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We study the attenuation of phonons at low temperature by neutral donor impurity atoms in germanium.
Keyes as well as Gri%n and Carruthers have calculated the attenuation due to elastic-phonon scattering by
trapped electrons. They applied their results to thermal phonons and obtained good agreement with thermal-
conductivity measurements. However, recent experiments in acoustic-phonon attenuation indicate a much
larger attenuation than that predicted by their calculation. It is shown here that the observed attenuation
can be explained by other processes that dominate at low or acoustic frequencies, namely, inelastic scattering
and thermally assisted absorption. Attenuation of phonons by resonance absorption is also considered using
the thermodynamic Green's-function technique.

I. INTRODUCTION

ECENTI.Y Pomerantz' measured the attenuation
of transverse acoustic phonons at the microwave

frequency co = 2m )&9&(10' sec ' in slightly doped e-type
germanium (impurity density ~10"cm ') in the tem-
perature range 5 to 40'K. He observed that the attenua-
tion is much larger than in pure germanium. Since at
such temperatures nearly all the electrons are trapped
by the donor atoms, the additional attenuation must
be due to the neutral impurity atoms. Keyes' as well as
Griffin and Carruthers' have calculated the attenuation
due to elastic phonon scattering oR the electrons in the
donor levels. Their result, however, is too small to ac-
count for the observed acoustic-phonon attenuation.
In this paper other allowed processes are considered. We
find that the attenuation due to inelastic phonon sca,t-
tering and thermally assisted absorption provides good
agreement with the experimental data.

In Sec. II the interaction between electrons in the
donor atoms and phonons is discussed. In Sec. III the
phonon attenuation coefficients due to the various al-
lowed processes in the second Born approximation are
calculated and the results compared with experiments.
Finally, in Sec. IV the attenuation of phonons with
frequencies in resonance with the impurity levels are
calculated by Green's-function techniques.

II. INTERACTION BETWEEN PHONONS
AND ELECTRONS IN DONOR

IMPURITY ATOMS

We will now consider the interaction between the
phonons and the electrons in the neutral donor atoms.
Since the impurity concentration is small, we may con-
sider one atom at a time. The total attenuation is then
the product of the attenuation coefficient due to one
atom and E;, the impurity concentration.

The total Hamiltonian of the system (with one im-

'M. Pomerantz, Proc. IEEE 53, 1438 (1965}; and to be
published,' R. %. Keyes, Phys. Rev. 122, 1171 (196].).

' A. Gri%n and P. Carruthers, Phys. Rev. l.31, 1976 (1963).

H9

purity atom) is

IX=H,+Hg, +H, g, .

In second quantized notation we have

H.=P e c tc,

Hph 2 Q ~&qx(+q&qx +&q) t~gx) y (2)
qX

H~—ph Z ~~~'r (g)c„'tc„(AM&q/2pc&x) (c&x+Qzqt),
nn'qX

where c„and c„t are the electron annihilation and
creation operators for the level e with energy e„, aqua

and aqua~ are the annihilation and creation operators
for the phonon in the X branch with wave vector q,
sound velocity cqz, and frequency Mq&= cq&g

'
p is the mass

density; and „„"(q) are the deformation-potential
matrix elements. We have not put in explicitly the elec-
tron-electron interaction that would exclude the pos-
sibility of having more than one electron in the atom.
The operators in Eq. (2) satisfy the usual commutation
relations, i.e.,

c„c„i+c„ ic„=5„„,
c„c„.+c c„=0,

c tc t+c„ tc„t=0,
(3)

~qX ~qq' ~&X'

+q&q~y' —cq~g~cq), =0 )

+qxt~q') 't +q'). t~q) t=0.

Let us now review the level structure of a shallow
donor atom in germanium. The hydrogenic ground state
in the eRective-mass approxima, tion is four-fold de-
generate because of the four equivalent conduction-
band minima, .4 This degeneracy is partially removed if
valley-orbit coupling is taken into account. A singlet
ground state is separated from the remaining degenerate
triplet states. The energy separation is known as the
chemical shift and is usually denoted by 4d, . The values
of 4A for the various n-type impurities are given in

4%. Kohn, in Sold State Physics, edited by I'. Seitz and D.
Turnbull C,

'Academic Press Inc. , Neer York, 195'l), Vo'i. 5, p. 257.
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TA&IE I. Values of 4A for the various n-type impurities. TABLE II. Matrices Dp "'.

Donor

4a/k&v 'K 3.7 33 49

g——8eV
for Ce';

F(q) is a form factor given approximately by'

F(q)—(1+-,'a*'q') ', (6)

where a* is roughly equal to the Bohr radius of the
impurity atom ( 3X10 ' cm) and the matrices D;,"'"
are defined as

4

,
n'n 3 Q +,(v&+".(v&&, (v&& (v&

2&=l
(7)

The summation in Eq. (7) goves over the four valleys of
the conduction band, the bottoms of which are located
along the unit vectors u&'. In the Cartesian coordinate
system with the (1,0,0)",orthogonal axes as reference,
these vectors are

8&"&=1/v3(1,1,1); 1/v3( —1, 1, 1); 1/V3(1, —1, 1);
1/N( —1, —1, 1) for (n)=1, 2, 3, 4. (3)

The constants a„~"& are the coefficients introduced" to
describe the linear combination of the four Bloch states
at the conduction-band minima forming the singlet and
triplet states. Denoting the singlet state by 0 and the

' J. H. Reuszer and P. Fisher, Phys. Rev. 135, A1125 (1964).' H. Hasegawa, Phys. Rev. 118, 1513 (1960).
' C. Herring and K. Vogt, Phys. Rev. 101, 944 (1956).' See for example R. W. Keyes, in Solid State Physics, edited by

%'. Seitz and D. TurnbuQ (Academic Press Inc. , Neer York, 1960),
Vol. 11, p. 149.

' For a detailed discussion see Ref. 6.
!'Vj. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).

Table I.' The higher energy levels are 50'K above the
triplet states. Ke will neglect all such levels in the fol-
lowing calculation because in therma, l equilibrium in the
temperature range of interest (T(40'K) it is a reason-
able approximation to assume that only the singlet and
triplet states are occupied. The deformation-potential
matrix elements „.„"(q)for these states are known and
can be expressed in the following form':

"(q)= s;(q,X)j;(-&b,,la„..+-',=„D@ 'n)F(q)

or

==- -"(WF(&)
(e; e') = (singlet; triplet),

where s(q, X) is a polarization vector and j is the unit
vector along q; ™qand „are the deformation potentials
defined by Herring, '

triplet states by (1,2,3) we have

np&"& = -,'(1,1,1,1),
ng'"&=1/v2(1, 0, 0, —1),
n2&"&=1/42(0, 1, —1, 0),
up&"& = 2 (1, —1, —1, 1) .

(9)

Using Eqs. (8) and (9) we obtain Table II for the
matrices D;;""'." From Table II we observe that the
diagonal deformation-potential matrix element 00"(q)
is nonzero only for 'A = longitudinal mode, and is given by

="00"='(q)= (=~+=-/3)F (v) (10)

III. CALCULATION OF PHONON
ATTENUATION COEFFICIENTS

In this section the electron-phonon Hamiltonian
II, ~b given in Eq. (2) is used to calculate the phonon
attenuation coefficients. As mentioned before, we will

only retain the terms n, e'= (single; triplet) = (0; 1, 2, 3)
in the Hamiltonian. Ke further assume that there is
no local strain in the crystal.

First of all, we calculate the attenuation using per-
turbation theory. As long as the energy of the acoustic
phonon Acoqz is not equal to 4h, the attenuation in the
first Born approximation which corresponds to the
process"

~,q+ (singlet) +~ (triplet) (11a)

is zero because energy cannot be conserved. We must
go to the next order in the perturbation calculation, the
second Born approximation. Let us remark that near
resonance, i.e., Aco~q~46, the perturbation calculation
fails as the succeeding terms in the perturbation series
become comparable or even larger in magnitude. To get
meaningful results, one must perform a selective sum

"In Ref. 6, only the matrices D D ' D"-', and D are evaluated."By the symbol (triplet) eye mean any one of the triplet states,

D. .oo D. .

D . .0I —D . .10—D ..I
D, .om —D. .QO —D . .2

D . .08 —D. ,80 —D . .8sj ij ij
D'j"=D'j+D'j'
D . .12—D. ,21 0

Dg22=D;j —D;,"
D. .28 —D, .32 — D . .2

D. ,88 —D . .00

(1 0 0) 1 0 0 1 1 ( 0 0 —1)
D;;=io 1 oi; D;,'=—0 01; D

i,0 0 1~ v2 1 1 0 v2i, —1 1 0~

0 1 0
and D; = 1 0 0

0 0 0
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of the series, or, equivalently, take the widths of the
levels into account. One may think of the attenuation
at resonance being given by the following "process":

bed, &,+ (singlet)* ~~(triplet)*, (11b)

where the asterisk indicates that the width of the level
is included. The calculation of the attenuation coefficient
for such situations will be discussed in the next section.
At present we will consider the attenuation of phonons
whose frequencies coq), are such that a perturbation
calculation is valid. One condition on ~,), is seen to be

Ia „—4~I»r, +-r, (12a)

where Fo and I" are the level widths of the singlet and
the triplet states arising from the interaction with the
thermal phonons. They are of the same order as the
energy splittings of the triplet states by the thermal
phonons (expressions will be given in the next section).
There is another condition on the frequency; namely,

A~,»&I'„r. (12b)

The reason is that, for frequencies which do not satisfy
(12b), the a,ttenuation is described by the processes

h&u, q+ (singlet)* &~ (singlet)*

A~, i,+ (triplet)* ~ (triplet)*, (13)

for which perturbation theory fails to apply. These
cases are also discussed in Sec. IV.

%e will now calculate the phonon attenuation in the
second Born approximation, which is valid when Eqs.
(12a) and (12b) are satisfied. There are three distinct
types of allowed processes and they are treated sepa-
rately below.

A. Elastic Scattering

This is the process previously considered by Keyes, '
and Griffen and Carruthers. ' lt may be written sym-

bolically as

hco~1,+ (singlet) ~~(Int. ) ~ M~.q. + (singlet),

@A~1,+ (triplet) ~ (Int. ) ~ k~~ 1, + (triplet),
'

(14)

where (Int. ) denotes the appropriate intermediate
states. The attenuation coefficient 0.~), for the phonon

(q, P ) is defined as 1/c~i, x~1„where r~1, is the phonon life
time. Following standard procedure" we obtain

~,), Zf (T)Z ~(~q),—~~ & )
2pfqy A Q X pQqr gi

=""-"'(q')=-"(q)
x Q

n' m 6m —6n—Iz~g),
(~e =en )

="- -"(q)-".-"'(q')+, (13)
~m

—~~+&~&i

where the superscript (a) refers to the particular process
under consideration and e, nz, and e' refer to the initial,
intermediate, and final electronic states, respectively.
The factor f„(T) is the thermal-equilibrium population
at temperature T of the level e, which is assumed to
satisfy a Boltzmann distribution, i.e.,

f„(T)=.le-1'""3r& A = const. (16a)

We will denote the singlet state population by fo(T)
and that of a triplet state by f(T). We will assume that
they satisfy

fp(T)+3f(T)= 1. (16b)

I.et us discuss brieAy the behavior of attenuation
o.,z(') for low frequencies such that Izco~z(&46. This
condition is satisfied for all types of impurity as long as
~~i((4X10" sec ' (which corresponds to the smallest
4h in Table I). In this case the sum inside the absolute-
value sign is dominated by those terms'4 with e = e„,
unless they cancel exactly. The remaining terms are
smaller by a factor of ko,q/4h. If we neglect corrections
of order Puu/4A and replace the sound velocities c~, i, by
their angular averages c), we find that o.~&& ~ is

fo(T) 1 (h(u, ),
' 4 cg)"—

I

—I"(v) 2 ~' —
v I((I 2 ="o-"'(0')="-o"(i)I'))

41rpcg' 625 4A X' PCi, i C1,i 3 m=1,2,3

f(T) 1 1 c),+,~,"—,~'(v) Z,~' —
v I(( 2 I 2 (==- -"'(0')==-."(0)-=- -'(0)-""-"'(0'))I')), (17)

42rpci Q x' pc& i cy~ ) I, n =1, 32m'=1, 2, 3
(e Wn')

where the symbol (( )) means an angular average over j'. Thus the first term, which represents elastic scattering
off the singlet state, is proportional to the population of this state and the phonon frequency to the fourth power.
The form factors are essentially unity since c,*q= a"(a&,&,/c&,)((1 for the phonons under consideration. The second

term, corresponding to elastic scattering off the triplet states, is proportional to the population of these states
and the square of the phonon frequency. The ratio of the first term to the second term is, upon using Eq. (16a),

'" See for example, I.. I.. Schi6, Quafttuus klechuf&ics (McCraw-Hill Book Company, Inc., 5'ew York, 1955).
'4 In Ref. 3, Grifhn and Carruthers have omitted all these terms since they have used only the deformation-potential matrix ele-

ments bet&veen the singlet and sinslet state and the singlet and triplet states,
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of the order
e'11»»(hpp, i,/4d )'.

For example, for Mqi, ——11p4b, , the temperature below which the first term dominates is 21(48/kii).
We will now study two processes that have not been previously considered.

3. Inelastic Scattering

Hy inelastic phonon scattering we mean the following process:

h~q1+ (triplet) (int. ) kpiq 1,.+ (singlet) .

The acoustic phonon is inelastically scattered into a high-energy phonon (kpiq 1, 4A) while the electron jumps
down from the triplet to the singlet state. The attenuation coefficient for the phonon ~~), denoted by n, z&b) is readily
calculated to be

O, ~(b)—
(Ppe1s f 4A

~ 1(1—e '" "'"")f(T)F'(q)2 (1+~.1)&I ~ 1 — —~q1 IF'(q')
2pc), q1' pc1,2 i k

f=p-"'(q')=-"(q) =p-"(q)=.-'(q') ) '
x Z EI + I, (2o)

n 1,2, 8 m E E~ En ——A(dpi E~ Ep+—QCOq&,

where n~ q is the phonon-distribution function

22, 1,—(epnq L 1 kBT 1)—1 12(pi, ~, ) (21)

f(T)
0, ~(b)—

qX

1 4A ' 4A 4d,
F'(q)E

I I I
1+II

42rpc12 &AT 1' pci. 'E k ~ ( E k ~~ Ekc1~

x &( 2 I 2 (==p."'(q')==.."(q))—"=p,"(q)==,."'(q')I'», (22)
n=l, 2,3 m =l,2,3

We have, for simphcity, neglected the angular dependence of the phonon velocities. When A~,&(&45 we 6nd that
n, z&b) is adequately described by

where we have approximated I 1—exp( —Ape, 1/keT) j by hem, i/keT since, for acoustic frequencies, kpiqi, is also
much less than k&1'. Thus the attenuation is independent of frequency and proportional to the population of the
triplet state divided by the temperature (neglecting the phonon distribution function n(46/k). Vpon comparing
Eq. (22) with Eq. (17) we find that the ratio c2,1&P'/cqqi, ' i is

)4h) 4h )'
t

4A

Ik,TI k „&

(AP1,1)'
for e'P

&4~&

n, &,
i'i

p 4a ~ 4a ~' p4aq (AP1 1)
e—«Ike

I I IF2I
I

for 4ppe
I I)

&k,Ti k „& kkci &4~ J
(23)

We can easily see that for most acoustic-phonon frequencies, except at low temperature, the attenuation due to
inelastic scattering o.,q~ ) dominates.

C. Absorption

We will now consider the last type of allowed processes in the second Born approximation, which will be called
the thermally assisted phonon-absorption process

Appq1+kpiq 1 + (singlet) (int. ) (triplet),

where A~~.q is a thermal photon. The attenuation due to this process is

(24)

Mq~i, ~ ( 4A
n „&'i= pi (1 e'""21i2e i)f (—T)F'(q) Q 22 .8I pi — +pp IF'(q')

2pc&, q'1' peg~ E k 1

-(= -"'(q')=-p" (q) =- -"(q)-"-p"'(q')~ '
x 2 zl + I. (25)

n'-1, 2,2 m ( 6~—pp Appqi —C~—6n~+AC021



In the familiar limit of koqq&&46, ~q&,(&k~T this formula reduces to

fo(T) 1 p4» r4» &4»
~'(v)P

4~le,ask, T ~ &;,,5E ai E k) &a.,,)

X(( 2 I™-a"'(0')=ao"(y) — 2 (=- -'(0)="-."'(f))I')) (26)
n'=1, 2, 3 on=1,2,3

If we compare the expression with Eq. (22) we find

that

q'A =&qX )
(~)~ (&) (27)

because the ratio of singlet and triplet state population
fo(T)/f(T) is exp(48/kiiT) and N(46/A) exp(46/kiiT)
is just 1+re(46/k).

We will conclude this section by applying these results
to the experimentally observed acoustic-phonon at-
tenuation. In Figs. (1) and (2) experimental data for
the attenuation of transverse phonons at a frequency
m=2m)&9)&10' sec—' in the temperature range 5 to
40'K in As-doped and P-doped germanium are shown.

The theoretical curves are computed qualitatively from
the expressions (22) and (26) for rr, q& & and naq&' using

the appropriate numerical constants given in Sec. II.
The contribution from 0.~~& & due to elastic scattering is

negligible. We see that the agreement between experi-
ment and theory is quite good, in regard to both the
magnitude and the temperature dependence of the at-
tenuation. Appr'eciable deviation is only observed in

P-doped germanium for T&40'K, where the theoretical
calculation predicts a higher attenuation. Qualitatively,
this is understandable because in our calculation we

have assumed that only the singlet and triplet states
are occupied, i.e., fo(T)+3f(T) = 1. Thus at high
temperature (T&43/kii), when the occupation of the

higher energy levels is not completely negligible, we are
over-estimating f(T) and therefore the attenuation
coefficients n&b& and 0.('.
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Fxo. 1. Attenuation of the transverse wave propagating in the
{100)direction of As-doped Ge as a function of temperature. The
impurity concentration is 3&(10" cm-' and the ultrasonic fre-
quency is ~=27'-&9X10' sec '.
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FIG. 2. Attenuation of the same transverse wave in P-doped
Ge as a function of temperature. The impurity concentration and
ultrasonic frequency are the same as in Fig. 1.

"A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quotum Field Theory irI Statistical Physics (Prentice-
Hall, Inc. , Englewood Cliffs, New Jersey, 1963).' L. P. Kadanoff and G. Baym, Quarltum Statistical Physics
(W. A. Benjamin, Inc. , New York, 1962)."WVe shall follow the notation of Ref. iS.

IV. CALCULATION OF RESONANCE ATTENUA-
TION BY THERMODYNAMIC GREEN'S-

FUNCTION METHOD

We will now study the phonon attenuation at fre-
quencies such that the perturbation calculation is not
valid. If we examine Eqs. (15), (20), and (25) we see
immediately that terms in the second-order matrix
elements will become in6nite when Acr, q approaches
4A or 0. This will also be true for higher order matrix
elements. In fact they will approach infinity faster than
the second-order terms. Clearly, to get a correct de-
scription of the attenuation at such frequencies one
must use another method of calculation. The method we
shall use is the thermodynamic Green's-function
technique. This method is described thoroughly in many
places, ""and we shall not go into any detail.

The phonon Green's function is defined as"

Dig (q, ri —r2) = —(a(a,goi, g )"'
~(T.(L ( )+ —~ '( )J

( )+ — ( )])), (28)

where the "time" 7. is defined in terms of the imaginary
time t by

(29)

and t is restricted to the interval 0 to i/kJ3T, so that v. —
runs from 0 to /= 1/kiiT. T, denotes a positive-time
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FIG. 3. Phonon self-energy part
II&z(q, cu ) in perturbation theory: first
Born approximation (diagram a); second
Born approximation (diagrams b, c, and
d). Solid lines represent the noninteract-
ing-electron Green s functions G„„(')(0).
Wavy lines represent the harmonic-
phonon Green's functions D~ ), &') (q', co').
The dots represent the bare electron-
phonon interaction vertex " "/(pp), ~)1~2.

(a)
0) At

I

A2

(b)
Ay

(c)

G„„,&»(Q„)= S../(iQ, —e.),
or

ordering with respect to this interval for r and ( ) For free electrons the Green's function is
denotes the thermal average. The Fourier transform of
the phonon Green's function is

(37)

where

D» (q,~ )= drD„, .(q, r)e' »', (30) G„„,&»-'(Q„) = r„„.(iQ„—..) .

In the interacting system the Dyson equation is

(38)

rd =2rrrr/P, sr=integer. G„„.-'(Q„)=G„„.~s& '(Q,)—Z„„.(Q„), (39)

D» "'(q,~-)= —4x ',~'/(~. '+~,x')
or

In the noninteracting phonon system, D». (q,oi„) is given

by
(31a)

where Z is the electron self-energy part. The level shift
and level width of nondegenerate states are obtained
from it according to

(qioi~) = ~xY (oi~ +oiqx )/oiqx ~ (31h)

In the presence of interaction we have the Dyson's
equation for D—'

Ae„= lim ReZ„(Q„—+ —ie„+e)
sr~+

I'„=—lim ImZ„„(Q„—+ —is + e) .
e~+

(40)

(41)

D» '(q, ~ ) =D» "' '(q, ~ )—11» (q,~ ), (32)

where II is known as the phonon self-energy function.
The rules for calculating II by diagrammatic techniques
are given in detail in Ref. 15 in the case of electron-
phonon interaction. The change in frequency A~~& and
the damping yqx of the phonon (q,) ) due to interaction,
are obtained from the self-energy function according to

aoiq~ ——-'soiqg lim Rellii, (q, oi„~ —ioiq), +e), (33)g~+

yqx= —rsoiqg lim Imll»(q, oi„—+ —ioiqy+ e). (34)
e—+0+

The attenuation coefficient Nqp is given by

rrqx (1/&qx)7qx ~

Similarly, the electron Green's function is defined as

For degenerate states the prescription is much more
complicated. One has to solve the matrix equation (39)
for the set of degenerate states under consideration to
determine the correct linear combinations of these
states forming the new ones and their energy splittings
and widths. For our purpose we shall simply ignore such

complications. We shall assume that G„„(Q„) is also

diagonal and apply Eqs. (40) and (41) to the triplet
states.

The attenuation coeKcients which were previously
calculated in the second Born approximation can be
obtained by using the Green's-function technique from

Eqs. (34) and (35) and the phonon self-energy part II
calculated to fourth order in the electron-phonon cou-

G „.(Q„)= d re'""'G (r)

Q„=qr(2r+ 1)/P, r = integer.

G- (»—rs)= —O'.Lc-(ri)c "(rs)])

and the Fourier transform G„(Q,) as

(36)

(37)

jIG. 4. A higher
order phonon self-
energy part belong-
ing to the class of
diagrams referred to
as propagator-correc-
tion diagrams.
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n)

nI = (SINGLET)

n~ = (TRIPLET) FIG. 6. Electron
self-energy part Z~~
in 6rst Born ap-
proximation. Nota-
tion is same as in
Flg. 3.

FIG. 5. Phonon self-energy part that contains all propagator
corrections (for n~ ——singlet state and ns ——triplet states). Heavy
solid lines represent electron Green's functions G„„=G„„(')
+G„( )Z G .Z„„is electron self-energy part.

pling ™.The relevant diagrams for II of this order are
shown in diagrams (b), (c), and (d) of Fig. (3). (The
phonon-self energy in the first Born approximation is
shown in diagram (a) of the same figure. ) Diagrams (b)
with Ns nr, ——and (c) with n4 ——es are referred to as
propagator-correction diagrams, and diagram (d) as v.

vertex-correction diagram.
Let us now turn our attention to the two situations

when the perturbation calculation fails. Ke will first
consider the case when A~, z approaches 4A. Then we
find that the contributions from (b), (c), and (d) become
large. However, the largest contributions are easily
seen to come from (b) in which rrs ——mr ——singlet state,
res ——triplet state, and from (c) in which rrr ——singlet
state, e4=e2 ——triplet state. These terms are propor-
tional to (4A—bros') ' while the remaining ones are
proportional to I46,—A~s&I '. Similarly, in the higher
order diagrams for II, the terms that are proportional
to the highest power of

I
4A —hoisq

I

' come from propa-
gator-correction terms. One such term is shown in Fig. 4.
Therefore we will only keep these terms. Summing all
these terms up we obtain Fig. (5) for II. The heavy solid
lines now represent the electron Green's functions in
the presence of the electron-phonon interaction. Ke will

G.(Q) =
7

„m iQ —v
(42)

where A (v) is the spectral function. In the free-electron
system it is simply

A„i'l(v) =rr8(v —e„) . (43)

According to Eq. (41), A (v) can be obtained from
G„(Q) by-

A. „(v) = —lim ImG„(Q —+ —iv+ e) .
~~0+

(44)

Therefore, upon using Eq. (39), we get

A „(v)= I'~(v)/L(v —e —ge (vl)'+I'„'(v)], (43)

where

I'„(v)= —lim ImZ„„(Q —+ —iv+ e),
g~0+

Ae„(v) = lim ReZ (Q —+ —iv+ e) .
e—&0+

(46)

(47)

To the lowest order in the electron-phonon coupling
Z„„(Q) is given by Fig. (6), from which we obtain

use the spectral representation" for the electron Green's
function G„„(Q)=G„(Q)

"dvA„(v)

and

~e.(v)=Z 2 d'qI=. -"(q)I'F'(q)&~sx/2Pcx'((&+roc~)~P(v —&~s~—e ) '+Ns~fP(v+&~%~ —e-) '} (48)

~&q)
I' (v) =x Z Z d'ql "(q) I'F'(q) {(1+re,~)b(v —~,q

—e )+rr, qb(v+hro, q
—e„))

m, 2pcy

I
F'I ((I .. "(q) I'»e e(e„—v)

4rr & ~ pcs' 6 l k Ir

+, "'I ((I=.-"(q) I'» 1.+e I e(.—.„), (49)
pc),'

where 0 is the step function

e(*)=o *&o
~&0. (50)

The level shifts Ae„and width F " are obtained from
"The spectral representations of Green's functions is described

in Refs. 15 and 16.
"The level widths for the triplet states have been calculated

by Grif5n and Carruthers (Ref. 3).
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Eqs. (48) and (49) by putting v= e

Ae~= 6 e~( p= e„)
F„=F (v= e„).

We can now calculate the phonon-attenuation coef-
ficient from Fig. (5) by using Eqs. (34) and (35) in
terms of the spectral function. The result is

+qX
(r ~(t') — (l e—(srvo), /kaT))Fs(q) p I

~~ x(q) I

s

peg n=l, 2,3

In obtaining this expression we have neglected for
simplicity the splitting of the triplet states compared to
4A and terms that are smaller by F„/e„. &ro),

(") is the
dominant term in the phonon attenuation when

(59)

giving

~o~(")=(~o~/scabs) (1—e (""o"'""))fo(T)F'(q)

X Z I==.. (q)l (F.+F.)-. («)
n=1,2,3

dv
~ p(v)~ n(v+4 ox)fv(T) t (52) On the other hand, when the frequency is off resonance,

"s)o)& I )(Fo+F ), we obtain

where f„(T) is Boltzman function

f (T)—ge—&vlkBT) (53)

Since the width Fp is much less than 4A, 2 p( v) is sharply
peaked at P= ep and we may replace f„(T) by fp(T)
obtaining

Before we study this expression near resonance, let us
observe that by expanding the spectral function in
powers of the electron-phonon coupling in the following
manner:

A„(v) =orb(v —e )+I'„(v)/(p e„) +— , (55)

we get the attenuation coefficient in the first Born
approximation (which is zero) and part of the attenua-
tion coefficient in the second Born approximation previ-
ously obtained. Near resonance we cannot make such
expansion because the resulting energy denominators
are small. However, the frequency integral cannot be
done unless some simplifying approximation is made on
the spectral functions. An obvious choice is to approxi-
mate the spectral function by a Lorentzian form. That
is, we replace F„(v) and Ae„(v) in Eq. (45) by F„and
he, obtaining

A„&') (P) =F /L(v —E„)'+F '] (56)

E =e +he„, (57)

where E„is the energy of the eth level in the presence
of interaction. Then we can perform the integration
and find

qX
n &")= (1—e (o~o)l"r) ))fo(T)F (q)

peg

&qX
rro), " = (1 e("~o"—loeT)) f (T)F'(q) p I p(q) I

p&x n=1,2,8

dp
X —Ap(v)A (v+h&o, ». (54)

This extrapolation formula reproduces part of the second
Born-approximation results reliably only when A~qz is
still close to 4D, because of the Lorentzian approxima-
tion made on the spectral function.

Finally, let us consider the case of very small fre-

quencies. When the frequency coq), is smaller than the
widths and the energy splittings of the triplet levels we
can have the type of processes described by Eq. (13).
The attenuation coefficient can be calculated from dia-
grams similar to Fig. 5, but with )rt ——ns ——(singlet)
and )rr, ))s——(triplet)

2Fp&q), ~&q),
fo(T)F'(q) I

op" (q) I'
pc),' kl) T (As),»'+ (2I'p)'

&qX "+qX
+ — f(T)F'(q) Z I-""-"(q) I'

pc),' k~T n, n'=1, 2,3

F +I'„
X (62)

( „—Z„„.)s+(F„+F„,)s

(63)

where we have assumed that A~q~((k~T and used the
Lorentzian approximation for the spectral function.
E„„.are the energy splittings of the triplet levels by the
thermal phonons and are of the order as the widths I' .
This expression reduces to the following when Acoq~((j.':

f,(T) k(&o,»' 1 f(T) k(&o,»'
F'(q) I=. oo" (q) I' +, F'(q)

peg kgy2 2Fp peg k~T

F„+F„.
I=-- "(q)I', , (64)

(E„„,)'+ (F„+F„.)

&r ),
(")—(ooo),/pc), o) (1—e (""o~lon ))fp(T)F (q)

X 2 I=-."(q) I'(F.+F-)/(4~-~.»' «1)
n=l, 2,8

Fo+F
X & I==.o"(q)I' (58) "This expression for the attenuation coeiiicient at resonance

(4D—h&o,»'+ (I'p+ F „)' diGers from that obtained by GriKn and Carruthers (Ref. 3).
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In fact, formula (62) can be used to describe qualita-
tively the acoustic attenuation for the entire frequency
range hcoqz(46.
"A phenomenological formula for the total acoustic attenuation

coefficient of the form
2 X3 Z OPT

3 pc3 Iz'gT 1+cv2r~

has been derived by M. Pomerantz (Ref. 1).$3 is the number of
impurity atoms per unit volume in the triplet states and 7. is a
relaxation time to be adjusted to fit the experimental data. One
sees immediately that this expression is similar to the second
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term in Eq. (62) (multiplied by X;, the impurity concentration) if
zis identified with the life time of a triplet state (I jh) '. The above
formula is no longer valid when 6' is close to 4A.
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A calculation of the third-order elastic constants of silicon, germanium, and other diamond-like crystals
is presented which is based on a previously published method of setting up a suitable form for the elastic
strain energy of a crystal. The six third-order constants are calculated in terms of three anharmonic first-
and second-neighbor force constants and the two previously determined harmonic force constants. The
experimental values of the six coeKcients are well fitted by the theoretical expressions involving these three
anharmonic force constants. The valence-electron interactions are discussed in the light of the values de-
duced for these force constants.

I. INTRODUCTION

" N a previous article, ' hereafter referred to as I, the
~. problem of writing down a form for the elastic strain

energy of a crystal which exhibits the necessary in-
variance properties was considered. It was shown that
one can write such a strain energy as a function of vari-
ous scalar products between the vectors representing the
relative positions of the nuclei. This method is basically
equivalent to the Born-Huang method' of imposing the
invariance requirements but the physical significance
of the different contributions is now more apparent. In
this present article, we shall use this form for the an-
harmonic strain energy as a starting point for a calcula-
tion of the third-order elasticity coeKcients of crystals
of the diamond type. Such a calculation can shed con-
siderable light on the nature of the interatomic inter-
actions in the solid state.

Interest in the third-order elasticity of crystalline
solids has arisen only fairly recently and the number of
solids for which measurements have been made is still
small. The present experimental method' ' is to meas-
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ure the changes in ultrasonic velocity (and thus in the
effective elastic constants) under various types of applied
static stress. At this time, measurements on silicon, ' 4

germanium, ' ' quartz, ' sodium chloride, magnesium
oxide, ' and fused SiO~' have been published. Formal
theoretical treatments of third-order elasticity based on
the Born-Huang formalism have been given by Leibfried
and Ludwig and Srinivasan' and a few calculations of
third-order elasticity of certain primitive cubic crystals
have been published. ' The present work is based on the
alternative formalism presented in I which has several
advantages over the Born-Huang approach, especially
when anharmonicity is included. Availability of experi-
mental data is, of course, one reason why the diamond

type of crystal was chosen for the present calculation.
The other rea, sons are (a) that the results of previous
work' "" suggest that only first- and second-neighbor
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