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Using a helium-neon laser light source and a high-resolution grating spectrograph we have studied, at
room temperature, the Brillouin spectrum of light scattered from three alkali halide crystals: KCl, RbCl,
and KI. By suitable orientation of the crystal axes relative to the incident beam we have obtained the fre-
quency and the velocity of thermally excited phonons of ~3000 A wavelength in longitudinal and “mixed”
acoustic phonon branches as a function of the direction of propagation in the [1107] plane. From these data
we have determined for each crystal, entirely in the absence of acoustic excitation, the elastic constants
Ci1, Ciz, and Cy for microwave (8-15 kMc/sec) sound waves with an accuracy from 0.259%, to 49. The
elastic constants so determined are in very good agreement with investigations made in the ultrasonic region
using externally generated sound waves of frequency ~10 Mc/sec. This agreement indicates the absence of
dispersion in the sound-wave velocity over three orders of magnitude change in the sound-wave frequency.
We also present the theory for the scattering of light from thermally excited sound waves in a cubic crystal.
This theory predicts the intensity, polarization, and spectral distribution of the scattered light as a function
of the incident and scattered directions in the crystal. By treating the phonons quantum-mechanically at
temperatures comparable to the scattering phonon frequency, we have also obtained expressions for the
temperature dependence of the scattering valid at very low temperature. The theory is in quite good agree-
ment with our measurements of the relative intensity of the scattering from phonons in the longitudinal and
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“mixed” acoustic modes.

I. INTRODUCTION

IF a beam of light passes through a solid or a liquid,
a small fraction of the incident light will be scattered
in all directions by thermal fluctuations in the dielectric
constant of the medium. To be more precise, the light
scattered an angle @ away from the forward direction
results from a Bragg “reflection” off a thermal fluctua-
tion whose wavelength (\;) is related to the wavelength
of light in the medium (\o/#) by the Bragg condition:

(N\o/m)=2Xssin(6/2),

where # is the index of refraction of the medium. From
this condition we see that the wavelength of the scatter-
ing fluctuation ranges from one-half the wavelength of
light in the medium for backward scattering to (\o/nf)
near the forward direction.

The spectrum of the scattered light is determined by
the time dependence of the fluctuations in the dielectric
constant. Nonpropagating fluctuations produce scat-
tered radiation whose central frequency is equal to that
of the incident radiation. The frequency width of this
“quasi-elastic” scattering is determined by the decay
rate of the scattering fluctuation. On the other hand,
suppose the fluctuation having wavelength A\, propa-
gates with a velocity &=V (\s) as do thermally excited
sound waves. Under these conditions the light scattered
from this fluctuation will suffer a Doppler shift on
“reflection” and the light will contain a doublet called
a Brillouin doublet!? at the frequencies voZ=Av, where

(Av/vo)=2(V/c)n sin(6/2),
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and where v, is the frequency of the incident light wave
and ¢ is the velocity of light in vacuo. This formula,
first obtained by Brillouin,? shows that the spectrum
of the scattered light can provide the velocity of ther-
mally excited sound waves whose wavelength is of the
same size as the wavelength of light. Such sound waves
have frequencies of the order of 3-10 kMc/sec in
liquids and 10-50 kMc/sec in solids. The linewidth of
the Brillouin doublets gives the lifetime of the scattering
sound wave. In essence, then, the method of “Brillouin
scattering’ is to use heat to generate sound waves and
light to detect the velocity and lifetimes of these waves.

This method of experimentation has become particu-
larly useful since the development of optical masers
whose high spectral purity, power, and directivity make
them ideal light sources in Brillouin scattering
experiments.®4

Long before the invention of these light sources the
subject of light scattering had undergone a rich theo-
retical and experimental development. Following the
appearance of Maxwell’s equations, Lord Rayleigh
calculated® the scattering of light produced by a di-
electric sphere with dimensions small compared to the
wavelength of light and obtained the celebrated result
that the intensity of the scattering varies as the
reciprocal fourth power of the wavelength of the exciting
light. He applied these results to the scattering of
sunlight by molecules in the atmosphere, treating each
of these as radiating independently of its neighboring
molecule. No account was taken of the phase relations
between different scatterers. On the basis of his analysis,

3 G. Benedek, J. B. Lastovka, K. Fritsch, and T. Greytak,
J. Opt. Soc. Am. 54, 1284 (1964).
(14 R. Y. Chiao and B. P. Stoicheff, J. Opt. Soc. Am. 54, 1286
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Lord Rayleigh was able to explain the distribution of
color in skylight and estimate Avogodro’s number from
the attenuation of sunlight as it passed through the
atmosphere.

The theory of light scattering was extended to con-
tinuous media by Von Smoluchowski® and Einstein,’
who explained the phenomenon of critical opalescence:
the enormous increase in the scattering of light which
takes place near the gas-liquid critical point. Einstein
treated the fluid as a continuous medium whose homo-
geneity was disturbed by thermal fluctuations of the
density. He decomposed these fluctuations into their
Fourier components and obtained essentially the Bragg
reflection conditions mentioned above, but this result
appeared in the form of the Laue equations. Einstein
evaluated the amplitude of the density fluctuations and
showed that they grew very large because the work
required to produce them grows very small as one
approaches the critical point, where the bulk modulus
is zero.

To obtain the spectrum of the scattered light it was
necessary to know the time dependence of the density
fluctuations. This time dependence was provided by
Debye’s® theory of specific heat, which identified the
thermal content of a body with the excitation of sound
waves. Brillouin®? combined the Bragg reflection
condition with the motion of the sound waves and
predicted the appearance of doublets in the spectrum
of the scattered light. As the wavelength of the incident
radiation grows shorter and shorter, the Brillouin
scattering goes over smoothly into the thermal diffuse
scattering of x rays® and coherent inelastic scattering of
neutrons.’® The Brillouin doublets were first found by
Gross!! and later confirmed by others.!?

Stimulated by Brillouin’s theory and Gross’ observa-
tion, Debye and Sears® coupled an acoustic transducer
into a liquid column to set up a pattern of standing
waves. This density grating acted to produce diffraction
of a light beam which was sent through the column. By
observation of the diffraction pattern, and a knowledge
of the transducer frequency, this type of experimenta-
tion, which is quite different from the spectroscopic
study involved in Brillouin scattering, became!* a very
useful method®® for the study of the velocity of sound
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(1932).

14 C, V. Raman and N. Nath, Proc. Indian Acad. Sci. A2, 406
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waves whose frequencies were low enough to be gener-
ated by acoustic transducers.

From the very beginning, workers investigating the
Brillouin spectrum found, in addition to the Brillouin
components, a central or unshifted component in the
spectrum of the scattered light. This component
persisted even after removal of all foreign impurities
suspended in the medium.

Landau and Placzek!®'" proposed that this quasi-
elastic scattering was produced by nonpropagating
density fluctuations, or more properly by isobaric
entropy fluctuations, and they calculated the intensity
and spectral distribution of this component. Both the
Brillouin and the Landau-Placzek theories have been
cast in a more modern form!® which relates the spec-
trum of the scattered light to the space-time correlation
functions for the density and temperature fluctuations.

Within the limits set by the spectral distribution and
intensity of conventional light sources, the Brillouin
spectrum has been studied both in liquids®*? and in
solids.”2 The review of Fabelinskii® is particularly
valuable. It includes an account of the early inde-
pendent theoretical and experimental contributions
made to this field by Mandel’shtam and Landsberg.

With the aid of laser light sources and high-resolution
interference spectroscopy it has now become possible to
measure,*®2 for the first time, lifetimes of the ther-
mally excited microwave phonons, and to determine as
well their velocity with a precision (~0.19,) one order
of magnitude higher than has previously been possible.
Furthermore, very recent developments?6—% in electronic
light-beating techniques, which are based on the
monochromaticity of the laser light, permit a study
of the spectrum of the scattered light with a resolving
power many orders of magnitude greater than can be
achieved with optical methods.

(11953&) Landau and G. Placzek, Physik Z. Sowjetunion 5, 172

¥ L. Landau and E. M. Lifshitz, Electrodynamics of Continuous
Media (Addlson-Wesley Pubhshlng Company, Inc., Reading,
Massachusetts, 1960), pp. 393 fi.

18R, Pecora. J. Chem Phys 40, 1604 (1964).

BR.D. Mountain, Rev. Mod. Phys. 38, 205 (1966).

1. Fabelinskii, Usp. Fiz. Nauk 63, 355 (1957).

(1;‘419)). H. Rank, E. R. Shull, and D. W. Axford, Nature 164, 67

2 R. S. Krishnan, Proc. Indian Acad. Sci. A41, 91 (1955).

# D.I. Mash, V. S. Starunov, and I. Fabehnsku, Zh. Eksperim. i
Teor. Fiz. 47, 783 (1964) [Enghsh transl.: Soviet Phys.—JETP
20 523 (1965)]

2¢R. Y. Chiao and P. Fleury, Physics of Quantum Electronics,
edited by P. Kelley, B. Lax, and P. E. Tannenwald (McGraw-Hill
Book Publishers, Inc., New York, 1966).

25 G. Benedek and T. Greytak, Proc. IEEE 53, 1623 (1965).

26 H. Z. Cummins, N. Knable, and Y. Yeh, Phys Rev. Letters
12, 150 (1964).

g, s. Alpert, Y. Yeh, and E. Lipworth, Phys. Rev. Letters 14,
486 (1965).

(1;864!)) A. Jennings and H. Takuma, Appl. Phys. Letters 5, 241

2 J. B. Lastovka and G. B. Benedek, Physics of Quantum
Electrowics, edited by P. Kelley, B. Lax, and P. E. Tannenwald
(McGraw-Hill Book Publishers, Inc., New York, 1966).

¥ N. C. Ford, Jr., and G. B. Benedek Phys. 'Rev. Letters 15,
694 (1965).



149 BRILLOUIN

In the present paper we present the results of a
study®% of the Brillouin spectrum of light scattered
from three alkali halide crystals, KI, KCl, and RbCl,
using a helium-neon laser as a light source and a grating
spectrograph. The spectrum was studied as a function
of the angle between the crystal axes and the direction
of the incident beam. This permits a measurement of
the velocity of sound waves as a function of their
direction in the crystal. In particular we have measured
the velocity of sound waves in the longitudinal and
“transverse”’ acoustic branches as a function of direction
in the [1107] crystal planes. The wavelength of sound
studied was ~3000 A, and the frequency of the longi-
tudinal waves was ~10 kMc/sec while the “transverse”
branch phonon frequencies were ~6 kMc/sec. From
these data we have obtained with a precision between
0.259% and 49, the microwave elastic constants for
threse three crystals. We also present a calculation of
the intensity, polarization, and spectral distribution of
the scattered light along with the quantum-mechanical
modifications required for application at very low
temperatures. The predictions of this calculation are in
good agreement with our measurements of the relative
intensity of the scattering from “transverse” and
longitudinal modes.

II. THEORY

We now present a classical calculation of the intensity
and the spectrum of light scattered from thermal
fluctuations in liquids and solids. At the outset it is
important to recognize that these media contain about
10° atoms in a region as small as the cube of the light
wavelength. Hence for dimensions of this order a liquid
or solid may be regarded as a continuum. A light wave
passing through such a medium produces an oscillating
dipole moment per unit volume or polarization P(r,)
at each point r. The oscillating moments in turn radiate
or scatter electromagnetic energy in all directions. The
electric field dE’ scattered to the field point R by the
oscillating polarization within a volume |dr|<<\? is

dE' (R))
3 l:lk_rX (Irr X P (r,t")/0¢'%)
- A|R—r|

drl] W
t'=t—|R—1|/cm *

The vectors R, r and the unit vectors 1 and 1z, are
shown in Fig. 1. For simplicity we have taken the field
point R within the medium. If it is outside the medium
one may find the field there by obtaining the scattered
field inside the medium and then using the laws of
refraction and reflection at the boundaries. In Eq. (1),
¢ is the retarded time {— | (R—r)| /cm, calculated using
as velocity the speed of light inside the medium (ca)
rather than that in a vacuum (c).

3t K. Fritsch, M.S. thesis, M.I.T., 1965 (unpublished).

( %2 K. Fritsch and G. Benedek, Bull. Am. Phys. Soc. 10, 109
1965). )
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Eoei(ko-l-wot)

F1c. 1. Diagram showing the relationship between the source
point r, the field point R, the incident wave vector ko, and the
scattering angle 6.

For low-intensity incident radiation, the local
polarization is linearly proportional to the electric field,
the proportionality factor being the tensor polarizability
«. In analyzing the origin of the scattering it is con-
venient to decompose « into its time average part (a)
plus the time-space fluctuations da(r,#) produced by the
thermal fluctuations in the medium. In liquids and in
cubic crystals the time average polarizability {(a) is a
scalar times the unity tensor, and the index of refraction
n is independent of the direction of propagation. How-
ever, the thermal fluctuations in a crystal cause off-
diagonal components to appear in the polarizability
tensor, so that we must regard de as being a tensor
whose elements fluctuate in time. Writing then the
electric field of the incident wave within the medium as

E(r,t) = Egeitko-r=w0t) | 2

where ky=mnwo/c is the wave vector of the light wave,
we find that. the polarization at each point in the
medium is

P(r,0) = ({a)+e(r,)) - Egeiko-r=ent), ©)

To evaluate the second derivative of P as required by
Eq. (1), we must realize that the characteristic fre-
quencies for thermal fluctuations are small ($10% cps)
compared to the light frequency in the optical region
(~5X10" cps). We may therefore regard e as a very
weak function of the time and write

9P (1)) 0P —w®P(1,1). 4)

On substituting Eqgs. (3) and (4) into (1) and carrying
out the integration over the illuminated volume V at
the retarded time #, we find that if R>r,

Li

wo 2 ei(ko’-R—-wot)
E’(R,t)=—<—) —
R

[
Xl:lkx /V(<a>+aa<r,z'>>- Eoe““"“k"”"]drl] . )

where we have used the faclts that if R>r
1p = k)

Nwo Wy
—|R—r|2—T1,- (R—1);
4 2

kgl—=—m001k/6;



650 G. B. BENEDEK

and in the denominator we have used
| R—r| =R.

The integral in Eq. (5) represents the superposition of
phases of waves scattered from each illuminated point
in the medium. In the absence of the fluctuations (de)
this superposition leads to a complete cancellation of
the scattered waves. The contribution to the integral
from the (@) term is zero except in the forward direction.
Scattering out of the incident direction results entirely
from fluctuations in the polarizability.

We may now ask: Of all the fluctuations, which in
particular are responsible for the scattering of light into
a particular direction? This can be answered by
analyzing the fluctuations into their spatial Fourier
components:

1

(2."_)3/2

b (1,) =

)3 / |dq|sa(@estarFes@i1 . (6)

In this decomposition 2m/|q| is the wavelength of the
fluctuation, w,(q) is the frequency of the fluctuation
corresponding to this wavelength. The index u denotes
the possibility of a number of branches in the dispersion
relation connecting q and w. In general, w,(q) can be
complex to include a description of the damping of the
fluctuations.® w,(q) is double valued with (&) to
account for the degeneracy in the dispersion relation
for positive and negative running waves. We now can
put Eq. (6) into Eq. (5), being careful to include the
effect of time retardation in de. This gives

(OF) 2
E’(R,t)=—<—> > L
c »
ei{k~R—[woiw“(q)]t;J

x[lkx / |da] (e (q)- Eo)

1
(2r)372

k= (n/c)(wotw,(q))1x=k(q). )

The final integral in Eq. (7) is a delta function provided
that the illuminated region is very large compared to
the wavelength of light. In this case,

/’dr‘ei(ko—lﬁvq)-r’ (7

where

/ ettt | dr| = (2m)%[q— (k(q) =k ].  (9)

Thus the wave vector of the fluctuation which produces
the scattering in the direction 1 is that which satisfies
the implicit equation

a=k(@—k=K.

3 For the quasi-elastic or central component in the scattering
wy(q) is purely imaginary.

(10)
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The solution of this equation is denoted by K and is
called the scattering vector. Equation (10) for K can be
interpreted physically in two equivalent ways. In
photon terminology it represents the conservation of
momentum between the incident photon ko, the scat-
tered photon k, and the scattering fluctuation K. Here
we must remember from Eq. (8) that the wavelength
of the scattered light can be different from that of the
incident light because the scattering fluctuation can
exchange a quantum of energy =hw,(K) with the
incident photon. In classical terms, Eq. (10) represents
the fact that a spatially periodic fluctuation can
modulate the polarizability and hence the phase of
waves scattered from each point in such a way as to
exactly cancel out the phase factor ¢*®%0r produced
by the combined effect of the spatial variation of the
incident wave and the time retardation. As a result of
this cancellation the radiation from each point in the
medium can add constructively at the field point. In
this classical description, Eq. (10) corresponds to a
Bragg reflection of the light waves off the wave fronts
of the fluctuations. Substituting Egs. (10) and (9)
into (7) and replacing de by de/4m, where de is the
fluctuation in the dielectric constant tensor, we find on
relabeling E'(R)))=FE'(K;f) (i.e., we emphasize the
dependence of the scattered field on the direction of
scattering),

E'(K,)= _<g>2 (r)2

4

Z ei(k~R~[mo:{:wu(K)] t)
4R »

1:X[1:X @e#(K)- Eg)]. (11)

The amplitude of the scattering from each branch is
proportional to that spatial Fourier component of the
fluctuation in & which has wave vector K. The frequency
of the scattered wave (w’) is shifted from that of the
incident wave wy by the amount 2w, (K), i.e.,

o =wotw,(K). (12)

The spectrum of the scattered light contains sets of
doublets located symmetrically around the incident
light frequency. In quantum-mechanical language these
doublets represent the exchange of a quantum =##w(K)
between the photon and the fluctuation. Classically,
the frequency change of the scattered light follows from
the picture of its origin as a Bragg reflection, provided
that we include the fact that the wave fronts of the
fluctuation move with the phase velocity [ 4w, (K)/K].
Because of this, the incident light wave suffers a
Doppler shift which is exactly equal to that given in
Eq. (12).

To determine the spacing between the doublets, and
the scattering vectors K involved, it is necessary to
identify in greater detail the nature of the microscopic
fluctuations. One source of these is to be found in the
lattice vibrations in liquids and solids. These traveling
waves produce fluctuations with wave vectors q in the
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range 0< | q| <w/ao, where a, is a distance of the order
of the interatomic spacing. The corresponding dispersion
relations [w,(q)] consist, in general, of optical and
acoustical branches. If we solve Eq. (10) using Eq. (8)
for either of these branches, we find at once that the
scattering vectors K fall in the range 0< | K| < (47/)),
where \ is the wavelength of light in the medium. Hence,
the lattice vibrations do indeed contain waves whose
wavelengths satisfy the momentum conservation condi-
tion. However, since visible light has A~10%,, the
scattering is produced by phonons whose wave vectors
span the region in reciprocal space between the origin
and points one-thousandth of the distance to the edge
of the Brillouin zone. While these points are far from
the zone edge, they represent regions of the phonon
spectrum which are far beyond the ultrasonic region.

The scattering which comes from the optical branches
in solids is called vibrational Raman scattering. The
frequency shift involved is Aw~2rX102/sec and this
shift depends only weakly on the scattering vector K
because of the flatness of the w(K) curves in the optical
branches. A particular optical branch will be Raman
active for a given K provided that it produces a fluctua-
tion in the dielectric constant with that wave vector.
Scattering from the acoustic branches is known as
Brillouin scattering,!? and involves a frequency shift
which is 10% to 10* times smaller than that of the
Raman effect. This frequency shift, [ 2w, (K)], reflects
directly the dispersion relation for phonons in the
acoustic branches.

The angular dependence of the Brillouin doublet
spacing is computed as follows: Let the light be scat-
tered a direction § away from the incident beam. The
scattering vector K is calculated to a high degree of
accuracy by neglecting the change in wavelength of the
scattered light in Egs. (10) and (9). Under this approxi-
mation k and ko have the same length and K simply
connects them. The direction of K is perpendicular to
the line bisecting the angle 6 and has the length

K222k sin(0/2) = (2nwo/c) sin(8/2). 13)

The corresponding shift (o' —wo) in frequency of the

scattered light is determined by the acoustic dispersion
relations:

w,(K) =V (w,, 1)K . (14)

Here we take explicit note of the fact that the phase

velocity (V) can be a function of the frequency and the

direction of the sound wave. Combining Eqs. (14) and

(13) we obtain the result first found by Brillouin,!? viz.,
o' —w, w, (K) 20V (w,,1x)
=t

Wo Wo c

sin(9/2). (15)

In liquids the velocity is independent of the direction
of propagation and only a longitudinal acoustic branch
exists, i.e., V="V (w). As the scattering angle 6 increases,
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the scattering phonon, and hence the shift w’—wy, ranges
from O in the forward direction to w~2X10~%w, for
backward scattering. For visible light this corresponds
to a phonon frequency of ~10X10*® cps. Hence by
studying the angular dependence of the splitting of the
“Brillouin doublets” we may obtain the sound velocity
as a function of frequency up to about 10 kMc in
liquids.

The Brillouin spectrum of light scattered from a solid
differs from that of a liquid. In the solid, the length and
direction of the scattering vector K is, as before, fixed
to a high degree of approximation by # and the angle 8
[Eq. (13)] between incident and scattered beam.
However, in the solid the acoustic phonons contain
three separate branches: there are in general three
different frequency sound waves, each with the same
wave vector K. The Brillouin spectrum, therefore,
contains, in general, three sets of doublets. Further-
more, in the solid, one can bring different crystal
directions into coincidence with the vector K without
in any way altering the scattering angle 6. Hence, one
may obtain from the Brillouin spectra the frequency
and the phase velocity of sound waves with wave
vector | K| =2(nwo/c) sinf/2 as a function of direction
in the crystal. In the present experiments we have
carried out this procedure for the three cubic crystals,
KCl, KI, and RbCI. We fixed the scattering angle 6 at
90° and thereby selected the wavelength of phonons to
be investigated (~3000 A). The crystal axes were
rotated so that the scattering from phonons anywhere
in the [110] plane could be studied. From the observed
splitting of the Brillouin components produced by
phonons in the “longitudinal” and “transverse”
branches we obtained the angular dependence of the
phase velocity and the frequency for sound waves with
the prechosen wavelength. With this information we
have determined for the first time the elastic constants
of these crystals in the 6-15 kMc/sec region. To
investigate curvature in the w(K) curves one can meas-
ure the phase velocity as a function of wavelength
simply by altering the scattering angle 6.

If we include the change in wavelength of the scat-
tered light in computing the scattering vector K from
Egs. (10) and (8), it can be shown that there is a slight
asymmetry in the placement of the Brillouin doublets
around the unshifted frequency wo. The high-frequency
line is shifted an amount dw, farther away from w,, while
the low-frequency line is shifted toward wy by dw,. In
fact it is easy to show that (Swu/w,)=12 (w./we). This is
approximately 10=¢ to 10~5 for most liquids and solids.
This effect is too small to be detected in the present
experiments.

The analysis presented above has centered on the
information contained in the location of the centers of
the Brillouin doublets. We now calculate the intensity
and the spectral distribution of the scattered radiation.
Both these quantities are determined by the auto-
correlation function for the scattered electric field,
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viz.,

(B'(Kt+1)-E*(K,)
r
E'(Ki+7)-E*(Kpdt. (16)

—T

= lim —
% )T

The total power dP’[ (K,R) in all frequencies scattered

into a solid angle d at the field point R is proportional
to the mean squared field strength,

iP'(K,R) =§C—<| E/(K,f) [2)Rd0. (17)

If we define the spectral density function S(K,w’) as

1 o0
— [ (B Rt B (R )i

—00

™
S K, /)= ) (18)
e (B KD
which is normalized in such a way that
/ dw'S(Kw')=1, (19)

then the power scattered into d2 which lies in a fre-
quency interval between o’ and w’+dw’, [dP’ (K w')dw']
is given by

dP' (Kw')dw'=(dP'(K))S(K,w')dw’ .
In determining the form of the correlation function

for the scattered field, it is convenient to reabsorb into
d¢#(K) its corresponding time dependence. Writing then

(20)

oer (K ) = 6e* (K)emien(X)t | (21)
Eq. (11) for the scattered field becomes
Wy 2 (27[')3/2 )
E/(K,)= —<““> T eiteR-enn],
c 47R
XX @e(K)-Eo)]. (22)

This equation shows that the correlation function for
the scattered field is determined by the fluctuations in
the dielectric constant tensor. A fluctuation de(K,¢)
produces a corresponding fluctuation in the electric
displacement vector 6D (K ,t)=8e(K,f)- Eo. The double
cross product preceding this simply indicates that in
the light-scattering experiments we observe the com-
ponent of the fluctuations in §D(K,#) which lie in a
plane perpendicular to the direction of the scattered
wave.

The fluctuations in the dielectric constant tensor
components result from the fact that these components
depend on the state of strain of the solid. The strains
themselves fluctuate at each point because of the
passage of thermally excited sound waves. In general,
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for small strains, we may express the change in dielectric
tensor component &e;;(r,t) as a linear function of the
elastic-strain components e (r,#), viz.,

- *'“EZ j)[jlmelm(ryo . (23)
l,m

602
In a cubic crystal the coefficients p;jin, as defined above,
are the Pockels elasto-optical constants.34% The strain
components e, (r,#) are related to the elastic displace-
ments [#(r,#)] in the medium by

1 (6u;(r,t)+aum(r,t) ) ’ 09

€im (r, I‘) =—
2 Xy, dx;

where / or m can take on the values 1, 2, or 3 and the
¥1, X9, and x3 represent the 3 coordinate axes relative to
which the tensor components p;ji, are defined. In a
cubic crystal in which each cube axis has a fourfold
symmetry, there are only three independent constants
in the elasto-optical tensor and we may write Eq. (23)
as

561']'(1',1:)

= pasei; (1,0)+ (Pr1— pro— pas)bijes: (x, 1)
+ 1 2 eu(r,))s;;.  (25)
.

€0

The elasto-optical coefficients p;; in Eq. (25) are
dimensionless quantities whose order of magnitude can
be simply estimated. Consider for example the alteration
of the optical dielectric-constant tensor produced by
an adiabatic hydrostatic compression. In such a com-
pression e;;=—6,;(1/3)(p/p):, Where p is the density
of the solid and the subscript denotes a derivative at
constant entropy. From Eq. (25) we see at once that the
resulting alteration in the dielectric constant tensor is
d€;j=0;;0€0, and that de, is related to the p’s by

D11t+2p12 1 deo 1 /70 Ineg
) n) G e
3 e\ (8p/p)s eo\d Inp /

Since n*= ¢y~ 3, and since we may expect (9 Iney/d Inp),
=1, the magnitude of (p1142p12)/3 is ~0.3 or of the
order of unity.

It is also informative to examine the form of Eq. (25)
for isotropic solids and for liquids. In the former case
there are only two independent Pockels constants,
pu and pie, and Eq. (23) takes Landau’s form!?

6€if (l', t)

= (pu— pr2)es; (r,0)+ p1a( Zz" eu(r,))s;;. (27)

6()2

In a liquid there is but one elasto-optical coefficient,

# J. ¥. Nye, Physical Properties of Crysials, Oxford (Clarendon
Press, Oxford, England, 1957), pp. 243 ff.

* M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954), pp. 373 ff.
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p11=p12 and the fluctuations in the dielectric constant
tensor are just de;;=0;;0€0, Where

d€o (l',l) =— 602P11V u(r, t) = pued (BP/P)s , (28)
where we have used V-u= — (§p/p) for sound waves in
a liquid. In a liquid p1; is related very simply to the
density dependence of €. In fact from (26) we see that
in a liquid that pn= (1/¢0) (0 Ineo/d lnp)s, so that (28)
takes the simple form

Jdeo

Gatt).= (=) @ 29)
dp /s

Having investigated the properties of the elasto-

optical tensor we return to the determination of

de;;(K,?), the fluctuation in the dielectric tensor com-

ponents having wave vector K. This quantity is given
by

1

(27)372

deii(K,0)= /!dr[&ei,-(r,t)e—m'r. (30)

In the case of cubic crystals we must substitute Eq. (25)
into (30). This yields an expression for 8¢;;(K,) identical
in form to (25) except that em(r,?) is replaced by its
Fourier transform e;,(K,?#), where

1 |dr|
m{t)= (2#)3/2/ PN

o (6uz(r,t)+6“m(”t))e_ix.r_ (31)

6‘xz

0%
The sound waves produce a displacement at r which is

due to the superposition of waves with all possible
wave vectors g, i.e.,

wuy(x,8) =

/ wi(q,0)e 47 |dq] . 32)

(27)32

Substitution of Eq. (32) into Eq. (31) and integration
over |dr| shows that the fluctuation de:n (K, is pro-
duced solely by the strains of the sound waves which
propagate with wave vector K. There are only three
such waves corresponding to the three possible polariza-
tions of the wave. Denoting the polarization index by
w=1, 2, or 3 as in Eq. (22), we have

et (K, 2)= %(ul“(K, DEmtu(KDK).  (33)

u*(K,t) is the Fourier amplitude of the displacement
vector along the ! coordinate axis of the sound wave
having wave vector K and polarization . Using Eq. (33)
we find that the substitution of Eq. (25) into Eq. (30)
gives the following result for the fluctuation in the
electric displacement vector §D(K,?) produced by the
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sound waves in conjunction with E,:
€0’
oD+ (K,H=6e*(K,) - Bo=—u(K,)KEo(*, (34)
1

where K and E, are the magnitudes of K and E,
respectively.

(K, ) = u's (K)etion 00t (35)

represents the amplitude and time dependence of the
elastic displacement in the sound wave. ¢* is a vector
whose magnitude is 0< |¢| Z1. Its value is given by

p
«:u=—2“-"<w<1x- Lo+ (3% o) L)+ pra(#* 1) L,
+ (pri—p1a—paa) 2 7 (lx)i(1ge)ils, (36)
=1

where #* is a unit vector in the direction of the polariza-
tion of the sound wave. The components of #* along the
cube axes are m#, I=1, 2, 3. 1g is a unit vector in the
direction of propagation of the sound wave, with com-
ponents (1x); along the cube axes. 1g, is a unit vector
along the direction of polarization of the incident light-
wave. The components of this unit vector are (lg,):
along the cube axes. 1;(I=1, 2, or 3) are unit vectors
along the cube axes. The direction and magnitude of { is
determined by the relative directions of K, E,, and #*
and the magnitude of the p’s. We note that in general
the electric displacement is in a different direction from
that of the incident field Eo. As was mentioned before,
we observe in the light-scattering experiments not ¢,
but the vector & which is related to ¢* by

&=1uX (1eX ). 37

This quantity is simply the component of ¢ which lies
in the plane perpendicular to k. We shall presently give
explicit expressions for £ for those directions of lx, 1g,,
and #* which obtain in the present experiments.

We can now obtain expressions for the correlation
functions for the scattered electric field using Eq. (22)
and Egs. (34)-(37). Remembering that sound waves
belonging to different polarization branches are orthog-
onal to one another we have

Wy 4 (211")3 604
E'(K,i+7)-E*(K,0))={— —K2E ¢
(E'(K,t+47)- E"(K,)) <C) (4W)2R2KE

X 2 |8 Kur (K i4-7) - (K, 8)yetoor.  (38)

p=1

The correlation function for u*(K,f) may be obtained
by reasoning along the following lines. In Eq. (35) we
broke the time dependence of the thermally excited
sound-wave displacement u*(K,#) into two parts: one
being the rapid sound oscillation frequency, the other
being much slower statistical fluctuations in the ampli-
tude factor #’*(K,#). This amplitude factor is in fact a
random variable. If we characterize the temporal
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coherence of this variable by a correlation time 7,(K) or
a correlation rate 1/T,(K) and presume that the
correlation function for this amplitude dies away
exponentially in time then it follows that

(K 1 7) e (K 1)
= (Kt r)u's (K, 1) oie 007

= ([Ws(K, 1) [2)erier0me- T (39)

We observe that I',(K) is the decay rate for the sound
wave of wave vector K. The mean squared amplitude
of the sound wave can be related to the temperature as
follows. The total vibrational energy of the solid is equal
(by the equipartition theorem for harmonic oscillators)
to twice the kinetic energy.

@)=20y={ [ 1aolite) )

where p is the density. The sound wave amplitude
enters into the expression for the energy through the
relation

(40)

1

u(r,)= (27)32

> [ ldalw(@eremaan, @

Substituting this into Eq. (40) we find, keeping in mind
that Eq. (41) indicates that for a single q there are two
sound waves moving in opposite directions

(=23 [ dalpor @ w(@l?.  @2)

From Eq. (42) we note that the Fourier amplitudes
u(q) are the normal coordinates for the lattice vibra-
tions. Denoting by (£,(q)) the thermal average of the
energy for each normal mode, we note that the total

3 g2 1 r.(K)
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energy is simply equal to the sum over all the normal
mode energies. Writing this sum as an integral over
|dq| with the appropriate density of states we have that

)
®=x [l ),

(43)

where V is the volume of the solid.
Comparing Eqs. (43) and (42) and using the fact
that for 27> %w (E,(q))=FkT we find that

(lu(K)|?) )
la# | 2y =- — .
‘ (27)? 2pw,2(K)

(44)

Hence the correlation function for the scattered field
becomes

et V. RT
(E'(Kt+7)- E’*(K,t)>=Eoz<@> z
¢/ R (4m)* 2p
3 (2
XY &2 - il Fou(O17 (= Tu(K)T) | (45)
p=1 w

n

It should be mentioned that the = notation in Eq. (45)
indicates that a sum is to be taken over both the positive
and negative running waves.

Now that this correlation function has been deter-
mined we find that the total power scattered into a
solid angle dQ is given by Eq. (17), where the auto-
correlation function for the scattered field is

R (47) p im 02(K)

wo\'e! V ET 5 |¥|K?
—) - (46)

(| E’(K,t)]2)=E02<

c

"This power is distributed over a spectrum whose density
S (K,') is given according to Eq. (18) by

Iy (K) )

1 02(K) 7| @~ Lot e, () DT EK) | (o — (o0, (K) D rs(K)

S(Kw)=

Thus, as we have already realized previously, the
spectrum of the scattered radiation consists in general
of three pairs of doublets split around the incident fre-
quency by the frequency w,(K) of the three sound waves
having wave vector K. The width of each of these spectral
lines gives the sound wavelifetime[[1/T,(K)]. By chang-
ing the direction of observation and by rotating the crys-
tal axes relative to the scattering direction one can study
the dependence of the lifetime on the sound wavelength
and on its direction of propagation in the crystal. Such
an investigation requires of course that the spectral
distribution in the incident laser beam be smaller than
the spectral width of the scattered Brillouin components

. 47
T (47)

¥ w“Q(K)

and that the spectrometer have sufficient resolving
power. Finally we note that the factors |&|2 play the
role of weighting factors which determine the relative
intensities of each of the three doublets.

Equation (45) for the correlation function for the
scattered field was derived under the assumption
haw,KkT. Since the maximum sound wave frequencies
which contribute to the scattering are about 50X10?
cps, we expect than Eq. (45) will be valid provided
that 7>>3°K. If the temperature falls into the 4°K
region, however, Eq. (45) must be altered to take into
account the quantum mechanical features of the
lattice vibrations. We may obtain the correct quantum
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mechanical results by making the following replace-
ments in Eq. (39):

[u(K)[2etiex®— (| (' |us* (K) [m) [eion®m | (48)
and
[0 (K) |2e=ies307 = (| (o' | (K) | ) [Boien 7. (49)

That is, u’s become, in the quantum mechanical case,
the phonon creation and annihilation operators and one
must evaluate the thermal average ( ) of the matrix
elements of these operators. These averages are

Ve, (K)((n (K)41)

Nats(K 2) = ) 50

o () = = (50)
Ve (K)((n(K)))

"ar(K 2y = , 51

o ®In = = GO

where (,(K)) is the mean occupation number of the
phonons having wave vector K and polarization
index u:

(mu(K))= (ehen®ONT—1)1, (52)

The correct form for Eq. (45) at all temperatures is
(E'(Ki+7)-E*(Kp))
w\*et V 1 3
=E02<—) — — Z [Eﬁ‘
4 R? (41!’)2 2p p=1
X [, (K) ) +-1) gt loo—en®)]7
+ (1, (K) Yeileoten (17 )= Tu (K7

2K *hw, (K)
w,? (K)

(53)

The power scattered into the solid angle d© is propor-
tional [through Eq. (17)] to the value that Eq. (53)
takes for 7=0. We note that even at T'=0°K, where
all the phonons are in the ground states, the zero-point
motions still produce scattering. In fact, Eq. (53) shows
that the scattering power at 0°K is equal to that ob-
tained from the classical formula provided that we
replace 2T by the zero point energy #w/2. The spectrum
of the scattered light becomes asymmetrical as
kT < 7w, (K), as can be seen by taking the time Fourier
spectrum of the correlation function [Eq. (18)]. This
gives the following form for the spectrum of scattered
light:

i (K"")zl o e ﬁw;.(K)Pn(K)}
w=1 w2 (K) T
{ (Gt (K))+1)
[/ — (@o—w, (K) 4T, (K)
) (n,(K)) }
[/ — (o, (K)P+T,2(K)

3 ]{#12 —1
x| I e ®emE+D)

u=1 Wy

(54)
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This shows that the spectrum of doublets becomes
asymmetrical at low temperatures. As 7 — 0, the
amount of light in the low-frequency (Stokes) side of
each doublet becomes independent of the temperatures,
while the high frequency (anti-Stokes) component
steadily gets weaker in intensity like e=#¢/*7, Quantum
mechanically this results because one can create
phonons even at 7'=0; however, the annihilation of
phonons is proportional to the number of excited
phonons and this number goes to zero as e #¢/FT
as T— 0.

We complete the discussion of the intensity and
spectral distribution of the Brillouin components by
calculating the & for the conditions appropriate to our
experiments. We studied sound waves propagating in
the [110] plane. Thus, k, ko, and K were in this plane,
and K could be arranged to make any desired angle ¢
with respect to the [001] axis lying in this plane. The
laser beam was polarized perpendicular to the k, ko
plane. Hence the unit vectors lg, and lx have the
following components along the cube axes.:

1 (singa sing ) (55)
={-—, , COSe |, S
“\v’' v
1 1
1E0=(_, — o). (56)
vII vz

The solution of the secular equation® for the propaga-
tion of elastic waves in a cubic crystal shows that the
three sound waves which propagate in the direction
1x have the following polarizations: The first, (u=1) is
a pure transverse wave polarized perpendicular to the
k, ko plane. The second, (u=2) is a largely transverse
wave with appreciable longitudinal admixture for
certain values of ¢. The third wave (u=3) is almost
entirely a longitudinal wave. The polarization vectors
## of these waves are

1 —1
7?'1=(“y—;0): (57)
V2 V2
2= (2+PM2)_1/2(1513PM) ) (58)
= (2+PL2)~”2(171)PL) ’ (59)
where the quantity Py, or Py is given by
(V2 cos ¢ sing) (Cya+Caa)
P (60)

L= s
M PV%;"—CM_" (COSZQD) (C44—‘ Cu)

and Vi or Vi is the phase velocity of the primarily
longitudinal or mixed polarization mode. Orthogonality
of the #’s is assured by the fact that

o PrPy=~2. (61)

38 J. DeLauney, Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2.
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Fi1c. 2. The fractional longitudinal admixture [ fLZ(¢) and
M (p)] for “longltudmal” and “mixed” acoustic mode phonons
propagating in the [110] plane along a direction making an angle
o with the [{001] direction.

We now can use Egs. (55)-(39) in Egs. (36) and (37)
to find the vectors &. A simple calculation shows that

6= (1/2)( pu costt
0
— (pr1—p1o— pus) sine sin<5— <P))1n, (62)

where @ is the angle between k and ko and 1;; is a unit
vector normal to k lying in the kko plane. Thus the
light scattered from the sound wave polarized perpen-
dicular to the [110] plane is polarized in the scattering
plane. Also

(pru— pro— pas) Sinw)lh (©3)

2 LM -
£ (?1] (o) ar2Pn

(pu—p1o— pas) Siﬂw) L. (64

3 — 'L
€ (Plzj (o)+ (2P
where 1,= —1g,. Thus the sound waves polarized in the
scattering plane scatter light so that the plane of
polarization is perpendicular to the scattering plane.
The quantities () and fZ(yp) represent the fractional
longitudinal admixture in the sound wave, i.e.,

V2 sing-+ (cos@)Pr,u
(2+PL,M2)1/2 ’

JEM () =m Ig= (65)

For the primarily longitudinal sound wave fZ(p) is
nearly equal to unity for all values of ¢. For the mixed
mode fM varies from 0 to a maximum of about 0.3 as ¢
changes. In Fig. 2 below we plot f(¢)% and f(¢)* for
values of the elastic constants appropriate to KI.

It is important to realize that isothermal measure-
ments of the p’s by uniaxial strain studies show that
in these alkali halide crystals we may expect that
p44’\'0.02, P12~018 and Pn—plz’\’0.0‘l. We therefore
expect on examination of Egs. (62), (63), and (64) that
the Brillouin doublets from the longitudinal and mixed
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mixed modes will be considerably more intense than the
doublet from the purely transverse waves. Our experi-
ment showed this to be the case; in fact we did not see
the light scattered from the purely transverse modes.
In the analysis of our data we compare the measured
relative intensity of the scattering from the mixed and
the longitudinal mode with the prediction obtained
from Egs. (63) and (64) using independent measure-
ment of the p’s and find satisfactory agreement.

III. EXPERIMENTAL METHOD

In Fig. 3 we show a schematic diagram of the experi-
mental arrangement for the observation of the spectrum
of the scattered light. The light sources was a Spectra-
Physics Model 115 helium-neon laser which has an
output of about 2 mW when operated in the uniphase
mode. The laser beam passes through the sample
which was mounted in such a way that the collected
light is always 90 deg away from the direction of the
incident beam. Further, the holder permits the crystal
to be rotated so that any direction in a [1107] plane can
be brought into coincidence with the scattering vector
K. A lens system collects the scattered light and focuses
it onto the input slit of a 12-m, high-resolution grating
spectrograph. The spectrum of the light is observed by
sweeping the position of the exit slit along the focal
plane of the spectrograph. The light intensity passing
through the exit slit was detected with an RCA 7265
photomultiplier tube whose output was first amplified
with a Hewlett-Packard 425-A dc amplifier, and then
recorded on a strip chart recorder.

This system is rather straightforward, yet there are
certain features which we have found necessary to
include which may prove helpful in future work. In
particular, attention should be drawn to the problem of
passing light through a crystal and collecting the light
at say a 90° scattering angle when the faces of the
crystal are not normal to the direction of the incident
or the scattered light beam. Also, it is well to realize
that scattering from a rough crystal surface produces

L Recorder H ImegrotorHZ::fiﬁg HD-C omplifier]

Mirrors M

Pho'omulnpney

| RCA 7265
\\~\ Grating

“jt
Entrance slit S¢ "\‘\\

90°
Collecnun @ . i
N (Q lens Lo ﬁ Crystu!
< D Focusing
@ = lens L,
273
& prism P
Fic. 3. Experimental arrangement of laser, light focusing

and collecting system, grating spectrograph and photoelectric
detection chain.

__._L_

He-Ne laser
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an extremely large amount of scattering at the incident
light frequency. In the spectrum this unshifted light
has tails which can overlap and mask the Brillouin
components. Both these difficulties were circumvented
by immersing the crystal in a liquid mixture whose
index of refraction can be altered by changing the rela-
tive proportion of the constituents until exact match
between the liquid and the crystal is achieved. The
light enters the scattering cell normal to a glass face of
the chamber enclosing the mixture and crystal. The
scattered light leaves normal to a second glass face.
When match is achieved the crystal seems to disappear
in the fluid. This technique is quite helpful, especially
when the crystal axes must be rotated into different
directions relative to the light beam, as is the case in our
experiments. The liquids employed to match our alkali
halide crystals were mixtures of di-ilodomethane,
toluene, and methanol.

Another aspect of our system which merits further
comment is the light collection system which involves
the focusing lens L;, the collection lens L,, and the
entrance slit S;. Because of the low intensity of the
Brillouin scattering it is important to arrange these
optical elements so as to maximize the light collected
without reducing appreciably the resolution of the
spectrometer. This can be done as follows. First, the
entrance slit width (W) was chosen as large as is con-
sistent with a clear resolution of the Brillouin com-
ponents. In our case, we chose W=0.025 cm which
corresponded to Av=1.5 kMc/sec. The slit height was
1.8 cm. To determine the maximum collectable intensity
we return to formulas (17) and (46), and observe that
if the illuminated region has the form of a cylinder of
length L and a base area A4, then the total power
collected by a light gathering system having a solid
angle @ is given approximately by

Peon=PoRLQ, (66)

where P, is the total incident power and ® is the
scattering coefficient given by

wo\* et fET\ 3 |&]2K?
02l ) E v

¢/ @)\ p / w=1 0 (K)
We have assumed that the light intensity is uniform in
the illuminated cylinder and have taken the axis of the
cylinder parallel to the entrance slit. In our system,
Q is the solid angle for the light which is collected by
lens L, and which subsequently passes through the
spectrograph. L, forms an image of the source at the
slit. Of all the light beams emerging from thisimage only
those inside the spectrograph acceptance solid angle
(Qo) are collected by the mirror M, and pass through
the spectrograph. In our spectrograph Qo was 0.68X 10—*
sr. If M is the magnification of lens L, when it forms the

image of the source at the slit, then simple geometrical
optics shows that @ and @, are related by

Q=MQ.

(67)

(68)
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At first glance it would appear advantageous to make
the magnification very large. However, it should be
appreciated that this could lead to a situation in which
the image of the source could be larger than the slit so
that all the collected light would not in fact enter the
spectrograph. Thus the collected power is also deter-
mined in an important way by the dimensions of the
source and the slit. The former dimension is fixed by the
focusing lens L; which focuses the plane parallel incident
laser beam into a double cone whose apex angle is the
focal region. This focal region is of primary interest
because there the light beam is very narrow and we can
magnify it greatly and still have it pass through the
entrance slit. The dimensions of the focal region are
fixed by diffraction. Analysis of this problem?”:3® shows
that the focal region can be regarded crudely as a bright
cylinder of light whose hieght (%) and diameter (W)
are given by

Wso=\(f/a) (69)

hso=3)\ (f/a)2 ) (70)

where f is the focal length of lens Ly, a is the diameter
of the incident laser beam, and X is the wavelength of
light. Let us arrange the source width (W) always to
be of such a size that when magnified by L, it always
just fills the slit; i.e., we take

Weo= (W/M). (71)

This requirement fixes the (f/a) ratio of the focusing

lens as
(f/a)=(W/MN). (72)

It also fixes the height of the diffraction-limited region
to have the value

heo= (3/N) (W/M)*. (73)

The slit, having a height %, will pass light coming from
a region on the source having a height #/M. From
Eq. (73) we see that for small M the source height %,
is always longer than /M so that the effective length
(L) of the illuminated region to insert into Eq. (66) is
L=h/M. Using this and Eq. (68) we find that the
collected power is linear in M provided that M is not
too large, viz:

P=PyRQMbh. )

This holds true until we reach the magnification M’ for
which

ho=h/M'. (75)

At this value of M the diffraction limited cylinder has

the same length to width ratio as does the slit. The mag-

nitude of M'is obtained by using Egs. (73) and (75). This
gives

M'=3W?*/\h. (76)

37 M. Born and E. Wolf, Principles of Optics (The Macmillan

Company, New York, 1964),:2nd ed., pp. 435 ff.
38 Tschunko, J. Opt. Soc. Am. 55, 1 (1965).
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Fic. 4. Recorder tracing of the Brillouin spectrum of light
scattered from RbCl. A 22-second integrating time constant was
used. The scattering phonons in mixed (M) and longitudinal (L)
branches were propagating along a direction 40° away from the
[001] direction in a %110] plane. The strong central or “elastic”
component results from scattering off imperfections in the crystal.
It is asymmetrical because of grating irregularities.

With our initial choice of slit width M’'~15. For
M>M'thediffraction limited cylinder is shorter than the
demagnified image of the slit and the collected power
continues to rise, but much more slowly than linearly
in M. Thus the focal length of lens L; is chosen to satisfy
Eq. (72) with M= M’, and the focal length and position
of lens L, is chosen so that it focuses the source at the
slit with magnification M’. It can be shown that the
resulting acceptance solid angle Q= M"*Q, is not large
enough to artificially broaden the Brillouin components
by accepting too large a range in scattering angle.

The grating used for spectral analysis of the collected
light was ruled under interferometric control in Dr. G.
Harrison’s laboratory at MIT. The grating dimensions
were 5 in.X 10 in. with 300 lines/mm and the grating
was blazed at 63.5°. To obtain sufficiently large disper-
sion the grating was used in the tenth order at an angle
of 72° The resolving power of the grating was
~750 000.

The crystals studied were KCl, RbCl, and KI. The
first two were provided by Professor A. Smakula. The
last sample was obtained from the Harshaw Chemical
Company. The samples were typically cubical in shape
with ~% in. on an edge. Of the available samples we
consistently chose those which, when illuminated by
the laser beam, showed the greatest clarity and freedom
from inclusions. Inclusions in the crystal produce a
large elastic scattering of the light. If there are enough
such scattering centers they can produce a central
component in the spectrum whose tails have more
intensity than the Brillouin components. Thus a
selection of clear samples is especially important in
resolving the Brillouin spectrum.

The index of refraction of each of these crystals is
well known?®® at 6328 A.

% Landolt-Bornstein, Zahlenwerle und Funktionen ans Physik-
Chemie-Astronomie-Geophysik-Technik (Springer-Verlag, Berlin,
1962), 6th ed., Vol. II, Part A, Chap. 8.
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IV. EXPERIMENTAL RESULTS

Using the methods discussed in Sec. ITI we measured
the Brillouin spectrum of light scattered 90 deg away
from the incident direction. For this scattering angle,
the wavelength \; of the scattering phonon is

27/ Ns) =V2 (nwo/c) ,

in accordance with Eq. (13). This wavelength is the
same for all orientations of the crystal axes and has the
values \,=3007.4 A, 2999.9 A, and 2694.5 A, respec-
tively, for KCl, RbCl, and KI. For each orientation of
the crystal at least 10 traces of the Brillouin spectrum
were taken. An example of such a trace is shown in
Fig. 4. This trace shows clearly the scattering from both
longitudinal (L) and mixed (M) longitudinal and
transverse acoustic branches. The grating itself pro-
duced spurious Rowland ghosts and satellite lines whose
position and relative intensity was accurately deter-
mined by sweeping out a spectrum of the laser itself.
The spurious lines were removed by making a point-
by-point subtraction on each trace. This subtraction
procedure, while laborious, was especially important in
accurately resolving the lines coming from relatively
weak mixed acoustic modes.

The frequency difference »— o between the Brillouin
components and the laser frequency gives the frequency
of the scattering phonon. The phase velocity of the
scattering phonon is obtained from Eq. (15). This
procedure was carried out as a function of ¢ the angle
between the [001] direction and the sound wave
propagation direction in the [110] plane. In Table I
we give the sound-wave frequency (v—wg) and the
phase velocity V as a function of the angle ¢ for each
of the observable acoustic modes of KCL In Tables I1
and III we present the corresponding results for RbCl
and KI.

In Figs. 5, 6, and 7 we present plots of the sound
velocity V in the [110] plane as a function of the angle
¢ for the longitudinal and mixed branches of the
acoustic sound waves. The third acoustic branch
consists of pure transverse waves from which we ob-
served no Brillouin scattering. In KCl, where the

TaABLE I. Frequency and phase velocity of sound waves of
3007 A wavelength as a function of propagation direction in the
[110] plane in KCI.

Sound wave Phase
Angle frequency velocity Acoustic ~ Tem-
@ y—ry 14 mode perature
(deg) (kMc/sec) (m/sec)  designation (°C)
0 15.004-0.1 4509435 L 22.7
25 141 +0.1 4237438 L 22.6
35 13.3 +£0.1 3995430 L 22.7
8.1 £0.1 24464-34 M 22.7
45 12.454-0.08 3745425 L 22.7
55 12.1240.06 364520 L 22.8
70 12.5740.06 3780418 L 22.6
90 12.93£0.06 3889419 L 23.1
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TasLE II. I'requency and phase velocity of sound waves of
3000 A wavelength as a function of propagation direction in the
[110] plane in RbCL

Sound wave Phase

Angle frequency velocity Acoustic Tem-
@ v—p mode  perature

(deg) (kMc/sec) (m/sec)  designation (°C)

0 12.1540.07 364621 L 23.1

25 11.424+0.06 34264-18 L 22.5

5.844-0.1 1752431 M 22.5

30 11.10+0.07 3331421 L 22.5

6.2140.16 1863450 M 22.5

35 10.724-0.07 3216421 L 22.5

6.464-0.09 1939430 M 22.5

40 10.33+0.07 3099420 L 22.8

6.75+0.2 2025447 M 22.8

45 10.10+0.07 30304-20 L 22.3

6.75+0.18 2025453 M 22.3

55 9.80+0.05 2940416 L 224

70 10.194-0.06 3058416 L 224

90 10.514-0.06 3153418 L 224

scattering intensity was low even for the longitudinal
waves, and the scattering from crystal imperfections
produced a particularly strong central component, we
were able to find scattering from the mixed mode only
for ¢=235°. In RbCl and KI however, we have data on
the velocity in the mixed mode for five different
angles ¢.
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F16. 5. The phase velocity of sound waves in KCl with wave-
length 3007.4 A as a function of propagation direction in the [110]
plane. The upper graph gives the velocity of the longitudinal
acoustic mode. The lower graph gives the velocity of the mixed
mode. No scattering from the purely transverse acoustic mode
was detected. The solid lines represent the theoretical variation
of velocity using the values of hypersonic elastic constants given
in the text.
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T16. 6. The phase velocity of sound waves in RbCl with wave-
length 3000.0 A as a function of propagation direction in the [110]
plane. The upper graph gives the velocity of the longitudinal
acoustic mode. The lower graph gives the velocity of the mixed
mode. No scattering from the purely transverse acoustic mode
was detected. The solid lines represent the theoretical variation
of velocity using the values of hypersonic elastic constants given
in the text.

We also have information on the intensity of the
Brillouin components in the scattered light. The
scattering from KI was the strongest. RbCl and KCl
both produce a scattering intensity about half that of
KI. In Table IV we give the ratio of the peak ampli-
tudes (4) of the longitudinal Brillouin peaks in these
crystals for several directions in the [110] plane. It is

Tasie III. Frequency and phase velocity of sound waves of
2694.5 & wavelength as a function of propagation direction in
the [110] plane in KI.

Sound wave Phase
Angle frequency velocity Acoustic ~ Tem-
@ v—uwo Vv mode  perature

(deg) (kMc/sec) (m/sec)  designation (°C)
0 11.05+0.06 2978416 L 22.6
15 10.74+0.07 2893417 L 22.6
25 10.16£0.07 273619 L 22.5
5.2440.09 1412424 M 22.5

30 9.814-0.06 2644417 L 22.3
5.574+0.07 1500418 M 22.3

35 9.494-0.06 2558416 L 22.3
5.8140.06 156517 M 22.3

40 9.134-0.04 2460412 L 224
6.07£0.08 16354-21 M 224

45 8.90+0.05 2400413 L 22.5
6.334+£0.12 1707433 M 22.5

55 8.64+0.05 2328412 L 224
65 8.83-£0.04 237911 L 222
75 9.09-£0.04 2448411 L 22.4
90 9.2640.04 2494+11 L 22.6
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F16. 7. The phase velocity of sound waves in KI with wave-
length 2694.5 A as a function of propagation direction in the [110]
plane. The upper graph gives the velocity of the longitudinal
acoustic mode. The lower graph gives the velocity of the mixed
mode. No scattering from the purely transverse acoustic mode
was detected. The solid lines represent the theoretical variation
of velocity using the values of hypersonic elastic constants given
in the text.

informative to compare the scattering intensity from
solids with that from liquids.?® The peak amplitudes of
the scattering from toluene, water, and KCl stand in
the ratio 32:10:1.

In Fig. 8 we give data on the relative amplitude of
the scattering from the mixed modes and the longi-
tudinal mode as a function of the propagation derivation
in the [110] plane for RbCl and KI. The angles ¢ for
which we could observe the mixed mode ranged from
25° to 45° in both these crystals. When ¢ is less than
25° the mixed mode velocity is small enough so that
this peak begins to merge into the central peak and is
therefore difficult to resolve. For ¢ greater than 45° the
intensity of this mode falls so low that it could not be
detected.

V. THEORETICAL ANALYSIS

The measurements presented in the previous section
give the phase velocity (w,/|q]|) of the acoustic vibra-
tions as a function of the propagation direction. In the

TasLE IV. Relative peak amplitudes of “longitudinal” Brillouin
components in KCl, RbCl, and KI for selected directions of sound
propagation.

[oo1]
1.0:1.0:2.7

[111]
1.0:1.3:2.0

[110]
1.0:1.1:1.7
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present section we consider the theoretical predictions
for the magnitude and angular dependence of this
velocity. We shall also consider briefly the extent to
which the theory of the intensity as given in Sec. 11 is
consistent with the observed scattering intensities.

The theory of lattice vibrations is well established.
It is known? that the dispersion relation which links
the vibration frequencies for each mode (1) to the wave
vector q of the wave is obtained by diagonalizing the
so-called dynamical matrix. The elements of this matrix
are related directly to the atomic force constants. These
describe the force exerted on a given atom when it, or
any other atom in the lattice, is displaced from its
equilibrium position. It is also well known® that when
the wavelength of the lattice vibration is very long
compared to the interatomic distances the dispersion
relation takes the simple form

w()=V(1q)]|q|, (77)

where the velocity V is a function only of the direction
of propagation. In this limit the solid behaves like an
elastic continuum and the dynamical matrix for the
vibrations can be written® in terms of the elastic
constants rather than the interatomic force constants.

In our experiments the wavelength of the sound
waves is about 1000 times longer than the lattice
spacing. We therefore expect that the solid can be
treated as an elastic continuum. We shall take this as

T

[
e E/—{-\
A
- (p) 0ap
L Theory : = 0.48
0.2 {
RbCI
o 1 ! l J
0.6~
—
0.4} {\\\‘\\g
A
’K’:‘ () Theory : 1)=0.25 \{
0.21—
KL
o | 1 L J
25° 30 35 40 45

Sound wave propagation direction (@)

F1c. 8. The ratio of the maximum amplitudes of the mixed
mode and the longitudinal mode Brillouin components (4 /A1)
as a function of the direction of propagation (¢) in the [110]
plane for KI and RbCl.

© A. A. Maradudin, E. W. Montroll, and G. Weiss, Theory of
Lattice Dynamics in the Harmonic Approximalion (Academic
Press Inc., New York, 1963).
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TasLE V. Hypersonic and ultrasonic values of the elastic constants of KCI.
Wavelength Frequency  Temperature Cn Cus Ciz 2Cu+Cre
&) (cps) (°C) (10" dyn/cm?)
3007 8-15X10° 22.8 4.06 +0.01 0.63 £0.01 0.69+0.04 1.9540.02
~5X108 ~9X108 22 4.07840.0082 0.6330.0062 0.690.014» 1.964-0.032
» S. Haussiihl, Z. Physik 159, 223 (1960).
the basis of our analysis, and at the end we shall any direction in the crystal is a constant given by
examine the degree to which the experimental results
are consistent with this assumption. 8
L 3 pVid=Cit2Cas. (81)

In a cubic crystal the elastic strain produced by a
small stress can be described by three elastic constants,
Ci1, Cis, and Cy. The dynamical matrix for the sound
waves in a cubic crystal is well known.?® The eigen-
values and eigenvectors of this matrix give, respectively,
the sound velocity and polarization of each of the three
orthogonal waves in the acoustic branches. For waves
which propagate in a [110] plane one acoustic wave (7°)
is polarized purely transverse to the propagation
direction. One wave (L) is largely longitudinal and one
(M) has a mixed polarization both along and perpen-
dicular to q. The velocity of each of these three waves
is given below as a function of the propagation direction
¢ in the [110] plane. (¢ is the angle between [001] and
the direction of propagation.)

Ve(e)=(1/2p)2[(C11—C12)

4 (cos?¢) (2C14~4-C1a—Cr) 112,  (78)

Vi(e)= (1/4p)?{ (4C1s+C11+Crs)
—(cos?) (2C 44+ C12—C11)
+[(Cu+Ci2)*+ (2C444Cr2—Cra)
X (cos?) (8C14+14C124-6C1y)
— (coste) (6C14+15C1+-9C1) 1H2}112 | (79)

V()= (1/4p) 2{[(4C 14+ C11+C12)
— (cos?0) (2C 44+ Cra—Cui) ]
—[(Cut+Cr2l+ (2C44+Cro—Cur)
X (cos?p) (8C44+14C1,+6C11)

— (costp) (6C44+15C1,+9C1) H2}22 | (80)

where p is the mass density.
It may be helpful to mention the fact that the sum
of the squares of the velocity of sound waves moving in

p=l

Along the direction of principal symmetry in the
[110] plane, namely the [0017], the [111] and the
[110] directions, pVi? takes on the values Cy,
[2(2C44+C12)+C11]/3, [2C44+012+C11:|/2, respec-
tively. Away from these directions the velocity in the
longitudinal branch still depends only on Cy; and the
combination (¢Csu+bCq,) where a is nearly 2 and b is
nearly 1. Thus, from our measurements on this branch
we can obtain accurately the two quantities Cy1; and
2C 44+ C1s. In the mixed mode pV 3? takes on the values
Cu, (Cu+C1—Cr)/3 and Cuy, respectively, in the
directions. [0017], [111], and [110]. We found the
velocity in this mode only between 25°< ¢<45° In
this angular region the velocity is fairly sensitive to Cas
and an initial choice of C44 could be made from a single
value of the velocity in the branch. To determine the
elastic constants more accurately, we started with the
elastic constants obtained from the sound speeds in
three different directions. About these values we con-
structed a net of possible values for each of the three
elastic constants. Using Eqgs. (79) and (80) and an
IBM 709 computer, we calculated the velocity of sound
in each observed direction for each triplet in the net.
The computer also found for each triplet the mean
square deviations between the theoretical and experi-
mental values of velocity. The values of Ci1, Cia, Cus,
and 2Cyu~+Ci which showed the minimum deviation
between theory and experiment are given in the first
row of Tables V, VI, and VII along with their estimated
error limits. In the second row of each table we list the
results of recent accurate measurements* of these elastic
constants in KCl and KI. These measurements were
made on sound waves generated by an acoustic trans-
ducer operating in the 9-Mc/sec frequency region. Our

TaBLE VI. Hypersonic and ultrasonic values of the elastic constants of RbCl.

Wavelength Frequency Temperature Cu Cu Ciz 2C4+Ci2
A) (cps) ()] (101 dyn/cm?)
3000 6-12X10° 22.6 3.74+0.01 0.53540.02 0.724:0.04 1.7940.02
~2X108 10 and 20X10¢ 22 3.7240.062 0.503+0.01=

a C, Garland and R. Young (private communication).

4 S, Haussiih], Z. Phys. 159, 223 (1960).
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TagLe VII. Hypersonic and ultrasonic values of the elastic constants of KI.
Wavelength Frequency Temperature Cu Cas Ciz 2Cu+Cre
(4) (cps) (°C) (101 dyn/cm?)
2695 (5-11) X102 22.4 2.7340.01 0.3754:0.015 0.4040.03 1.15£0.02
~3 X108 ~9108 22 2.764-0.006* 0.37 40.004= 0.454-0.01= 1.1940.02¢
» S. Haussiihl, Z. Physik 159, 223 (1960).
measurements correspond to sound waves which have accordance with Egs. (17), (46), (63), and (64) by
a constant wavelength (~3000 A) regardless of the o e
direction of propagation in the crystal. The wave- (Au/Ar)=(or8/wnP= Vi/Vuf), (82)

lengths and frequencies involved in both types of
measurement are also given in these tables.

From these tables we observe that in KCl and KI
the hypersonic and the ultrasonic values of the elastic
constants are in excellent agreement. This indicates the
absence of dispersion in the sound velocity between
10 Mc/sec and ~10 kMc/sec for these crystals.

In the case of RbCl, Professor C. Garland and
R. Young at MIT kindly carried out a measurement
of Ciy and Cy for our sample using an acoustic
echo method. The results of their measurement are
shown in Table VI. Comparison between the ultrasonic
and hypersonic values shows that in this case as well
there is no detectable dispersion in the velocity on
increasing the sound wave frequency from ~20 Mc/sec
to ~10 kMc/sec.

We also observe that the Brillouin scattering meas-
urements of the C’s have a precision (~0.25-4.0
percent) which is about two to three times poorer than
these very good ultrasonic measurements. We feel that
the use of higher resolution optical spectrometers such
as the Fabry-Perot etalon*? and higher power lasers will
permit an increase in precision in the Brillouin scatter-
ing measurements by a factor of 3-5.

In Figs. 5, 6, and 7 we plot as solid lines the theoretical
angular variation of the velocity in the “longitudinal”
and ‘“mixed” modes using the elastic constants given
in Tables V, VI, and VII. The agreement between the
theoretical and experimental values is excellent: The
theoretical values agree with the experimental values
generally well within the experimental limit of error of
~0.59%, for the longitudinal mode and ~29, for the
“mixed” mode.

As a final part of our analysis of the data we examine
theoretically the results on the relative amplitude of the
scattering from the mixed mode and the longitudinal
mode. If the slit width of the spectrograph is broad
compared with the natural linewidth of the Brillouin
component, then the measured maximum amplitude
of the signal as observed at the output slit is propor-
tional to the total intensity under the Brillouin com-
ponent. Under these conditions, which apply in our
experiments, the observed ratio A,/A; is given in

4 P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960).

where V1, and V y are the velocities of the longitudinal
and mixed mode sound waves, respectively. From
Egs. (63) and (64) we may write the angular dependence
of AM/A L as

:1”1#1_!__ [ Vi(e)(f"(@)+n sing/ (2+PM2)1/2):12 )
AL V(o) (fE( o)+ sing/ (24 P12)17?) )

where
1= (pu—pr—p1)/V2p1s, (84)

and P and Py are given as functions of the phonon
direction by Eq. (60). The velocities V1 and V are
known as a function of ¢ from our measurements. The
quantities f¥(¢) and f*(¢) represent the known
fractional longitudinal admixture in the sound wave as
defined in Eq. (65). To calculate theoretically the
magnitude of 4;/4 1, for each direction of propagation
all that is needed is the value of the parameter . If we
chose the value n=0.48 for RbCl and »=0.25 for KI
we obtain the values for 4 /41 given as a solid line
in Fig. 8.

Burstein and Smith*® have measured p11 and pip
in KI. They also have measured p11, p10, and pasin KBr
while Pockels* has measured these in KCl. These
measurements suggest that p,=2—0.026 for all three
potassium halides. Using this and*® p1;=0.21, p1,=0.17
we find n=0.27 for KI. This is in excellent agreement
with the experimental value of n=0.25. No experimental
data exists on the p’s for RbCl, but the value of n=0.48
seems reasonable in view of the fact that the scattering
from RbCl is about twice as small as that from KI.
This suggests that p1, is a factor of 2 smaller for this
crystal and that correspondingly n could be 2 times
bigger.
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