and experimental phonon dispersion and elasticity
data with the shell-model and only short-range forces.
Similarly, it was pointed out in I that the shell-model
reduces to a rigid-ion formulation if only the elasticity
is to be considered and excellent agreement was ob-
tained between theory and experiment using only a
nearest-neighbor interaction and a noncentral second-
neighbor interaction. ' The long-range quadrupolar in-
teraction introduced by Lax is small for more distant
neighbors'4 and can probably be ignored. The shell-shell
and shell-core eRects give only small contributions" for

' M. Lax, in Ia@ice Dyemnics, edited by R.F.%allis (PeTgaInon
Press, Inc. , New York, 1965), p. 179.

third and more distant neighbors. Thus, as in I, we shall
include interactions out to second neighbors only.

There is only one purely first-neighbor third-order in-
teraction' and this is the central one in) '(l). We can
expect this interaction to be an important one since
most of the anharmonicity will be in the first-neighbor
shell-shell interaction. This contribution is the third-
order equivalent of the first-neighbor central harmonic
interaction represented by n in I. Similarly, we shall in-
clude a second-neighbor term in 74 „'(l)(444A44), which is
the anharmonic equivalent of the harmonic term repre-
sented by P in I and represents anharmonicity in the
forces resisting changes in the angle between "bonds. "
We shall also include a third second-neighbor interac-
tion, the terms in X X . The physical significance of
these three types of interaction, represented by p', 6',

e, respectively, will be discussed in greater detail in the
Anal section. The energy density terre U& has already
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been calculated in I and the values of n,p have already
been determined there by comparison with experiment.

We write the macroscopic strain-energy density as

a 4 1 p 4

U=- g (xpP —3ap')'+- — P (xp; xp;+ap')'
2 64ap' '=~ 2 32ap' ', ~&'

1 'y 4 1b' 4

+- Q (xone
—3ao')'+- Q (xp; xp, +ao')'

6 16up' &=~ 6 Sap' ',~&'

1 e 4+-,Z(*o"-3"')( .' ";+"')',
6 16ap' '~~

where the atomic labeling is as in Fig. 1 and Ref. 1 and
the required symmetry has been imposed on the C's.
We have C „„(0)=y', C„„„„„(0)= (6/5) 5', and
C „„(0)=(6/5)e' and the primes' on the summa-
tions are dropped because of symmetry, as discussed
in I. Now (x'p1—3ap ) is 2ap'Let+ep+ep+e4+eo+ep
+(I'+v'+w')/ap]+0(e'), for example, as given in I,
where e', v', m' are the components of the internal strain
difference between the two lattices. The linear parts
of these components are I'= —aoi e4, etc., ' where

1 = (cr—p)/(rr+p), as derived in I. Thus, we obtain

U, = t (y' —8'+3c')/3+ (rr+3P)/Sao] (et'+ eo'+ ep')+ 2 (y'+38' —c') erepep

+Lv ~ + e /3+ (rr P)/Sao]Lel (ep+eo)+e2 (e3+e1)+ep (e1+ep)]+2|' (1 f) e4epep

+L7 (1 f) +—8 (1+/) +pe'(1+1)(31 1)+—t (rr P)/—Sap](ete4'+epeP+epep )
+(y'(1 f)' —8'(1—+f)'+ p

e' (1+f) (3 1)+—P (n P)/S—ao][et (eP+ eP)+ eo (ep'+ e4)'+ ep (eo'+ eP)]

Upon comparing this expression with Eq. (4) for the
macroscopic U„we obtain

c111——y —8+9P,
Cl» P 8+P )

c»p =y+38—3e,
(5)

c144 v(1 1)'+&—(1+1)'+p(1+t )(31 1)+c»—V ~

ct«=v(1-1.)'-~(1+1.)'+p(1+1.)(3—i.)+c»t.o,

=~(1-|.)',
where y=2y', 8=28', p=-p,p', and cro ——(n —p)/4ao.

IV. DISCUSSION OF RESULTS

The validity of the model chosen here for the anhar-
monic interactions in diamond-like crystals depends in
part on Eq. (5) giving a reasonable description of the
third-order elasticity of such materials. Now the con-
stant 1 has already been calculated in I and is not avail-
able for adjustment to 6t the experimental data. Thus,
we have three adjustable parameters to 6t six coefficient
values. With this small number of interactions we can-
not expect highly accurate agreement with experiment.
However, such accurate agreement was not the aim of
this article since the experimental results' ' ~ "reported
by difterent workers show appreciable scatter and an
accurate Gt to one set of data would be undesirable.
Instead, we aim to obtain theoretical values of the six
constants which reproduce the general trend of differ-
ences between their experimental values, using a small
number of anharmonic force constants. We shall see
that this goal has been achieved remarkably well.

We shall use the recent data on silicon and germanium
by McSkimin and Andreatch' for the comparison of our
theoretical results with experiment. Other, earlier data
is also given in Ref. 3. More recent data on germanium
is available in Ref. 7. Because we have three constants

"J.J. Ha11 (private communication).

and six elasticity coefficients, Eqs. (5) predict three
relations between the coeScients. However, instead of
using this approach, we have tried to obtain an approxi-
mate Qt to the experimental data by trial and error and
the resultant fit is exhibited in Table I. It will be noted
that the agreement obtained is remarkably good for the
use of only three adjustable parameters, which suggests
that the anharmonic force-constant model used is a
fairly realistic one. The introduction of additional in-
teractions into the strain energy will, of course, allow a
much better fit but such a fit might then not be signifi-
cant physically. The present agreement is about as good
as the agreement between the experimental results of

X

Fra. 1.The crystal model. The open and 6lled circles represent the
atoms on the taro diferent sublattices.
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g TERhi TABLE I. Theoretical its to the experimental data of Ref. 3.
All quantities in units of 10"dyn/cm'. The values of n, P (and
thus l') computed in Ref. 1 have been used (i.e., i'=0 55. for silicon
and 0.53 for germanium).

Silicon
Theory Experiment

Germanium
Theory Experiment

Fn. 2. Anharmonic forces on atom 1 due to a small rotation
of the bond 02, as deduced by comparing theoretical and experi-
mental results.

different workers' ' ' "and the use of additional inter-
actions would appear to be premature at this time.

It is of interest to examine the physical nature of the
interactions which have been included in this work. The
p interaction is, of course, the purely first-neighbor cen-
tral term and the large magnitude of y (see Table I) is
not surprising in view of the expectation' that most of
the anharmonicity lies in the interaction between the
valence electrons associated with nearest neighbors. The
physical nature of the two second-neighbor interactions
is not so obvious and thus we shall now discuss them in
more detail. We calculate the anharmonic force on
nucleus 1 due to displacements of nucleus 2 only:

BU(l) (ups Xpt)
{e(ups Xor)Xor

cixpt s 32Qp

+[2e(ups Xps)+b(uos Xot)]Xps) .

(uos'Xpt) s

ups 'X02 0, the»to = — (&X02+eX01) ~

329O

The forces represented by this expression are shown in

Fig. 2, where the negative value of e has been taken into
account. We see that, roughly speaking, the 5 term is
the expected rotational response due to the tendency
to maintain the bond angle at its equilibrium value,
whereas the c interaction is a less obvious one in which
a rotation of bond "02" tends to push atom "1"out
radially. The eIIfect can be qualitatively understood in
terms of the molecular orbital picture. A change in the
bond angle results in a change in the s-p mixing for the
orbitals associated with atom "0" and it is this which
causes the tendency of the second neighbor to move out-
wards away from the central atom. However, the de-
tailed nature of this process is not at present fully un-
derstood. Nevertheless, it is clear that this interaction is
primarily a direct second-neighbor effect and cannot be
ascribed to the coupling of first-neighbor shell-shell
terms. It is important in that it accounts for the large
difference between c~~~ and c~~2 and about half of the

C111

C112

C123

C144

C166

C45e

v

—8.21—4.45—0.69
+0.14—3.43—0.33

—8.25—4.51—0.64
+0.12—3.10—0.64—3.51

+0.47—0.47

—7.38—3.54—0.26—0.10—3.08—0.28

—7.10—3.89—0.1.8—0.23—2.92—0.53—2.72
+0.34—0.48

large difference between cyi2 and c~23. Most of the dif-
ference between cq44 and cy66 is due to the 8 interaction
while the general strong negative values of the elastic
constants are due to the very important nearest-
neighbor y term.

We have also investigated the replacement of the e

contribution to the strain energy by some of the other
second-neighbor interaction terms but these give re-
sults which are appreciably inferior in reproducing the
differences in the experimental values of the third-order
constants. When the experimental values of the macro-
scopic constants are more accurately known, it will be
convenient to introduce one or two of these interatomic
interactions in addition to those included in the present
calculation. At the present time, however, we have a
reasonably good fit to nine pieces of data (three second-
order and six third-order elastic constants) with five
adjustable parameters, two harmonic and three an-
harmonic atomic force constants. Furthermore, these
five interactions all contribute in a physically reasona-
ble way.

Finally, it should be noted that the theoretical analy-
sis presented here is also directly applicable to the III-V
compounds with the analogous zinc blende structure.
The long-range Coulomb effects due to the ionicity
should not be very anharmonic and thus the present
short-range anharmonic forces model should be a reason-
able one for this case, too. However, the parameter f
is to some extent adjustable in this case (unless it is
directly measured), since the long-range Coulomb effects
do contribute to the harmonic forces and the Inodel
used in I is less valid for zinc blende structures, as
shown in Table II of I. It will be of interest to compare
the present theoretical results with the experimental
data for these solids when the latter become available.
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