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Brillouin Scattering in Cubic Crystals*
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Using a helium-neon laser light source and a h gh-resolution grating spectrograph we have studied at
room temperature, the Brillouin spectrum of light scattered from three alkali halide crystals: KC1, RbCl,
and KI. By suitable orientation of the crystal axes relative to the incident beam we have obtained the fre-

quency and the velocity of thermally excited phonons of ~3000 A wavelength in longitudinal and "mixed"
acoustic phonon branches as a function of the direction of propagation in the L1107plane. From these data
we have determined for each crystal, entirely in the absence of acoustic excitation, the elastic constants
Cii, C&r, and C« for microwave (8—15 kMc/sec) sound waves with an accuracy from 0.25~/~ to 4~j~. The
elastic constants so determined are in very good agreement with investigations made in the ultrasonic region
using externally generated sound waves of frequency ~10 Mc/sec. This agreement indica, tes the absence of
dispersion in the sound-wave velocity over three orders of magnitude change in the sound-wave frequency.
We also present the theory for the scattering of light from thermally excited sound waves in a cubic crystal.
This theory predicts the intensity, polarization, and spectral distribution of the scattered light as a function
of the incident and scattered directions in the crystal. By treating the phonons quantum-mechanically at
temperatures comparable to the scattering phonon frequency, we have also obtained expressions for the
temperature dependence of the scattering valid at very low temperature. The theory is in quite good agree-
ment with our measurements of the relative intensity of the scattering from phonons in the longitudinal and
"mixed" acoustic modes.

I. INTRODUCTION
'

I F a beam of light passes through a solid or a liquid,
~ ~ a small fraction of the incident light will be scattered
in all directions by thermal fluctuations in the dielectric
constant of the medium. To be more precise, the light
scattered an angle 8 away from the forward direction
results from a Hragg reflection" off a thermal Quctua-
tion whose wavelength (Xf) is related to the wavelength
of light in the medium () s/n) by the Bragg condition:

(Xo/n) = 2Xf sin(8/2),

where n is the index of refraction of the medium. From
this condition we see that the wavelength of the scatter-
ing fluctuation ranges from one-half the wavelength of
light in the medium for backward scattering to (Xs/ts8)
near the forward direction.

The spectrum of the scattered light is determined by
the time dependence of the fluctuations in the dielectric
constant. Nonpropagating fluctuations produce scat-
tered radiation whose central frequency is equal to that
of the incident radiation. The frequency width of this
"quasi-elastic" scattering is determined by the decay
rate of the scattering fluctuation. On the other hand,
suppose the fluctuation having wavelength Xy propa-
gates with a velocity &V(Xr) as do thermally excited
sound waves. Under these conditions the light scattered
from this fluctuation will suffer a Doppler shift on
"reAection" and the light will contain a doublet called
a Hrillouin doublet' at the frequencies vo+hv, where

(Av/vs) = 2(V/c)n sin(8/2),
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and where vo is the frequency of the incident light wave
and c is the velocity of light in vacuo. This formula,
first obtained by Brillouin, ' ' shows that the spectrum
of the scattered light can provide the velocity of ther-
mally excited sound waves whose wavelength is of the
same size as the wavelength of light. Such sound waves
have frequencies of the order of 3—10 kMc/sec in
liquids and 10—50 kMc/sec in solids. The linewidth of
the Brillouin doublets gives the lifetime of the scattering
sound wave. In essence, then, the method of "Brillouin
scattering" is to use heat to generate sound waves and
light to detect the velocity and lifetimes of these waves.

This method of experimentation has become particu-
larly useful since the development of optical masers
whose high spectral purity, power, and directivity make
them ideal light sources in Hrillouin scattering
experiments. "

Long before the invention of these light sources the
subject of light scattering had undergone a rich theo-
retical and experimental development. Following the
appearance of Maxwell's equations, Lord Rayleigh
calculated' the scattering of light produced by a di-
electric sphere with dimensions small compared to the
wavelength of light and obtained the celebrated result
that the intensity of the scattering varies as the
reciprocal fourth power of the w'avelength of the exciting
light. He applied these results to the scattering of
sunlight by molecules in the atmosphere, treating each
of these as radiating independently of its neighboring
molecule. No account was taken of the phase relations
between different scatterers. On the basis of his analysis,
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Lord Rayleigh was able to explain the distribution of
color in skylight and estimate Avogodro's number from
the attenuation of sunlight as it passed through the
atmosphere.

The theory of light scattering was extended to con-
tinuous media by Von Smoluchowski' and Einstein, '
who explained the phenomenon of critical opalescence:
the enormous increase in the scattering of light which
takes place near the gas-liquid critical point. Einstein
treated the Quid as a continuous medium whosehomo-
geneity was disturbed by thermal fluctuations of the
density. He decomposed these fluctuations into their
Fourier components and obtained essentially the Bragg
reAection conditions mentioned above, but this result
appeared in the form of the Laue equations. Einstein
evaluated the amplitude of the density fluctuations and
showed that they grew very large because the work
required to produce them grows very small as one
approaches the critical point, where the bulk modulus
is zero.

To obtain the spectrum of the scattered light it was
necessary to know the time dependence of the density
fluctuations. This time dependence was provided by
Debye's' theory of specific heat, which identified the
thermal content of a body with the excitation of sound
waves. Brillouin' ' combined the Bragg reQection
condition with the motion of the sound waves and
predicted the appearance of doublets in the spectrum
of the scattered light. As the wavelength of the incident
radiation grows shorter and shorter, the Brillouin
scattering goes over smoothly into the thermal diffuse
scattering of x rays' and coherent inelastic scattering of
neutrons. ' The Brillouin doublets were first found by
Gross" and later confirmed by others. "

Stimulated by Brillouin's theory and Gross' observa-
tion, Debye and Sears" coupled an acoustic transducer
into a liquid column to set up a pattern of standing
waves. This density grating acted to produce di6raction
of a light beam which was sent through the column. By
observation of the diffraction pattern, and a knowledge
of the transducer frequency, this type of experimenta-
tion, which is quite diGerent from the spectroscopic
study involved in Brillouin scattering, became" a very
useful method" for the study of the velocity of sound
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(1935); A2, 413 (1935); A3, 75 (1936); A3, 119 (1936); A3, 459
(1936)."L. Bergmann, Ultrasonics and their Scientific and Technical
2 pplications (John Wiley R Sons, Inc. , New York, 1938).

waves whose frequencies were low enough to be gener-
ated by acoustic transducers.

From the very beginning, workers investigating the
Brillouin spectrum found, in addition to the Brillouin
components, a central or unshifted component in the
spectrum of the scattered light. This component
persisted even after removal of all foreign impurities
suspended in the medium.

Landau and Placzek"" proposed that this quasi-
elastic scattering was produced by nonpropagating
density Ructua, tions, or more properly by isobaric
entropy fluctuations, and they calculated the intensity
and spectral distribution of this component. Both the
Brillouin and the Landau-Placzek theories have been
cast in a more modern form'8 "which relates the spec-
trum of the scattered light to the space-time correlation
functions for the density and temperature fluctuations.

Within the limits set by the spectral distribution and
intensity of conventional light sources, the Brillouin
spectrum has been studied both in liquids"" and in
solids. " The review of Fabelinskii" is particularly
valuable. It includes an account of the early inde-
pendent theoretical and experimental contributions
made to this field by Mandel'shtam and Landsberg.

%ith the aid of laser 1ight sources and high-resolution
interference spectroscopy it has now become possible to
measure, 4" " for the first time, lifetimes of the ther-
mally excited microwave phonons, and to determine as
well their velocity with a precision ( 0.1%) one order
of magnitude higher than has previously been possible.
Furthermore, very recent developments" "in electronic
light-beating techniques, which are based on the
monochromaticity of the laser light, permit a study
of the spectrum of the scattered light with a resolving
power many orders of magnitude greater than can be
achieved with optical methods.
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In the present paper we present the results of a
study"" of the Brillouin spectrum of light scattered
from three alkali halide crystals, KI, KCl, and RbCl,
using a helium-neon laser as a light source and a grating
spectrograph. The spectrum was studied as a function
of the angle between the crystal axes and the direction
of the incident beam. This permits a measurement of
the velocity of sound waves as a function of their
direction in the crystal. In particular we have measured
the velocity of sound waves in the longitudinal and
"transverse" acoustic branches as a function of direction
in the $110j crystal planes. The wavelength of sound
studied was 3000 A, and the frequency of the longi-
tudinal waves was 10 kMc/sec while the "transverse"
branch phonon frequencies were 6 kMc/sec. From
these data we have obtained with a precision between
0.25% and 4% the microwave elastic constants for
threse three crystals. We also present a calculation of
the intensity, polarization, and spectral distribution of
the scattered light along with the quantum-mechanical
modifications required for application at very low
temperatures. The predictions of this calculation are in
good agreement with our measurements of the relative
intensity of the scattering from "transverse" and
longitudinal modes.

(&0 r-~o~)Foe

FIG. 1. Diagram showing the relationship between the source
point r, the field point R, the incident wave vector k0, and the
scattering angle g.

For low-intensity incident radiation, the local
polarization is linearly proportional to the electric field,
the proportionality factor being the tensor polarizability
e. In analyzing the origin of the scattering it is con-
venient to decompose n into its time average part (n)
plus the time-space fluctuations 5n(r, t) produced by the
thermal fluctuations in the medium. In liquids and in
cubic crystals the time average polarizability (n) is a,

scalar times the unity tensor, and the index of refraction
tl is independent of the direction of propagation. How-
ever, the thermal fluctuations in a crystal cause oR-
diagonal components to appear in the polarizability
tensor, so that we must regard 60. as being a tensor
whose elements fluctuate in time. Writing then the
electric 6eld of the incident wave within the medium as

C —I' ~ t'~t —)R—r
~ /Ctrt ~

The vectors R, r and the unit vectors lp and la, are
shown in Fig. 1. For simplicity we have taken the field
point R within the medium. If it is outside the medium
one may find the 6eld there by obtaining the scattered
field inside the medium and then using the laws of
refraction and reflection at the boundaries. In Eq. (1),
t' is the retarded time t

~
(R—r) i/c, calculated using

as velocity the speed of light. inside the medium (c )
rather than that in a, vacuum (c).

"K.Fritsch, M.S. thesis, M.I.T., 1965 (unpublished).
3'K. Fritsch and G. Benedek, Bull. Am. Phys. Soc. 10, 109

(1965).

II. THEORY

We now present a classical calculation of the intensity
and the spectrum of light scattered from thermal
fluctuations in liquids and solids. At the outset it is
important to recognize that these media contain about
10' atoms in a region as small as the cube of the light
wavelength. Hence for dimensions of this order a liquid
or solid may be regarded as a continuum. A light wave
passing through such a medium produces an oscillating
dipole moment per unit volume or polarization P(r, t)
at each point r. The oscillating moments in turn radiate
or scatter electromagnetic energy in all directions. The
electric field dE' scattered to the 6eld point R by the
oscillating polarization within a volume

~
dri((Xs is

d E'(R, t)I,X(I,X ri'P (r,t')/rlt")

P(r, t) =((n)+8n(r, t)) Epe" """i. (3)

To evaluate the second derivative of P as required by
Eq. (1), we must realize that the characteristic fre-
quencies for thermal fluctuations are small (&10"cps)
compared to the light frequency in the optical region
( 5X10'4 cps). We may therefore regard bn as a very
weak function of the time and write

cl'P(r, t)/rlt'= —oppsP(r, t) . (4)

On substituting Eqs. (3) and (4) into (1) and carrying
out the integration over the illuminated volume V at
the retarded time t', we find that if R))r,

& w 2 &i{kp' R—coot)
0$

E'(R t) = ——
~ 4ci R

X 4X ((n)+In(r, t')) Epe""' ~"l'~dr~, (5)

where we have used the facts that if R&)r
Ia,=4;

AM p tROp

~R—r(= lg (R—r);
C C

kp'=—moplp/c;

E(r, t) = Epe'(ko r—roti

where /pp
——tiptop/c is the wave vector of the light wave,

we find that the polarization at each point in the
medium is
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aMl in the denominat01. we have Used

I
R—rl =E.

The integral in Eq. (5) represents the superposition of
phases of waves scattered from each illuminated point
in the medium. In the absence of the fluctuations (i)88)

this superposition leads to a complete cancellation of
the scattered waves. The contribution to the integral
from the (e) term is zero except in the forward direction.
Scattering out of the incident direction results entirely
from Quctuations in the polarizability.

We may now ask: Of all the Quctuations, which in
particular are responsible for the scattering of light into
a particular directions This can be answered by
analyzing the Quctuations into their spatial Fourier
components:

1
{)(8(r,t') = 2 I dql {)(8"(q)~'{2'+""(2)"].

(2~)8/2

In this decomposition 22r/I qj is the wavelength of the
fluctuation, (o„(q) is the frequency of the Quctuation
corresponding to this wavelength. The index y denotes
the possibility of a number of branches in the dispersion
relation connecting q and (o. In general, (o„(q)can be
complex to include a description of the damping of the
fluctuations. 88 ~„(q) is double valued with (+) to
account for the degeneracy in the dispersion relation
for positive and negative running waves. We now can
put Eq. (6) into Eq. (5), being careful to include the
effect of time retardation in 80.. This gives

The solution of this equation is denoted by K and is
called the scattering vector. Equation (10) for K can be
interpreted physically in two equivalent ways. In
photon terminology it represents the conservation of
momentum between the incident photon kp, the scat-
tered photon k, and the scattering fluctuation K. Here
we must remember from Eq. (8) ths, t the wavelength
of the scattered light can be different from that of the
incident light because the scattering Quctuation can
exchange a quantum of energy +h(o„(K) with the
incident photon. In classical terms, Eq. (10) represents
the fact that a spatially periodic Quctuation can
modulate the polarizability and hence the phase of
waves scattered from each point in such a way as to
exactly cancel out the phase factor ei( "'~' produced
by the combined effect of the spatial variation of the
incident wave and the time retardation. As a result of
this cancellation the radiation from each point in the
medium can add constructively at the field point. In
this classical description, Eq. (10) corresponds to a
Bragg reQection of the light waves off the wave fronts
of the fluctuations. Substituting Eqs. (10) and (9)
into (7) and replacing {)n by {)s/42r, where i)s is the
Quctuation in the dielectric constant tensor, we find on
relabeling E'(R, t) = E'(K, t) (i.e., we emphasize the
dependence of the scattered field on the Chrectio~z of
scattering),

(o )2 (2~)8/2
E'(K, t) = ——

I Q /i {k R—[rao+(ao(K)] t]

c /' 4)rE 8

18X[12X(()8/'(K) E,)]. (11)

Mp
2

8 (8t) =-(— X (,

eiI k I—[(8]0+CO~(q)] tj-
X 18X Idyl(&e (q) Eo)

The amplitude of the scattering from each branch is
proportional to that spatial Fourier component of the
fluctuation in 2 which has wave vector K. The frequency
of the scattered wave (a&') is shifted from that of the
incident wave (oo by the amount +(o„(K),i.e.,

(o'= ~oa(o„(K). (12)

where

drl e'(2o—k+2) r (7)
(2~)8/2

k= (28/c)(Mo+(o„((I))12=k(q) .

The final integral in Eq. (7) is a delta function provided
that the illuminated region is very large compared to
the wavelength of light. In this case,

e'"' "+ "Idrl = (22r)'&[q (k(q) ko)] (9)

Thus the wave vector of the Quctuation which produces
the scattering in the direction lk is that which satisfies
the implicit equation

q= k(q) —k,=—K. (10)

~ For the quasi-elastic or central component in the scattering
co„(q)is purely imaginary.

The spectrum of the scattered light contains sets of
doublets located symmetrically around the incident
light frequency. In quantum-mechanical language these
doublets represent the exchange of a quantum +)]8(o(K)
between the photon and the Quctuation. Classically,
the frequency change of the scattered light follows from
the picture of its origin as a Bragg reQection, provided
that we include the fact that the wave fronts of the
fluctuation move with the phase velocity [&&0„(K)/K].
Because of this, the incident light wave suffers a
Doppler shift which is exactly equal to that given in
Eq. (12).

To determine the spacing between the doublets, and
the scattering vectors K involved, it is necessary to
identify in greater detail the nature of the microscopic
Quctuations. One source of these is to be found in the
lattice vibrations in liquids and solids. These traveling
waves produce Quctuations with wave vectors q in the
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range 0& ( q ~
(7r/ao, where ao is a distance of the order

of the interatomic spacing. The corresponding dispersion
relations (&v„(q)] consist, in general, of optical and
acoustical branches. If we solve Eq. (10) using Eq. (8)
for either of these branches, we find at once that the
scattering vectors K fall in the range 0(

~
K~ ( (4ir/X),

where X is the wavelength of light in the medium. Hence,
the lattice vibrations do indeed contain waves whose
wavelengths satisfy the momentum conservation condi-
tion. However, since visible light has X 10'ap, the
scattering is produced by phonons whose wave vectors
span the region in reciprocal space between the origin
and points one-thousandth of the distance to the edge
of the Brillouin zone. While these points are far from
the zone edge, they represent regions of the phonon
spectrum which are far beyond the ultrasonic region.

The scattering which comes from the optical branches
in solids is called vibrational Raman scattering. The
frequency shift involved is A&u 2ir&(10i2/sec and this
shift depends only weakly on the scattering vector K
because of the flatness of the a&(K) curves in the optical
branches. A particular optical branch will be Raman
active for a given K provided that it produces a fluctua-
tion in the dielectric constant with that wave vector.
Scattering from the acoustic branches is known as
Brillouin scattering, ' ' and involves a frequency shift
which is 10' to 10' times smaller than that of the
Raman effect. This frequency shift, L&ar„(K)],reflects
directly the dispersion relation for phonons in the
acoustic branches.

The angular dependence of the Brillouin doublet
spacing is computed as follows: I,et the light be scat-
tered a direction 8 away from the incident beam. The
scattering vector K is calculated to a high degree of
accuracy by neglecting the change in wavelength of the
scattered light in Eqs. (10) and (9). Vnder this approxi-
mation k and ko have the same length and K simply
connects them. The direction of K is perpendicular to
the line bisecting the angle 8 and has the length

E—2kp sin(8/2) = (2ncuo/c) sin(8/2) . (13)

Here we take explicit note of the fact that the phase
velocity (V) can be a function of the frequency and the
direction of the sound wave. Combining Eqs. (14) and
(13) we obtain the result first found by Brillouin, ' ' viz. ,

(a' —(vo a)„(K) 2n V(o&„,l~)
sin (8/2) . (15)

In liquids the velocity is independent of the direction
of propagation and only a longitudinal acoustic branch
exists, i.e., V= V(~). As the scattering angle 8 increases,

The corresponding shift (&o' —~0) in frequency of the
scattered light is determined by the acoustic dispersion
relations:

(14)

the scattering phonon, and hence the shift cv' —~p, ranges
from 0 in the forward direction to co 2&10—

'cop for
backward scattering. For visible light this corresponds
to a phonon frequency of 10)&10+' cps. Hence by
studying the angular dependence of the splitting of the
"Brillouin doublets" we may obtain the sound velocity
as a function of frequency up to about 10 kMc in
liquids.

The Brillouin spectrum of light scattered from a solid
differs from that of a liquid. In the solid, the length and
direction of the scattering vector K is, as before, fixed
to a high degree of approximation by e and the angle 8
LEq. (13)] between incident and scattered beam.
However, in the solid the acoustic phonons contain
three separate branches: there are in general three
different frequency sound waves, each with the same
wave vector K. The Brillouin spectrum, therefore,
contains, in general, three sets of doublets. Further-
more, in the solid, one can bring different crystal
directions into coincidence with the vector K without
in any way altering the scattering angle 8. Hence, one
may obtain from the Brillouin spectra the frequency
and the phase velocity of sound waves with wave
vector

~
K~ =2(nemo/c) sin8/2 as a function of direction

in the crystal. In the present experiments we have
carried out this procedure for the three cubic crystals,
KCl, KI, and RbCl. We Axed the scattering angle 8 at
90 and thereby selected the wavelength of phonons to
be investigated ( 3000 A). The crystal axes were
rotated so that the scattering from phonons anywhere
in the L110]plane could be studied. From the observed
splitting of the Brillouin components produced by
phonons in the "longitudinal" and "transverse"
branches we obtained the angular dependence of the
phase velocity and the frequency for sound waves with
the prechosen wavelength. With this information we
have determined for the first time the elastic constants
of these crystals in the 6—15 kMc/sec region. To
investigate curvature in the a&(K) curves one can rneas-
ure the phase velocity as a function of wavelength
simply by altering the scattering angle 0.

If we include the change in wavelength of the scat-
tered light in computing the scattering vector K from
Eqs. (10) and (8), it can be shown that there is a slight
asymmetry in the placement of the Brillouin doublets
around the unshifted frequency ca)p. The high-frequency
line is shifted an amount bar„farther away from orp, while
the low-frequency line is shifted toward orp by bee„. In
fact it is easy to show that (R„/co„)= 2 (a&„/a&0). This is
approximately 10 ' to 10 ' for most liquids and solids.
This effect is too small to be detected in the present
experiments.

The analysis presented above has centered on the
information contained in the location of the centers of
the Brillouin doublets. We now calculate the intensity
and the spectral distribution of the scattered radiation.
Both these quantities are determined by the auto-
correlation function for the scattered electric field,
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viz, ,

(E'(K,t+r) E"(K,t))

for small strains, we may express the change in dielectric
tensor component be;, (r, t) as a linear function of the
elastic-strain components et (r, t), viz. ,

be;;(r, t)—=—P p,tt,„,et,„(r,t) .
gp $,m2

(23)

The total power dP'L(K, R) in all frequencies scattered
into a solid angle dQ at the field point R is proportional th p
to the mean squared field strength, components et, (r, t) are related to the elastic displace-

ments t'se(r, t)j in the medium by
dP(K, R) =—(f E'(K, t)

f
)Z'dn

8x

If we define the spectral density function 5(K,to') as

1 (But(r, t) Bse„(r,t) )«(r, t)=-( +
2 0 ax axt ) (24)

2T
5(K,to') =

(E'(K,t+r) E"(K,t))e'""dr

(i E'(K, t) i')

which is normalized in such a way that

where l or m can take on the values 1, 2, or 3 and the
x~, x2, and x3 represent the 3 coordinate axes relative to
which the tensor components p;;t„are defined. In a
cubic crystal in which each cube axis has a fourfold
symmetry, there are only three independent constants
in the elasto-optical tensor and we may write Eq. (23)
as

dto'S(K, to') =1, (19) be,;(r, t)

6p

= p44e;t (r, t)+ (p» pis p4—4)b;;e;—;(r, t)

then the power scattered into dQ which lies in a fre-
quency interval between to' and &o'+dto', LdP'(K, co')dto'$

is given by

dP'(K, ~')d~'= (dP'(K))S(K,~')d~' (20)

X[I,X(b"(K,t) E,)]. (22)

This equation shows that the correlation function for
the scattered Geld is determined by the fluctuations in
the dielectric constant tensor. A fluctuation be(K, t)
produces a corresponding fluctuation in the electric
displacement vector bD(K, t) =be(K, t) Eo. The double
cross product preceding this simply indicates that in
the light-scattering experiments we observe the com-
ponent of the fluctuations in bD(K, t) which lie in a
plane perpendicular to the direction of the scattered
wave.

The fluctuations in the dielectric constant tensor
components result from the fact that these components
depend on the state of strain of the solid. The strains
themselves fluctuate at each point because of the
passage of thermally excited sound waves. In general,

In determining the form of the correlation function
for the scattered field, it is convenient to reabsorb into
be" (K) its corresponding time dependence. Writing then

be&(K, t) =be&(K)e '" t "&t

Eq. (11) for the scattered field becomes

2 (2~)s/2
E'(K, t) = —— P et(k. R ttot)]k-

c 4xE.

+Pro( Q ett(r, t))b,, (25)

The elasto-optical coeflicients p;t lil Eq. (25)
dimensionless quantities whose order of magnitude can
be simply estimated. Consider for example the alteration
of the optical dielectric-constant tensor produced by
an adiabatic hydrostatic compression. In such a com-
pression e,,= —b,,(1/3)(bp/p)„where p is the density
of the solid and the subscript denotes a derivative at
constant entropy. From Eq. (25) we see at once that the
resulting alteration in the dielectric constant tensor is
be;,=b;,beo, and tha—t beo is related to the p's by

p»+2p» 1 ( beo ) 1 aine,

eo' & (bp/p), & eo el lnp

Since ss'= co =3, and since we may expect (tl 1neo/ej lnp),
=1, the magnitude of (pii+2pis)/3 is 0.3 or of the
order of unity

It is also informative to examine the form of Fq (25)
for isotropic solids and for Hquids. In the former case
there are only two independent Pockels constants,
pii and pro, and Eq. (23) takes I,andau's form"

be;;(r, t) = (p» —pis)e s(r, t)+pro( Q eit(r, t))b;;. (2t)
~o

2

In a liquid there is but one elasto-optical coefficient,

"J.F. Nye, Physecat Properties of Crystals, Otcfortt (Clarendoit
Press, Oxford, England, 1957), pp. 243 6."M. Born and K. Huang, Dynamical I'heory of Crystal L,tJNices
(Clarendon Press, Oxford, England, 1954), pp. 373 6.
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pu= p~2 and the 6uctuations in the dielectric constant
tensor are just be;;= b;,bfp, where

b eo( rt) = eo pllV 'u(r t) plleo (bp/p) (28)

sound waves in conjunction with Ep.'

f.p
bD«(K, t) —=be«(K, t) E,= tt«—(K,t)KE,(«, (34)

where we have used V u= —(bp/p) for sound waves in

a liquid. In a liquid p&& is related very simply to the
density dependence of co. In fact from (26) we see that
in a liquid that pu= (1/eo) (8 inep/8 lnp) „sothat (28)
takes the simple form

t c1ep

lap
(29)

Having investigated the properties of the elasto-
optical tensor we return to the determination of
be, , (K, t), the Quctuation in the dielectric tensor com-

ponents having wave vector K. This quantity is given

by

be, , (K, t) = //r
I be„(r,t) e 'x '—

(2vr)'"
(30)

In the case of cubic crystals we must. substitute Eq. (25)
into (30).This yields an expression for be;; (K,t) identical
in form to (25) except that e& (r, t) is replaced by its
Fourier transform e~ (K, t), where

e, (K,t)=
(2~)3/2

(aN, (r, t) au (r, t))
X

~
+ ~e-'x' (31)

ax art

The sound waves produce a displacement at r which is
due to the superposition of waves with all possible
wave vectors q, i.e.,

u)(r, t) = u/, (q, t)e"'jdq~ .
(2~)3/2

(32)

Substitution of Eq. (32) into Eq. (31) and integration
over

~

dr
~

shows that the fluctuation bet„(K,t) is pro-
duced solely by the strains of the sound waves which

propagate with wave vector K. There are only three
such waves corresponding to the three possible polariza-
tions of the wave. Denoting the polarization index by
p=1, 2, or 3 as in Eq. (22), we have

z
e, «(K, t)=-(u&«(K, t)E +I «(K, t)E,).

2
(33)

e&«(K, t) is the Fourier amplitude of the displacement
vector along the l coordinate axis of the sound wave
having wave vector K and polarization p. Using Eq. (33)
we 6nd that the substitution of Eq. (25) into Eq. (30)
gives the following result for the fluctuation in the
electric displacement vector bD(K, t) produced by the

44
(«= (~«(IK 1E,)+(~«1E,)1„)+p„(g«1K)ls,

2
+(p» p p—)Z—~ "(I ) (1 o)1, (36)

where vr" is a unit vector in the direction of the polariza-
tion of the sound wave. The components of f& along the
cube axes are m ~«, /=1, 2, 3. 1K is a unit vector in the
direction of propagation of the sound wave, with com-
ponents (1K)~ along the cube axes. 1E, is a unit vector
along the direction of polarization of the incident light-
wave. The components of this unit vector are (lE,)~
along the cube axes. lg(/=1, 2, or 3) are unit vectors
along the cube axes. The direction and magnitude of (is
determined by the relative directions of K, Eo, and v?«

a,nd the magnitude of the p's. We note that in general
the electric displacement is in a different direction from
that of the incident 6eld Eo. As was mentioned before,
we observe in the light-scattering experiments not («,
but the vector (& which is related to («by

( =1.X(l.X(). (37)

This quantity is simply the component of ( which lies
in the plane perpendicular to k. We shall presently give
explicit expressions for ( for those directions of ll, 1E„
and ~& which obtain in the present experiments.

We can now obtain expressions for the correlation
functions for the scattered electric 6eld using Eq. (22)
and Eqs. (34)-(37). Remembering that sound waves
belonging to different polarization branches are orthog-
onal to one another we have

~0) (2w) eo
(E'(K, t+~) E'*(K,t))= —

i

—z~zp
(4s.)' R'

X & I&"I'(S"(Kt+r) S"*(K,t))e '"". (38)

The correlation function for u" (K,t) may be obtained
by reasoning along the following lines. In Eq. (35) we
broke the time dependence of the thermally excited
sound-wave displacement u" (K, t) into two parts: one
being the rapid sound oscillation frequency, the other
being much slower statistical Quctuations in the ampli-
tude factor I'«(E, t). This amplitude factor is in fact a
random variable. If we characterize the temporal

where E and Ep are the magnitudes of K and Ep,
respectively.

u«(K, t) = u «(K)e+* (35)

represents the amplitude and time dependence of the
elastic displacement in the sound wave. (« is a vector
whose magnitude is 0(

~
f ~

(1.Its value is given by
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coherence of this variable by a correlation time r„(K)or
a correlation rate I/F„(K) and presume that the
correlation function for this amplitude dies away
exponentially in time then it follows that

energy is simply equal to the sum over all the normal
mode energies. Writing this sum as an integral over

i dq i
with the appropriate density of states we have that

(F-)=Z idol«. (e)),
(2m.)'

(43)(u)'(K t+r) u"'(K, t))
= (u'&(K, I+r)u'~(K, t))e+'""(K'
—(in &(K,I) i')e+* "(x)'e—"(K)~ (39) where V is the volume of the solid.

Comparing Eqs. (43) and (42) and using the fact
that for kT) k(o «„(q))=kT we find that

We observe that I'„(K)is the decay rate for the sound
wave of wave vector K. The mean squared amplitude
of the sound wave can be related to the temperature as
follows. The total vibrational energy of the solid is equal
(by the equipartition theorem for harmonic oscillators)
to twice the kinetic energy.

V kT
(l '(K)i')=

(2s.)' 2p(o '(K)
(44)

(L)=-'()')=( 1«IPIo(~oI') tooo)' oo' V kT
(E'(K,)'+r) E'*(K,t))=Eooi —

i

) c) Z'(4~)2 2&

Hence the correlation function for the scattered field
becomes

(4o)

where p is the density. The sound wave amplitude
enters into the expression for the energy through the
relation

u(r, &)
= 2 I

dillu"(a)c'" ' """' (41)
(2~)'"

Substituting this into Eq. (40) we find, keeping in mind
that Eq. (41) indicates that for a single q there are two
sound waves moving in opposite directions

(&)=2 2 Idal~ .'(q) iu"(q) I'. (42)

From Eq. (42) we note that the Fourier amplitudes
u((I) are the normal coordinates for the lattice vibra-
tions. Denoting by «„(q))the thermal average of the
energy for each normal mode, we note that the total

c—~t o+ (K)l (c
—r„(K)) (45)

CO
2

It should be mentioned that the W notation in Eq. (45)
indicates that a sum is to be taken over both the positive
and negative running waves.

Now that this correlation function has been deter-
mined we find that the total power scattered into a
solid angle dQ is given by Eq. (17), where the auto-
correlation function for the scattered field is

))'ooo 'oo' & k» i(~i'K'
(«)

)), c R' (4~) p a=1 &o '(K)

This power is distributed over a spectrum whose density
S(K,(o') is given according to Eq. (18) by

i Pi» I„(K) I'„(K)

,=i (o '(K) 7r ((o'—L(do+(d„(K)j)'+I'„'(K) ((o'—Lo)o—o)„(K)))'+I'„'(K)
5(K,(o') =

(4&)

~ (o„'(K)

Thus, as we have already realized previously, the
spectrum of the scattered radiation consists in general
of three pairs of doublets split around the incident fre-
quency by the frequency (o„(K)of the three sound waves
having wave vector K.The width of each of these spectral
lines gives the sound wave lifetime LI/I'„(K)j.By chang-
ing the direction of observation and by rotating the crys-
tal axes relative to the scattering direction one can study
the dependence of the lifetime on the sound wavelength
and on its direction of propagation in the crystal, Such
an investigation requires of course that the spectral
distribution in the incident laser beam be smaller than
the spectral width of the scattered Srillouin components

and that the spectrometer have sufhcient resolving
power. Finally we note that the factors i("i' play the
role of weighting factors which determine the relative
intensities of each of the three doublets.

Equation (45) for the correlation function for the
scattered field was derived under the assumption
Afd„((kT. Since the maximum sound wave frequencies
which contribute to the scattering are about 50&10'
cps, we expect than Eq. (45) will be valid provided
that T&&3'K. If the temperature falls into the 4 K
region, however, Eq. (45) must be altered to take into
account the quantum mechanical features of the
lattice vibrations. We may obtain the correct quantum
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and

Iu(K)I'e '" ' '~ (I(n'Iu"(K)In)I'&e '"o&Kl' (49)

That is, u's become, in the quantum mechanical case,
the phonon creation and annihilation operators and one
must evaluate the thermal average ( ) of the matrix
elements of these operators. These averages are

V Aoo„(K)((n„(K))+1)
(l(n'Iu'"(K) In) I'&= —,(50)

(2or)' 2p~.'(K)

V fiop„(K)((n„(K)&)

2pop„'(K)
(I(n'Iu&(K) In)I'&=

(2E-)'
(51)

where (n„(K))is the mean occupation number of the
phonons having wave vector K and polarization
index p.

mechanical results by making the following replace-
ments in Eq. (39):

I «(K) I

"+'""'K'~ (1(n'Iu"'(K) In) I

'&c'""'K' (48)

This shows that the spectrum of doublets becomes
asymmetrical at low temperatures. As T —+ 0, the
amount of light in the low-frequency (Stokes) side of
each doublet becomes independent of the temperatures,
while the high frequency (anti-Stokes) component
steadily gets weaker in intensity like e ""~"T.Quantum
mechanically this results because one can create
phonons even at T=O; however, the annihilation of
phonons is proportional to the number of excited
phonons and this number goes to zero as e ""~

as T —+0.
We complete the discussion of the intensity and

spectral distribution of the Brillouin components by
calculating the gl' for the conditions appropriate to our
experiments. We studied sound waves propagating in
the [110jplane. Thus, k, kp, and K were in this plane,
and K could be arranged to make any desired angle po

with respect to the [001j axis lying in this plane. The
laser beam was polarized perpendicular to the k, kp

plane. Hence the unit vectors 1E, and 1K have the
following components along the cube axes. :

(n (K)&—(ehoto(K) IkT 1)—i (52)

The correct form for Eq. (45) at all temperatures is

/sin po sin po

lK=
I

(55)

(E'(K,t+T) E'*(K,t)&

opp)4 pp4 V 1 o If'n&o (K)

c) R' (4or)'2pl=i op'(K)

X[(( (K)&+1)

+ (n (K)&c
—i[~o+caolK)]~jc ro(Kir —

(53)

T'he power scattered into the solid angle dQ is propor-
tional [through Eq. (17)j to the value that Eq. (53)
takes for 7=0. We note that even at T=O'K., where
all the phonons are in the ground states, the zero-point
motions still produce scattering. In fact, Eq. (53) shows
that the scattering power at O'K. ois equal to that ob-
tained from the classical formula provided that we
replace kT by the zero point energy h4p/2. The spectrum
of the scattered light becomes asymmetrical as
k2'&h&p„(K), as can be seen by taking the time Fourier
spectrum of the correlation function [Eq. (18)].This
gives the following form for the spectrum of scattered
light:

I
pI' /up„(K)r„(K)

S(K,4p) =
W=l ool4 (E) ol

(&.(K)&+1)

[~'—(~p —~„(K)))'+r„'(z)

[~'—(~p+~.(K))3'+r.'(&)
—1

X Q Bop„(K)(2(n„(K))+1) . (54)
l =4 op„'(K)

~1 1
4.=~ —,—,o).

k&2 v2
(56)

K'=(2+P ')-'"(11P )

or'= (2+Pl.') "-'(1,1,PI),
where the quantity PI. or P,&& is given by

(K2 COS po Sill po) (Cl2+ C44)
~ I~

p VJ. '—C44+ (cos'y) (C44—Cii)

(58)

(60)

and Vl, or V,» is the phase velocity of the primarily
longitudinal or mixed polarization mode. Orthogonality
of the ~'s is assured by the fact that

PI.P~ = —2. (61)
O' J. DeLauney, Solid State I'Ezysics, edited by F. Seitz and

D. Turnbull (Academic Press Ine. , New York, 1956), Vol. 2.

The solution of the secular equation" for the propaga-
tion of elastic waves in a cubic crystal shows that the
three sound waves which propagate in the direction
1K have the following polarizations: The first, (p=1) is
a pure transverse wave polarized perpendicular to the
k, kp plane. The second, (p=2) is a largely transverse
wave with appreciable longitudinal admixture for
certain values of po. The third wave (p=3) is almost
entirely a longitudinal wave. The polarization vectors
&I' of these waves are

)1 —1

EV2 v2
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mixed modes will be considerably more intense than the
doublet from the purely transverse waves. Our experi-
ment showed this to be the case; in fact we did not see
the light scattered from the purely transverse modes.
In the analysis of our data we compare the measured
relative intensity of the scattering from the mixed and
the longitudinal mode with the prediction obtained
from Eqs. (63) and (64) using independent measure-
ment of the p's and find satisfactory agreement.

HI. EXPEMMENTAL METHOD

FIG. 2. The fractional longitudinal admixture [f~(p) and
fM(q)) for "longitudinal" and "mixed" acoustic mode phonons
propagating in the $110]plane along a direction making an angle
q with the L001$ direction.

We now can use Eqs. (55)—(59) in Eqs. (36) and (37)
to find the vectors (&. A simple calculation shows that

—(pll pl2 p44)»nq»n ——p l l&ii, (62)
2 ))

where 8 is the angle between k and ks and 1„is a unit
vector normal to k lying in the k,k& plane. Thus the
light scattered from the sound wave polarized perpen-
dicular to the L110j plane is polarized in the scattering
plane. Also

(p» —p» —p44) sin(p)
&'=

I
Pisf" (~)+ I

& (63)
(4+2P~')'I' )

(pll pl2 p44) siii4 )
P =

I
pisf'(~ )+ l &. , («)

(4+2Pr, ')'"

where 1&
———lE4. Thus the sound waves polarized in the

scattering plane scatter light so that the plane of
polarization is perpendicular to the scattering plane.
The quantities f~(y) and P(q) represent the fractional
longitudinal admixture in the sound wave, i.e.,

fE,M(+) —~y. 1
V2 sing+ (cosy)Pr„,~

(2+P 2)1/2
(65)

For the primarily longitudinal sound wave f~(p) is
nearly equal to unity for all values of p. For the mixed
mode f~ varies from 0 to a maximum of about 0.3 as p
changes. ln Fig. 2 below we plot f(tp)z and f(y)ia' for
values of the elastic constants appropriate to KI.

It is important to realize that isothermal measure-
ments of the p's by uniaxial strain studies show that
in these alkali halide crystals we may expect that
p44 0.02, pts 0.18 and pii —pts 0.04. We therefore
expect on examination of Eqs. (62), (63), and (64) that
the Brillouin doublets from the longitudinal and mixed
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I lG. 3. Experimental arrangement of laser, light focusing
and collecting system, grating spectrograph and photoelectric
detection chain.

In Fig. 3 we show a schematic diagram of the experi-
mental arrangement for the observation of the spectrum
of the scattered light. The light sources was a Spectra-
Physics Model 115 helium-neon laser which has an
output of about 2 mK when operated in the uniphase
mode. The laser beam passes through the sample
which was mounted in such a way that the collected
light is always 90 deg away from the direction of the
incident beam. Further, the holder permits the crystal
to be rotated so that any direction in a $110jplane can
be brought into coincidence with the scattering vector
K. A lens system collects the scattered light and focuses
it onto the input slit of a 12-m, high-resolution grating
spectrograph. The spectrum of the light is observed by
sweeping the position of the exit slit along the focal
plane of the spectrograph. The light intensity passing
through the exit slit was detected with an RCA 7265
photomultiplier tube whose output was first amplified
with a Hewlett-Packard 425-A dc amplider, and then
recorded on a strip chart recorder.

This system is rather straightforward, yet there are
certain features which we have found necessary to
include which may prove helpful in future work. In
particular, attention should be drawn to the problem of
passing light through a crystal and collecting the light
at say a 90' scattering angle when the faces of the
crystal are not normal to the direction of the incident
or the scattered light beam. Also, it is well to realize
that scattering from a rough crystal surface produces
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Pgoi] Po(RLO ) (66)

where Pp is the total incident power and {R is the
scattering coefficient given by

(~,)' e,' (IT') 3 ~( ~'z'
(67)

I c~ (4m)'5 p & ~=i a) '(K)

Ke have assumed that the light intensity is uniform in
the illuminated cylinder and have taken the axis of the
cylinder parallel to the entrance slit. In our system,
0 is the solid angle for the light which is collected by
lens L2 and which subsequently passes through the
spectrograph. L2 forms an image of the source at the
slit. Of all the light beams emerging from this image only
those inside the spectrograph acceptance solid angle
(00) are collected by the mirror Mi and pass through
the spectrograph. In our spectrograph Qp was 0.68/ 10 '
sr. If M is the magnification of lens L2 when it forms the
image of the source at the slit, then simple geometrical
optics shows that 0 and Qp are related by

0=3PQp. (6g)

an extremely large amount of scattering at the incident
light frequency. In the spectrum this unshifted light
has tails which can overlap and mask the Brillouin
components. Both these difhculties were circumvented
by immersing the crystal in a l.iquid mixture whose
index of refraction can be altered by changing the rela-
tive proportion of the constituents until exact match
between the liquid and the crystal is achieved. The
light enters the scattering cell normal to a glass face of
the chamber enclosing the mixture and crystal. The
scattered light leaves normal to a second glass face.
When match is achieved the crystal seems to disappear
in the fluid. This technique is quite helpful, especially
when the crystal axes must be rotated into diferent
directions relative to the light beam, as is the case in our
experiments. The liquids employed to match our alkali
halide crystals were mixtures of di-iodomethane,
toluene, and methanol.

Another aspect of our system which merits further
comment is the light collection system which involves
the focusing lens L~, the collection lens L2, and the
entrance slit S&. Because of the low intensity of the
Brillouin scattering it is important to arrange these
optical elements so as to maximize the light collected
without reducing appreciably the resolution of the
spectrometer. This can be done as follows, First, the
entrance slit width (W) was chosen as large as is con-
sistent with a clear resolution of the Brillouin com-
ponents. In our case, we chose 8'=0.025 cm which
corresponded to Ai =1.5 kMc/sec. The slit height was
1,8 cm. To determine the maximum collectable intensity
we return to formulas (17) and (46), and observe that
if the illuminated region has the form of a cylinder of
length L and a base area A, then the total power
collected by a light gathering system having a solid
angle 0 is given approximately by

At first glance it; would appear advantageous to make
the magnification veIy large. However, it should be
appreciated that this could lead to a situation in which
the image of the source could be larger than the slit so
that all the collected light would not in fact enter the
spectrograph. Thus the collected power is also deter-
mined in an important way by the dimensions of the
source and the slit. The former dimension is fixed by the
focusing lens L~ which focuses the plane parallel incident
laser beam into a double cone whose apex angle is the
focal region. This focal region is of primary interest
because there the light beam is very narrow and we can
magnify it greatly and still have it pass through the
entrance slit. The dimensions of the focal region are
fixed by di8raction. Analysis of this problem" ' shows
that the focal region can be regarded crudely as a bright
cylinder of light whose hieght (h„)and diameter (W„)
are given by

H~..=x(f/a)

h„=3K(f/a)',

(69)

(70)

where f is the focal length of lens Li, a is the diameter
of the incident laser beam, and X is the wavelength of
light. Let us arrange the source width (W„)always to
be of such a size that when magnified by L2 it always
just fills the slit; i.e., we take

W,.= (W/M) . (71)

This requirement fixes the (f/u) ratio of the focusing
lens as

(f/a) = (W/MX) . (72)

It also fixes the height of the diffraction-limited region
to have the value

h,.= (3/X) (W/M)'. (73)

The slit, having a height h, will pass light coming from
a region on the source having a height h/M. Froin
Eq. (73) we see that for small M the source height h„
is always longer than h/M so that the effective length

(L) of the illuminated region to insert into Eq. (66) is
L=h/M. Using this and Eq. (68) we find that the
collected power is linear in M provided that M is not
too large, viz:

(74)P=Po(RQOM h.

This holds true until we reach the magnification M' for
which

h,.= h/M'. (75)

(76)M'= 3W'/lk.

~' M. Born and, K. Wolf, Principles of Optics (The Macmi]lan
Company, New York, 1964)-, 2nd ed. , pp. 435 R.

» Tscbunko, J. Opt. Soc. Am. 55, 1 (1965).

At this value of 3f the diffraction limited cylinder has
the same length to width ratio as does the slit. The mag-
nitude of M'is obtained by using Eqs. (73)and (75).This
gives
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IV. EXPERIMENTAL RESULTS

Using the methods discussed in Sec. III we measured
the Brillouin spectrum of light scattered 90 deg away
from the incident direction. For this scattering angle,
t e wavelength P, of the scattering phonon is
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FIG. 4. Recorder tracing of the Brillouin s ec
scattered from RbCl. A 22- '

divas-second integrating time constant was
used. The scattering phonons in mixed (3f) and ion 't
b h propaga ing along a direction 40' away from th

irection in a ~~110~0~~plane. The strong central or "elastic"
e

component results from scattering o6 imp f t'
is asymmetrical because of grating irregularities

With our initial choice of slit width 3f'~1i. For
)M' thediffraction limited cylinder is shorter than the

demagnified image of the slit and the collected power
continues to rise, but much more slowl th 1' 1

in . hus the focal length of lens I.i is choseil to satisfy
Eq. (72) with M=3P, and the focal 1 th d
o ens L2 is chosen so that it focuses the source at the
slit with magnification M'. It can be shown that the
resulting acceptance solid angle A=M"0 i 1

enou h toenoug to artificially broaden the Brillouin cori ouin components

y accepting too large a range in scattering angle.
The grating used for spectral analysis of the collected

light was ruled under interferometric control in Dr. G.
arrison's laboratory at MIT. The g t d'e gra ing imensions

an e gratingwere 5 in. )&10 in. with 300 lines/mm and the
was blazed at 63.5'. To obtain suSciently large disper-
sion the grating was used in the tenth order at an angle
of 72'. The resolving power of the

750 000.
e grating was

The crystals studied were KCl, RbCl, and KI. The
rst two were provided by Professor A. Smakula. The

ast sample was obtained from the Harshaw Chemical
ompany. The samples were typically cubical in shape

wit -', in. on an edge. Of the available samples we

the la
consistently chose those which when ll

'
d b

e aser beam, showed the greatest clarity and freedom
rom inclusions. Inclusions in the crystal produce a

large elastic scattering of the light. If there are enough

component in the spectrum whose tails have more
intensity than the 3rillouin components. Thus a
selection of clear samples is especi llia y important in
resolving the Brillouin spectrum.

The index of refraction of each of these crystals is
well knownss at 6328 A.

"Landolt-8-ornstein, Zahlemmerte und J'Nn8ionee ups I'h sik-
Chernie-Astrorfomie-Geophysik-Techeik (8 rin er-Veri
1962), 6th ed. , Vol. II, Part A, Chap, 8.

y p se velocity of sound waves ofTABLE I. Frequenc and ha
wave ength as a function of ro a a

L110]plane in KCL
propagation direction in the

Angle

(deg)

0
25
35

45
55
70
90

Sound wave
frequency

V —
Vp

(kMc/sec)

15.00~0.1
14.1 w0. 1
13.3 &0.1
8.1 +O.i

12.45~0.08
12.22~0.06
12.57+0.06
12.93~0.06

Phase
velocity

V
(m/sec)

4509+35
4237a38
3995w30
2446+34
3745~25
3645~20
37'80~18
3889m 19

Acoustic Tem-
mode per ature

designation {'C)

22.7
22.6
22.7
22."I

22.7
22.8
22.6
23.1

(2s./), ) =V2 (trois/c),

in a,ccordance with Eq. (13). This wavelen th is the
same for all orientations of the crystal axes and has the
values P, =3007.4A, 2999.9A, and 2694.5 A res ec-

the crystal at least 10 traces of the Brillouin spectrum
were taken. An example of such a t
Fi . 4. Th'ig. . is trace shows clearly the scattering from both
longitudinal (L) and mixed (M) longitudinal and
transverse acoustic branches Th t
duced spurious Rowland ghosts and satellite lines whose
position and relative intensity was accurately deter-
mined by sweeping out a spectrum of the laser itself.

y ma ing a point-T e spurious lines were removed b k
e. is su tractiony-point subtraction on each trace. This sub

proce ure, while laborious, was especially im ortant in
accuratel re y resolving the lines coming from relatively

impor an in

weak Inixed acoustic modes.
Thefre uquency difference v —vo between the Brillouin

components and the laser frequency i th f.gives e requency
o t e scattering phonon. The phase velocity of the
scattering phonon is obtained from Kq. (15). This

be
proce ure was carried out as a fun t' fnc ion o y t' e angle

etween the $001j direction and the sound wave
propagation direction in the $1101 plane. I T bl I
we ive

ane. n a e I
give the sound-wave frequency (i —r,) and the

phase velocity V as a function of th 1 f
of th

e ang e q or each

and III we r
o the observable acoustic modes of KCl. I T blIl a es II

n we present the corresponding results for RbCl
and KI.

In Figs. 5, 6, and 7 we present plots of the sound
velocity V in the L110j plane as a function of the angle

for the longitudinal and mixed branches of the
acoustic sound waves. The th' dir acoustic branch
consists of pure transverse wave faves rom w ic we ob-
served no Brillouin scattering. In KCl, where the



8 RI I. LOUI N SCATTE V~I N G IN CUBIC CP~ YSTAI. S 659

TABLE II. Frequency and phase velocity of sound waves of
3000A wavelength as a function of propagation direction in the
$110) plane in RbCl.

3700f

3600—

3500

I I I I

Longitudinal mode

Angle

(deg)

0
25

30

45

55
70
90

Sound wave
frequency

V —Pp

(kMc/sec)

12,15&0.07
11.42~0.06
5.84~0.1

11.10~0.07
6.21~0.16

10.72~0.07
6.46~0.09

10.33~0.07
6.75~0.2

10.10~0.07
6.75~0.18
9.80~0.05

10.19~0.06
10,51~0.06

Phase
velocity

V
(m/sec)

3646~21
3426~18
1752~31
3331~21
1863~50
3216+21
1939~30
3099~20
2025~47
3030~20
2025~53
2940~16
3058~16
3153+18

L
L
M
L
M
L
M
L
M
L
M
L
L
I.

23, 1
22.5
22.5
22.5
22.5
22.5
22.5
22.8
22.8
22.3
22.3
22.4
22.4
22.4

Acoustic Tem-
mode perature

designation {'C) 8 3300

~ 3200

3 I 00

g 3000

o 2900

.~ 2200
O0

2000

o- l8OO

I600

Experimental—Theoretical

I I I I I I I

I I I I I I

scattering intensity was low even for the longitudinal
waves, and the scattering from crystal imperfections
produced a particularly strong central component, we
were able to And scattering from the mixed mode only
for y=35'. In RbCl and KI however, we have data on
the velocity in the mixed mode for five different
angles p.

4600(

4500

44

42

o 4100

~~ 4000—
3900—

E
c 3800—
c 3700—

3600
2800

O
O 2600—0

CL
~ 2400

I I I I I

ngitudinal mode

Experimental—Theoretical

I I I

I I I I

Mixed mode

2200

2000

l 800
0

[ool]
lO 20 30 40 50 60 70 80 90

9 [«1] [~co]

Direction of propagation in Et10] plane

FIG. 5. The phase velocity of sound waves in KCl with wave-
length 3007.4 A. as a function of propagation direction in the L110)
plane. The upper graph gives the velocity of the longitudinal
acoustic mode. The lower graph gives the velocity of the mixed
mode. No scattering from the purely transverse acoustic mode
was detected. The solid lines represent the theoretical variation
of velocity using the values of hypersonic elastic constants given
in the text.

%e also have information on the intensity of the
8rillouin components in the scattered light. The
scattering from KI was the strongest. RbCl and KCl
both produce a scattering intensity about half that of
KI. In Table IV we give the ratio of the peak ampli-
tudes (A) of the longitudinal Brillouin peaks in these
crystals for several directions in the L110$ plane. It is

TABLE III. Frequency and phase velocity of sound waves of
2694.5A wavelength as a function of propagation direction in
the L110) plane in KI.

Angle

(deg)

0
15
25

30

40

55
65
75
90

Sound wave
frequency

p Pp

(kMc/sec)

11.05~0.06
10.74~0.07
10.16~0.07
5.24~0.09
9.81~0.06
5.57~0.07
9.49~0.06
5.81~0.06
9.13~0.04
6.07~0.08
8.90~0.05
6.33~0.12
8.64~0.05
8.83~0.04
9.09~0.04
9.26~0.04

Phase
velocity

(m/sec)

2978~16
2893~17
2736~19
1412~24
2644~17
1500~18
2558+16
1565~17
2460~12
1635~21
2400~13
1707~33
2328~12
2379~11
2448~11
2494~11

Acoustic Tem-
mode perature

designation (oC)

L
L
L
M
L
M
L
M
L
M
L
M
L
I
L
L

22.6
22.6
22.5
22.5
22.3
22.3
22.3
22.3
22.4
22.4
22.5
22,5
22.4
22.2
22.4
22,6

I400
I I I I I I I I

0 IO 20 30 40 50 60 70 80 90
[oo1] [111] [&to]

Direction of propagation in E/10] plane

FIG. 6. The phase velocity of sound waves in RbCl with wave-
length 3000.0 L as a function of propagation direction in the L110$
plane. The upper graph gives the velocity of the longitudinal
acoustic mode. The lower graph gives the velocity of the mixed
mode. No scattering from the purely transverse acoustic mode
was detected. The solid lines represent the theoretical variation
of velocity using the values of hypersonic elastic constants given
in the text.
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2700—
Experimentol—Theoretical

O
2600—

~ 2500—
E

2400—

2500—
o

2000

CP

gp 1800—O

OP

2 1600—
CL

I I I I I I I

I

Mixed mode

I I I

1400—

1 ~ i t i

2900 Longitudinal mode

2800

present section we consider the theoretical predictions
for the magnitude and angular dependence of this
velocity. We shall also consider briefly the extent to
which the theory of the intensity as given in Sec. II is
consistent with the observed sca, ttering intensities.

The theory of lattice vibrations is well established.
It is known" tha, t the dispersion relation which links
the vibration frequencies for each mode (y) to the wave
vector q of the wave is obtained by diagonalizing the
so-called dynamical matrix. The elements of this matrix
a,re related directly to the atomic force constants. These
describe the force exerted on a given atom when it, or
any other atom in the lattice, is displaced from its
equilibrium position. It is also well known" that when
the wavelength of the lattice vibration is very long
compared to the interatomic distances the dispersion
rela, tion takes the simple form

1200
~.(tf) = 1'(&s)

I tie, (77)

1000
0

[001]

I I I I I I I I

10 20 30 40 50 60 70 80 90
CjP [111] [11o]

Direction of propagation in tt10] plane

I'zG. 7. The phase velocity of sound waves in KI with wave-
length 2694.5 A as a function of propagation direction in the $110)
plane. The upper graph gives the velocity of the longitudinal
acoustic mode. The lower graph gives the velocity of the mixed
mode. No scattering from the purely transverse acoustic mode
was detected. The solid lines represent the theoretical variation
of velocity using the values of hypersonic elastic constants given
in the text.

where the velocity V is a function only of the direction
of propagation. In this limit the solid behaves like an
elastic continuum and the dynamical matrix for the
vibrations can be written4' in terms of the elastic
constants rather than the interatomic force constants.

In our experiments the wavelength of the sound
waves is about 1000 times longer than the lattice
spacing. We therefore expect that the solid can be
trea, ted as an elastic continuum. We shall take this as

0,8—

informative to compare the scattering intensity from
solids with that from liquids, "The peak amplitudes of
the scattering from toluene, water, and KCl stand in
the ratio 32:10:1.

In Fig. 8 we give data on the relative amplitude of
the scattering from the mixed modes and the longi-
tudinal mode as a function of the propagation derivation
in the L110) plane for RbCl and KI. The angles q for
v hich we could observe the mixed mode ranged from
25' to 45' in both these crystals. When p is less than
25' the mixed mode velocity is small enough so that
this peak begins to merge into the central peak and is
therefore dificult to resolve. For q greater than 45' the
intensity of this mode falls so low that it could not be
detected.

A
(y)o. —

L

0.2—

0.6I—

04—

The

RbCI

V. THEORETICAL ANALYSIS
A"„(9')

0.2—
Theory: 'g =

The measurements presented in the previous section
give the phase velocity (&u„/i q i ) of the acoustic vibra-
tions as a function of the propagation direction. In the

TABLE IV. Relative peak amplitudes of "longitudinal" Brillouin
components in KCl, RbCl, and KI for selected directions of sound
propagation.

Axon. Aabor. Alr $001$ L111$ $110]
1.0:1.0:2.7 1.0:1.3:2.0 1.0:1.1:1.7

KI

0 l I l l

25 30 55 40 45
Sound wave propagation direction itp)

FIG. 8. The ratio of the maximum amplitudes of the mixed
mode and the longitudinal mode Brillouin components (A~/AL)
as a function of the direction of propagation (g) in the t 1:10j
plane for KI and RbCl.

~ A. A, . Maradudin, E. %'. Montroll, and G. %eiss, 7"heory of
Lcttke Dynamics ie the Harmonic Approximation (Academic
Press Inc., New York, 1963).
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TABLE V. Hypersonic and ultrasonic values of the elastic constants of K.Cl.

%avelength
(x)

3007
~5X106

Frequency
(CP2)

8—15X10'
~9X10'

Temperature

22.8
22

C11

4.06 +0.01
4 078~0 008a

C44

0.63 ~0.01
0.633+0.006'

C12

(10"dyn jcm')

0.69~0.04
0.69~0.014'

2C44+C12

1.95~0.02
1.96~0.03'

a S. HaussQhl, Z. Physik 150, 223 (1960).

the basis of our analysis, and at the end we shall
examine the degree to which the experimental results
are consistent with this assumption.

In a cubic crystal the elastic strain produced by a
small stress can be described by three elastic constants,
C~1, C12, and C44. The dynamical matrix for the sound
waves in a cubic crystal is well known. 36 The eigen-
values and eigenvectors of this matrix give, respectively,
the sound velocity and polarization of each of the three
orthogonal waves in the acoustic branches. For waves
which propagate in a [110]plane one acoustic wave (2')
is polarized purely transverse to the propagation
direction. One wave (1.) is largely longitudinal and one
(iV) has a mixed polarization both along and perpen-
dicular to q. The velocity of each of these three waves
is given below as a function of the propagation direction
p in the [110]plane. (q is the angle between [001] and
the direction of propagation. )

V~(v) = (1/2p)'"[(C» —C12)

+ (cos'q) (2C44+C12 —C11)]'", (78)

V&(&p) = (1/4P) j (4C44+C11+C12)
—(cos' y) (2C44+ C»—C11)

+[(C-+C-) +(2C«+C„-C-)
X (cos'p) (8C«+ 14C12+ 6C11)

—(cos y) (6C44+ 15C12+9C11)]'12)'~2 (79)

V2r(p) = (1/4p) "2{[(4C44+C11+C1,)
—(cos'q) (2C44+C12—C11)]

[(Cll+C12) + (2C44+C12 C11)

X (cos2 p) (8C44+ 14C12+6C11)
—(cos p) (6C44+15C12+9C11)]11')'~' (80)

where p is the mass density.
It may be helpful to mention the fact that the sum

of the squares of the velocity of sound waves moving in

any direction in the crystal is a constant given by

3

p pV„2=C,1+2C44. (81)

Along the direction of principal symmetry in the
[110] plane, namely the [001], the [111]and the
[110] directions, p Vr, ' takes on the values C11,
[2(2C44+C12)+C11]/3, [2C44+ C12+C11]/2, respec-
tively. Away from these directions the velocity in the
longitudinal branch still depends only on C» and the
combination (aC44+bC12) where a is nearly 2 and b is
nearly 1. Thus, from our measurements on this branch
we can obtain accurately the two quantities C» and
2C44+C12. In the mixed mode pV~2 takes on the values
C44, (C4q+C11—C12)/3 and C44, respectively, in the
directions [001], [111], and [110]. We found the
velocity in this mode only between 25'(p&45'. In
this angular region the velocity is fairly sensitive to C44
and an initial choice of C44 could be made from a single
value of the velocity in the branch. To determine the
elastic constants more accurately, we started with the
elastic constants obtained from the sound speeds in
three different directions. About these values we con-
structed a net of possible values for each of the three
elastic constants. Using Eqs. (79) and (80) and an
IBM 709 computer, we calculated the velocity of sound
in each observed direction for each triplet in the net.
The computer also found for each triplet the mean
square deviations between the theoretical and experi-
mental values of velocity. The values of C~1, C12, C44,
and 2C44+C12 which showed the minimum deviation
between theory and experiment are given in the first
row of Tables V, VI, and VII along with their estimated
error limits. In the second row of each table we list the
results of recent accurate measurements" of these elastic
constants in KCl and KI. These measurements were
made on sound waves generated by an acoustic trans-
ducer operating in the 9-Mc/sec frequency region. Our

TABLE VI. Hypersonic and ultrasonic values of the elastic constants of RbCl.

%avelength
(x)

3000
~2X10'

Frequency
(cps)

6—12X109
10 and 20X 106

Temperature
('C)

22.6
22

C11

.3.74~0.01
3.72~0.06~

C44

0.535~0.02
0.503~0.01'

C12
(10"dyn/cm')

0.72~0.04

2C44+Ci2

1.79~0.02

a C. Garland and R. Young (private communication).

4' S. Haussuhl, Z. Phys. 159, 223 (1960).
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TAaLz VII. Hypersonic and ultrasonic values of the elastic constants of KI.

wavelength
(i}

I'requency

(cps)

Temperature
('C)

Ci 1

(10"dyn/crn }
C12 2C44+Ci.

2695
~3X $06

(5-11)X 109
9X 10'

22.4
22

2.73~0.01
2.76+0.006

0.375+0.015
0.37 ~0.004

0.40+0.03
0.45~0.01.

1.15~0.02
1.19~0.02"

& S. HaussQhl, Z. Physik 159, 223 (1960).

measurements correspond to sound waves which have
a constant wavelength ( 3000 A) regardless of the
direction of propagation in the crystal. The wave-
lengths and frequencies involved in both types of
measurement are also given in these tables.

From these tables we observe that in KCl and KI
the hypersonic and the ultrasonic values of the elastic
constants are in excellent agreement. This indicates the
absence of dispersion in the sound velocity between
10 Mc/sec and 10 kMc/sec for these crystals.

in the case of RbCl, Professor C. Garland and
R. Young at MIT kindly carried out a measurement
of C1~ and C44 for our sample using an acoustic
echo method. The results of their hneasurement are
shown in Table VI. Comparison between the ultrasonic
and hypersonic values shows that in this case as v, ell
there is no detectable dispersion in the velocity on
increasing the sound wave frequency from 20 Mc/sec
to 10 kMc/sec.

Ke also observe that the Brillouin scattering meas-
urements of the C's have a precision ( 0.25—4.0
percent) which is about two to three times poorer than
these very good ultrasonic measurements. Ke feel that
the use of higher resolution optical spectrometers such
as the Fabry-Perot etalon4' and higher power lasers will

permit an increase in precision in the Brillouin scatter-
ing measurements by a factor of 3—5.

In Figs. 5, 6, and 7 we plot as solid lines the theoretical
angular variation of the velocity in the "longitudinal"
and "mixed" modes using the elastic constants given
in Tables V, VI, and VII. The agreement between the
theoretical and experimental values is excellent: The
theoretical values agree with the experimental values
generally well within the experimental limit of error of

0.5% for the longitudinal mode and 2% for the
"mixed" mode.

As a final part of our analysis of the data we examine
theoretically the results on the relative amplitude of the
scattering from the mixed mode and the longitudinal
mode. If the slit width of the spectrograph is broad
compared with the natural linewidth of the Brillouin
component, then the measured maximum amplitude
of the signal as observed at the output slit is propor-
tional to the total intensity under the Brillouin com-
ponent. Under these conditions, which apply in our
experiments, the observed ratio Asr/Ar, is given in

~ P. Jscquinot, Rept. Progr. Phys. 28, 267 (1960).

where

9 = (Pl 1 P1S P44—)/~~P—1S, (84)

and I'~ and I'~ are given as functions of the phonon
direction by Eq. (60). The velocities Vr. and Vsr are
known as a function of q from our measurements. The
quantities fsr(q) and f~(rp) represent the known
fractional longitudinal admixture in the sound wave as
defined in Eq. (65). To calculate theoretically the

magnitude of Ass/Ar, for each direction of propagation
all that is needed is the value of the parameter q. If we
chose the value g=0.48 for RbCl and q=0.25 for KI
we obtain the values for A sr/Ar. given as a solid line
in Fig. 8.

Burstein and Smith4' have measured pii and pi,
in Kl. They also have measured pii, prs, and p44 in KBr
while Pockels'4 has measured these in KCl. These
measurements suggest that p44——0.026 for all three
potassium halides. 'Using this and4' p11=0.21, pis=0. 17
we 6nd g =0.27 for KI. This is in excellent agreement
with the experimental value of q =0.25. No experimental
data exists on the P's for RbC1, but the value of ii = 0.48
seems reasonable in view of the fact that the scattering
from RbCl is about twice as small as that from KI.
This suggests that Pis is a factor of 2 smaller for this
crystal and that correspondingly q could be 2 times
bigger.
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accordance with Eqs. (17), (46), (63), and (64) by

(A~/A~) = (~~8/~«P)'= (V~V/V~&')', (82)

where Vl, and V~ are the velocities of the longitudinal
and mixed mode sound waves, respectively. From
Eqs. (63) and (64) we may write the angular dependence
of Ass/Ar, as

Vr (9)(f'"(4a)+ri

»nial(2+&sr')'")
'

(83)
—V«(4o)(f'(v)+n»ni /(2+~~')'")


