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A variational principle is used to derive field equations and boundary conditions for the description of the
nonlinear behavior of an elastic dielectric in static equilibrium in an electric field. A discussion of the equilib-
rium conditions for a rigid dielectric is given to provide a check on the more general theory.

I. INTRODUCTION

IN this paper we derive, using a variational principle,
a set of field equations and boundary conditions for
the description of the nonlinear behavior of an elastic
dielectric in static equilibrium in an electric field. This
problem has been discussed in detail by Toupin' and
Eringen?; their papers contain extensive lists of refer-
ences to previous work. The treatment given below
follows Toupin’s work fairly closely both in spirit and in
notation.

In summary, the method we have used is as follows—
introducing a material energy density which is a point
function of the displacement gradient and a vector field
D, later to be identified with the electric displacement
field, we demand that the total energy of an isolated
system, consisting of a dielectric and a charged con-
ductor, be an extremum with respect to arbitrary
variations in these two fields. As constraints on the
variations we ask that (a) D and its variations satisfy
the field equation, divD =0, at all points in space outside
the conductor, (b) the surface integral of the normal
component of D over the conductor is prescribed, and
(c) the space displacements of the surface elements of
the dielectric are prescribed. Constraint (a) is suggested
by the properties of the electric displacement field in
the case of a rigid dielectric while (b) and (c) reflect the
physical limitations on the constraints one can apply in
practice to such a system.

At the present time there is no suitable body of data?
with which we might test the validity of these nonlinear
theories. However, there is one minor test that we can
apply. Since the standard theory of (a) the rigid
dielectric and of (b) the electrically neutral elastic solid
are experimentally well established, any nonlinear
theory of the elastic dielectric should contain these
theories. In applying our version of the nonlinear theory
to the special case (a), we found that the expressions we
required for the electrostatic force and torque on a rigid
dielectric were not available in the literature. As the
derivation of these expressions contains a number of

1R. A. Toupin, J. Rat. Mech. and Anal. 5, 849 (1956); Arch.
Rat. Mech. and Anal. 5, 440 (1960).

2 A. C. Eringen, Int. J. Engr. Sci. 1, 127 (1965).

3 The ferroelectric crystals are well-known examples of crystals
which exhibit strong nonlinear properties. However, the customary
measurements and analyses of these effects are based on an ad %oc
extension of the linear theory. This procedure has not, as yet, been
given a rational basis.
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points of interest for the general case, we describe it
below.

This paper is divided into two parts. In Sec. IT we
discuss the rigid dielectric and in Sec. IIT the com-
pressible or elastic dielectric. Section IT consists of two
subsections in which we describe a calculation of the
electrostatic force and torque on a dielectric. The
variational principle and the ensuing calculations of the
field equations and boundary conditions are contained in
Subsecs. 1 and 2 of Sec. ITI. This is followed by a
description of the effect of the rotational invariance
condition on the energy density function, Subsec. 3 and
the application of the general theory to the cases (a) and
(b) mentioned above, Subsec. 4.

II. THE RIGID DIELECTRIC
1. The Electrostatic Force on a Rigid Dielectric

A dielectric in an electric field will, in general, require
the application of mechanical forces to keep it in static
equilibrium. In the case of the rigid dielectric the only
conditions that these mechanical forces must satisfy is
that they balance the net electrostatic force and net
electrostatic torque acting on the dielectric. We shall
denote the electrostatic force and torque (about the
origin of the coordinate axes) on the dielectric by F and
T, respectively.

Let us consider, for simplicity, an isolated system
consisting only of a rigid homogeneous dielectric and a
charged conductor, both of finite extent. Suppose the
dielectric is kept in static equilibrium by surface trac-
tions t, then the equilibrium conditions are

f tdS+F;=0, i=1,2,3 (1)
Vv

€k f L dS+T:=0, i=1,2,3 )

i

where, for example, /;is the sth component of the vector
t and e;;; is the Levi-Civita density; e;jn=-41(—1) if
i, J, k is an even (odd) permutation of 1, 2, 3 and zero
otherwise. The Einstein summation convention is used
in these and all later expressions.

To derive expressions for F and I' in terms of the
electric field E and displacement field D, we note that if
the dielectric suffers a displacement and at the same
time the net charge on the conductor remains constant,
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I'1c. 1. A schematic diagram of the regions used in the text.
C—the region occupied by the conductor; B—the region outside
the conductor and dielectric before and after the rigid-body trans-
lation; G--F—the region occupied by the dielectric before the
translatlon G+ H—the region occupied by the dielectric after the
translation.

the work done by the surface tractions is equal to the
change in the total energy of the system. Thus, by
calculating an explicit expression for this energy change
and substituting for the electrostatic force and torque,
Egs. (1) and (2), in the energy balance we obtain ex-
pressions for F; and I';.

The total electrostatic energy of the system can be
written in the form

U= / Wdv,
VHCHA

where the volume integral is extended throughout all
space. The letters V, C, 4 refer to the dielectric, the
conductor and free space, respectively. The energy
density ¥ is defined

‘I’=¢(Dz); in ‘V)
¥=0, inC,
‘I’=DiDi/2€0, 1nA

¢¥(D;) is the material energy density of the dielectric,
with the property that E;= (8y/dD;), and ¢, the permit-
tivity of free space.t

Suppose the dielectric is subjected to an infinitesimal
translation described by the vector 6x; if the net charge
on the conductor remains constant during this process,
the energy balance is

v

It is convenient to introduce the following notation
for different regions in the system (see Fig. 1): B is the
region free of dielectric material (and conductor) before
and after translation; G is the region containing die-
lectric material before and after the translation; F is the
region from which dielectric material is removed; H is
the region into which dielectric material is moved. Thus,
for example, V=G-+F and 4 =B-+H.

¢L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu-
ous Media (Pergamon Press, Ltd., Oxford, England, 1960).
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Let the displacement field after the translation be D’;
then the change in energy is

U= / [(D/D/— DiDi)/2eo]dv+/ WD) —y¢ (D) Jdv
B ¢

o s -2

Since the translation is infinitesimal the change
6D=D’'—D is infinitesimal in the regions B and G. In
the regions F and H, D’—D is in general not infini-
tesimal; thus, to first order in infinitesimals,®

D6D; Y
5U=f d‘U-{-/ —0D dv
4 € v 0D;
DADA
f [1[/(D )—~— }6%’,’”7’(15.

50

Since E;= (dy¥/dD;) in the dielectric and E;=D;/¢ in
free space, the right side can be written as

DA
$U= / EsD.dv+ linl/(D)—M—-«]Sx]n]dS ()

e0

To eliminate the term containing the components 6D,
consider the following identities:

bog= f ¢oDindS
c
¢gq= f ¢0D7,,1’L7_d5 ,
c

where ¢ is the net charge and ¢, the potential of the
conductor. Since the electrostatic potential and the
normal components of D and D’ are continuous across
any dielectric—{ree-space interface, we may apply Gauss’
theorem to the right sides of these identities to get,

bog =/ E:Ddv 3
B FP+G+H

bog— / ED/do, ©)
B PG+

We emphasize that in Eq. (6) E is the electric field be-
fore the translation and D’ the displacement field after
the translation.

Subtract (5) from (6),

0:/ Ei(D.i,-‘Dv,‘)d'U.
B P Q1T

5 We use, when necessary, the superscripts 4 and V to dis-
tinguish field quantities in free space from these in the dielectric.

and

and
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To terms linear in infinitesimals, the right side takes the
form

0= / E,’&D@dv—' f E,;V (D,;A— Dﬂ)&xmde
A+V FOYVY

+ f EAD.Y—Di*)swndS, (7)
HOYV

where, for example, the subscripts FNV denotes the
surface common to the regions F and V. As before, the
superscripts distinguish the free space and dielectric
components of the vectors E and D.

Physically, the form of the expression on the right of
(7) cannot depend on the direction of the translation,
i.e., the sign of dx;n;; thus, we must also have

EA (D, V— D;“)&x]-n,-dS

A4V FOV

- f EiV (DZA—‘ Div)éxjn,dS . (8)
HOW

Equations (7) and (8) are equivalent, for the following
identity holds

0= f (Eq,V—“ ElA) (Di’l— DlV)éx]n,dS
FOV

+ (EZ'A—'E.[V) (Dl"—DmA)éx,n,dS . (9)
HNOYV

To prove this last statement, we note that the tangential
components of E and the normal component of D are
continuous across a dielectric—free-space interface;
hence, the integrands appearing in (9) are identically
zero.

From (7) and (8),

1
/ EﬁDzd'D: —_— f (ElA—l—ElV)
AV 24y

X (DiV —DA)sxnidS. (10)

Combining (4) and (10), we get

1
SU=— f [E(EiV—I—Ef‘)(DiV—D#)
14

AD.A

zDi

+ —¢<Di)]axjnjds. (11)

€0

Hence, using Egs. (1), (3), and (11), and the fact that 6x
is arbitrary we have that the electrostatic force on the
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dielectric is®

1
Fi= f [E(E,-V-l-EjA) (D;"—Dj*)
14

AD.A
]DJ

+ ~¢(Dj)]nid5, i=1,2,3. (12)

€0

The results of the following discussion are required in
the next section. Consider the expression for U given
by Eq. (4). Apply Gauss’ theorem to the surface integral
which contains ¢(D;) in the integrand; thus,

o
U= / E8D.dv+ / —0x;dv
Vv v axj

DADA
+/ E.baDld’L"—f
4 v 2e

Since (a) dy¢/0D,;=E; and (b) the dielectric is homo-
geneous, i.e., dY/dx;= (dy¢/dD,)(dD;/dx;), an alter-
native expression for §U, correct to first order in the
infinitesimals, is

N aD;
U= / ——(6Di+ 6xj)dv
Vv aDi axj

+/ E‘baDidv—/ méxjnde.
A 14

2¢0

596]'1’1de .

Itis easy to see that the integrand of the first integral on
the right can be interpreted as the change in energy
density associated with a volume element of dielectric dv
originally at a point x where the displacement field is
D(x) and moved to a point x4 8x where the displacement
field is D4-8D+6x- grad (D+6D)=~D+6D+68x- gradD.”

2. The Electrostatic Torque

In the case of an anisotropic dielectric the energy
density function ¥ depends on the choice of coordinate
frame in which we measure the components of D; it is
thus convenient to introduce a set of coordinate axes,
the material axes, fixed in the dielectric and to use only
the function ¢ referring to these axes. If the dielectric is

6Tt is of interest to note that when this method is applied to the
determination of the electrostatic force on one conductor due to
another, the term corresponding to the first integral on the right of
Eq. (16) vanishes. In addition ¢ =0 for a conductor; hence Eq.
(16) leads to the correct expression for the force on the conductor,
viz.,

AD.A LA
f e f (255)is, (=123,
Conductor €0 Conductor

where w is the surface charge density on the conductor.

7If the point x lies outside the dielectric after the translation is
carried out, the quantity D+38D is #ot the displacement field D’
at x but rather the functions which give the physical displacement
field at points within the dielectric; thus 6D is an infinitesimal.
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both rigid and homogeneous, a single set of material
axes is sufficient to describe the total energy U.

Let the material axes be Xy, X,, X;. If the origin of
this coordinate system and that of the laboratory co-
ordinate system xy, x5, %3 coincide, then the coordinates
of any point measured in these two frames satisfy an
equation of the form x;= w;; X}, where w;; is the cosine of
the angle between the x; and X; axes. If we denote the
components of D measured in the material frame by =,
then D¢=w¢,'1rj and 1rj=wz-jD1~.

The energy density ¢ referred to the material
axes is a function of the arguments =; and w,m;. We
put y=y(m;,a) where a= (rr;). In terms of the D,
¥=vy(wyDsa) with e= (D:D;). Furthermore, since E;
= (atp/aDz)w and (aﬂ'j/aDi)w———wi,‘, (6(1/8D1)w= 2D1,

then
EYs oy
Ei:(‘—“—) C'Jvij“l"z(”—_) D;.
a’ll'j a a(l (g

Suppose that the dielectric is subjected to an infini-
tesimal rotation about a line through the common
origin. Let the new transformation tensor be w;;+dw.;.
An element originally at a point with coordinates x; is
displaced to a point with coordinates x;+dx;, where
0x;=0w;; X ;; eliminating X; from this last expression we
get

(13)

5.’)64_': x;ﬁﬂ,k , (14)
where 59.5};:(,01;]'6(.04;]'.
It is easy to show that
5Qik= —591“' (15)
and
Swij=wkj69ik . (16)

From (14) and (15) we deduce that &;,+06Q;; is the
rotation matrix, with respect to the laboratory frame,
describing the infinitesimal rotation. §;; is the Kronecker
delta.

Consider now the change in energy density of an
element of dielectric moved, as a result of the rotation,
from the point x to the point x4 6x; using the argument
presented at the end of Subsec. 1, we write for this
change

& =yl (wij+owij) (Di+8D i+ 0D,/ dx1dxr), a+6a]
—¢(wiDiya),
where

da= 2D¢(51)i+ 8Di/6xj6xj) (17)

and éD is the infinitesimal change in the field at the
point x resulting from the rotation.?
To a first approximation

W 9
5¢=(—-—) (wijéDi+wﬁaDi/axk(Sxk—l—Di&wU)-k<—~) éa.

om;/° da/
From (13) and (17),

Y= E;(3D+0Dy/ dxidoi)+ (9% 0m;) aDideos.  (18)

GRINDILAY
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The total energy change 8U is

DADA DD
v v 260 A €9
aD; N
=/ E76D1(Z7)+/ [El Bx;,-i—(—) D,Zawi,-:ldv
VA v dxy i/

D]_AD]_A
- f Bx,,-mdS .
v 2eo

AD.A

iD1

ldv

Hence from Eq. (10),

]550:,‘1@:;(15

€0

1
5U=‘—5f[(EiV+EiA)<DiV_DiA)+
v
D
x

aD; W
+/ [E:L 6xk+<~—-—> Di&dij:ld?).
vL Ox om;/ 4

Eliminating the infinitesimals dx; and éw,; by means of
(14) and (16), we get
DtADgA:I
€

oD, o
XxknJBQJde+/ [Etg—-xk'*- (-—-—-) Djwkg]ﬁﬂjkd‘l) .
Vv xj a

87r¢

1
U=~ f [(EJ+E¢A>(D¢V—D£A>+
g

The energy balance, (3), for this infinitesimal rotation is

6U=ft,~xk6ﬂ,-kd5.
"7

Hence, using (a) the equilibrium condition (2), (b) the
fact that 6Q; is an arbitrary antisymmetric tensor, and
(c) the identity e;D;Dx(d¢/da)=0, we obtain the
following expression for the electrostatic torque,

DtADtA]
€0

aD,
v

axk

1
I'i= €1rjk{§ f [(EtV+EtA) (DtV—DtA)+
v

Equations (12) and (19) provide explicit expressions
for the components of the electrostatic force and torque
on a rigid dielectric in the presence of a charged
conductor.

III. THE COMPRESSIBLE DIELECTRIC
1. Variational Principle

Consider® an isolated system consisting of a conductor
and a homogeneous dielectric, both of finite extent. Let
us suppose that initially there is no charge distribution
on the conductor or dipole moment distribution in the

8 This is an extension of the variational principle introduced in
I({legfé;), Chap. 2; see also H. F. Tiersten, J. Math. Phys. 6, 779
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dielectric. We introduce a Cartesian coordinate system
X1, Xo, X3, fixed in the laboratory, to describe the
position of each element of the dielectric in this initial
state. Let charges be brought from infinity and placed
on the conductor and let mechanical surface tractions be
applied to both the conductor and dielectric. If this
process is carried out quasistatically and the conductor
and dielectric kept in static equilibrium throughout,
then the total mechanical and electric work done on the
system is stored as potential energy, U say. It is con-
venient to describe the positions of all points in space
when the system is in this final state by means of a
second Cartesian coordinate system i, 2, 23 fixed in the
laboratory. The deformation suffered by the dielectric,
as a result of the charges introduced and the surface
tractions applied, is described by a mapping
=x:(Xx) (1, K=1, 2, 3), i.e., the volume element of die-
lectric originally at the point X is moved to the point
x;. The mapping constitutes a field defined within the
dielectric; the functions x;(Xx) are assumed to be con-
tinuous and many times differentiable.

The total energy U of the system may be expressed
as an integral of an energy density, ¥, over all space,
thus,

U:/ Ydy.
A+V4C

The subscripts refer to the regions of the system in the
final state, free space—A, conductor—C, and die-
lectric—V.

Our choice of energy density is

Y=y (x;x,D;) in the dielectric
V=D;D;/2¢;, in free space
V=0 in the conductor.

¥ is a function characteristic of the dielectric; the
deformation gradients x;x= (9x;/0Xx); D is some
vector spanning all space outside the conductor and the
D; are the components of D measured in the xy, xs, x3
coordinate system.

We shall demand that this vector D (i) satisfies the
field equation D;;;=0, (ii) is related to the net charge ¢

on the conductor by the expression f DnidS=yq,
c

where the #; are the direction cosines of the outward

normals to the conductor surface. The field equation in

(i) leads, in the usual way, to the jump condition, viz.,

the normal component of D is continuous across any

dielectric-free-space interface.

Let the position vector of each volume element
undergo a small variation x — x-6x. Similarly we allow
the field D to undergo a small variation D — D’; the
variation in D is assumed to be small in the sense that
the vector D’—D is an infinitesimal at all points which
are either outside or inside the dielectric throughout the
deformation; thus, for these points we put D’—D=4D.

ELASTIC DIELECTRIC
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Fic. 2. A schematic diagram of the regions used in the text.
C—the region occupied by the conductor; A—the region outside
the conductor and dielectric before and after the virtual displace-
ment of the dielectric; G+F—the region occupied by the dielectric
before the virtual displacement; G—the region occupied by the
dielectric after the virtual displacement.

We take as our variational principle that U be an
extremum with respect to the small variations in D and
xwhich are, however, subject to the following constraints

(a) dx;=constant (=1, 2, 3) for the surface elements
of the dielectric, and

(b) 8g= constant, i.e., f 0D;n.dS = constant.
c

This choice, (a) and (b), reflects the physical limitations
on the constraints one can apply in practice to such a
system. In other words, we are free to constrain the net
charge on the conductor to any value and the surface
elements of the dielectric to any positions we please, but
once this choice of constraint is made the corresponding
charge distribution on the conductor and the mass
distribution in the dielectric, for example, are deter-
mined by the physical laws describing the system. It is
these physical laws, in the form of field equations and
boundary conditions, that we seek from the variational
principle.

To simplify the following analysis, we shall assume
that for all the surface elements the variation 6x is such
that dx.7;<0, where the #; are the direction cosines of
the outward normals to the dielectric surface. Let the
new region occupied by the dielectric after the variation
be denoted by G (see Fig. 2) and the region now free of
dielectric by F. Thus, V=F-+G. As a result of this
choice of surface displacements, there are no regions free
of dielectric before and occupied by dielectric after the
variation. This restriction, while simplifying our dis-
cussion, in no way impairs the generality of the results.

Introducing Lagrangian multipliers #;, ¢o for the
constraints (a) and (b) above and ¢ for the constraint
imposed by the field equation divD=0, we write the
condition for an extremum in the form

oU— / ¢ (8D.); dv— o f éDndS
A+G c

— f tdxdS=0. (20)
14

The variations 6x;, 6D; may now be treated as com-
pletely arbitrary fields.
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2. Field Equations and Boundary Conditions

The variation in U is (see II)

DjADjA Dj&D]d‘U
5U=[ \b[ﬂci;K—*- (5:)05);1(, D1+6D1+Dz,,6x]][1+(Sxk),k]dv—/ z//(xi;K,Di)dv-—f 6xm¢dS+/ .
\4 14 14 J A €0

2¢

The superscripts 4 are used to emphasize that the D;4 are free-space components of D.
Expand to terms linear in éx; and 8D;,

o DADA
U= / [ (6x;), K+———*(5D i+ D, ;6%;) + (6x), :]d‘v—f
i aD; v 2e

Using the identity (8x;);x= (8%;),;(x;),x and Gauss’ theorem we obtain the expression

' 0 Y
5U=/ II:—‘D,;;]"—< xi;K> —://]:|6x,+—~6D1}dv
v (LdD; 0xj; x ii aD;
Y DADA
+f[ X5 kY — ——-——Jm]éde-}—/
v Lox;x

Consider now the second term in Eq. (20). This can be written in the form

/ ¢(6D,);id1'=f (¢8Dl),1d'u—/ ¢,L6D,d’u
A+G A+@G A+-G

dv (21)

or, from Gauss’ theorem,

/ ¢(5D1),Ld2/‘ = —f ¢5DJLLdS—f ¢A5Dtiﬂld5+f ¢V§D5V1’L¢ds—/‘ ¢;15Did‘U s (22)
A+G ¢ ANF ¢ A+G

where A NF refers to the surface common to regions 4 and F and the #; are the direction cosines of the outward
normals to the surfaces of the conductor and dielectric. We have assumed that ¢ — 0 and 8D; — 0 at infinity
sufficiently quickly that the surface integral, $¢éD:n:dS at infinity vanishes.

In terms of the primed notation, we have

—-f ¢45D1A1’L¢d5+f ¢V5D¢V1’Lid5= —f d)A (Diﬂ'—DtA)nzdS'*‘f ¢V(D@V'—Div)ﬂids.
ANF G ANF G

Consider the functions ¢4 and D4, originally introduced for points within 4, at points in #. Adding and sub-
tracting a term involving these functions, we get

—f ¢ABD,-AnidS+f ¢VoD;" n.dS= f (pV—o4) (DA —Di“)nidS—f ¢V (DA — DiM)ndS
ANF ¢ A F ANF
+f ¢V (D;[V, - D.,;V)n,:dS= f (¢V__ d)A) (D.LA’ —D,/‘)n,dS—}—/ ¢; iV (DiA, —D L'V)d’[) .
G ANy r

In this last step, we have used Gauss’ theorem and the jump conditions DiAn;=D;V'n;on G and DiAn;=D;Vn;on V.
Hence,

/ 6(8D.), idv=— / b, HD dv— j{ $8DndS+ j[ (¢"—¢A)6Di"”"ds+/ #: (DD
J A+ J ava /¢ F04 e
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In the linear approximation this equation reads
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/ 6 (8D,). dv= '—'/ [0 zaD,dv—quaDﬂhdS—f—f (¢V*¢A)5D,An¢d5+f ¢.:" (DA—D,V)ox;ndS .
A+V A+V C A 14

Since the normal component of D and the tangential component of grad ¢ ¢ are continuous across a dielectric—
free-space interface, the integrand in the last integral on the right may be replaced by an alternative expression;

thus,

f ¢ (0D;), dv=— / ¢.:0Ddv— f 6D dS+ f (¢7—¢4)oD4ndS
AtG AtV c v

1
+£ f (¢;iA+¢;iV) (DA—D.V)oxmdS. (23)
14

Hence, the condition for an extremum is, from (20), (21), and (23),

[ G

DjADJ' A

—5(¢,4+0,;") (DiA—D;")ni—

2¢o

Equating the coefficients of the arbitrary changes dx;
and éD; to zero, we obtain the following field equations
and boundary conditions.

In the dielectric,

oy By
<—xi;K) +¢;i___Dj;i:07 (24)
%K ¥ D;
Y] )
—+¢’;i= 0 . (23)
aD;
In free space,
At the surface of the dielectric
¢V_¢A =0 ] (27)
oy D;AD;A
x;';K”H"//ﬂi—[ —3(9,;V+o.4)
axi;K €9
X (D;V— DjA)]ﬂ,i-' tL:=0. (28)
At the surface of the conductor
¢—¢o=0. (29)

We may now give the Lagrangian multipliers ¢, ¢,
and #; and the field D a physical interpretation. ¢ is the
electrostatic potential, continuous across the dielectric—
free-space interface (27), and constant over the con-
ductor surface, (29). ¢ois the potential of the conductor.
We set E= —grad¢; thus, E is the macroscopic electric
field and D the electric displacement field, (25) and (26).
Finally, we show that t is the stress field due to the

¢ The proof of this latter statement follows immediately from the
identity curl grad ¢=0.

n;—

Y ' oy
b5 ( xm{) “‘P;j:laxj"i' (—+¢; 5)5D¢} dv+f { (p2—0")oDini+ l:( X, K>nj+\ﬁm
0x;. k > oD, ! Vv 0%k

D;
151:‘5.%1} dS+/ <—+¢,]>6D]dl‘+f (¢t— ¢0)5DLn,dS= 0.
4 \€o [

applied mechanical surface tractions. Consider two
solutions to the above field equations and boundary
conditions D;, x; and D;+6D;, x;+ 6x;, where 6D; and
dx; are infinitesimals. In particular, we have (D;+6D;)..
=0 so that from Eq. (20) we obtain

5U=¢of 6Dmid5+ft,6xid5.
c v

The terms on the right are the electric and mechanical
work and hence t is the applied stress field.

To recapitulate, we have derived the following field
equations and boundary conditions to describe the be-
havior of an elastic dielectric in static equilibrium in the
presence of a charged conductor.

((0¢/ 0% k)xj; x+¥6:;),— EsDj,i=0, inV, (30)
divD=0, in Vand 4, @31)
curlE=0, inVand 4, (32)

Y
ti= < xj;K+¢5ij)nj
axi;K

J

D],A A
"[ ) +3 (L4 +E5Y) (DjV—DjA):lM, onV,

€0
(33)
DVn;=Di*n;, onV, (34)
eyt EY = e Ext, on V, (35)
fDimdSsq. (306)
c
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The following results are required in the discussion in

Subsec. 4.
The net mechanical force acting on the dielectric is

ftidS. From Eq. (33),

v
Y
f 1dS= f {( xj;K+¢5ij)"j
v v 6xi; K
DADA
- [ +3(EA+ES) (D,-V—DjA):lm}dS.
€

Using Gauss’ theorem and Eq. (30) we may write the
right-hand side in the form

ftid5=fE,-Dj;idv
14 14

1 ,[DADA
—= f l: + (E4+E57) (DjV—DjA)]mdS .
2J vy €0

37

Similarly, the net mechanical torque about the origin
of the coordinate system is

W
67‘jkijtkd5= €ijk {/ (——xj;K+ijst; k)dv
v\Oxr K

s

1 DADA
—— f [: + (EA+ESY) (DSV—DSA):Inkxde .
2Jy €

(38)
3. Rotational Invariance

Since we are dealing with an isolated system, the
energy density ¥ must be invariant with respect to an
arbitrary rotation of the coordinate axes x1, s, x3. It is
sufficient to consider only an infinitesimal rotation.
Suppose such a rotation is described by the anti-
symmetric tensor 8;;4Q;;, where Q;;= —Q;; and Q,4<1;
the transformed position coordinates and displacement
components are then

= (851 Qij)%; (39)
Di= (8:42:)D;. (40)

The rotational invariance' condition is
W (x5, D)=V (%5,5,D5) . (41)

This identity is satisfied trivially by the free-space
energy density ¥=D;D;/2¢ but not by the material
energy density ¥=y. To determine what restrictions
are imposed on y by (41), we substitute for x; and D/’
from (39) and (40) into (41) and expand to terms linear
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in Q;;; thus,
89/ 3%, k) Qijacs; k1 (89/ D :)Qi;D;=0.
Since ©;; is an arbitrary anti symmetric tensor,
o W
ei,-k[ xk;K—I—————‘Dk] =0.

Xj K aD]

(42)

Equation (42) provides three partial differential equa-
tions to be satisfied by ¥. From a theorem due to
Cauchy! we conclude that ¢ is a function of the 12
variables x;x, D; through the 10 variables x;xxs; 1,
x5 xDi, DiDs. We set g, =% (%4 k%, 1~ 0x1), 7 = %4,k D5,
and a= D;D; and put ¢y =y (nkr,7x,a). The quantity nx,
is the Green strain tensor.

The following identities are easily proved.

(anAB/axl-; c)xj; c= % (xi; BXj; A+x'i; AXj; B) )
(07 4/ 3s; B)xj; 8= 05, 4D,
arA/aDiz Xi A

Hence,
WY 17 oy
xj;K=~< > (i, B2j; a+2i; 4%5, )
a901';1{ 2 67]111? ra
W
+<—> xj,eDi (43)
omre/ 4,0
and

(44)

oy o 2
(2
aDZ aﬂ' C da

4. Two Limiting Cases

We now show that the field equations and boundary
conditions derived in Secs. 1 and 2 exhibit, as special
cases, the standard treatment of (a) the rigid dielectric
and of (b) the electrically inert elastic solid. This
exercise serves as a minor check on our results.

(a) For a rigid dielectric, Egs. (31) and (32) and the
corresponding boundary conditions (34), (35), and (36)
are unchanged; these agree with the standard results,
(see part IT). Equation (30) is satisfied identically; this
can be seen most easily if we regard the rigid dielectric
as the limiting case of an elastic dielectric for which the
elastic constants tend to infinity. Under these circum-
stances, Eq. (30) yields as a solution a zero strain tensor
independently of the electrical conditions.

The boundary condition (33) provides an expression
for the net mechanical force and net mechanical torque,
(37), (38). To bring the right side of Eq. (37) into the
form given in Sec. II, we note that for the rigid dielectric
(%;x);;=0 and so y,;=(8¢/dD;)D;;;. Hence, by ap-
plying Gauss’ theorem and this last identity to Eq. (37),
we get

fof b

A
L3 (BALEY)

D;AD
2e0

X(Dj.4u_])jv)j!}%;(ié'~ (45}
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From Eqgs. (38) and (43) we have, since dy/dn45=0,

o 1
ez’jkf xjtde=eijk1/ |:(____) xj;cDH—ijst;k,]dﬁ—f,—
v v ome 2

ELASTIC DIELECTRIC

045

D,ADA
f [ + (EA+E,Y) (DSV—DSA):lnkxde
Vv

€0

st

1 AD A
= 87']'1\-;/ (EjD.["_ijst;k)d _ f [ + (E3A+ESV) (DSV—-DSA)}kade . (46)
v 2J v

In this last step we have used the identity
eijijDk (ag&/ad) = 0

and the expression for E; given by Eq. (43). The ex-
pressions in Egs. (45) and (46) agree with the results
obtained in Sec. IT, Egs. (12), (19).

Finally, we note that for a rigid body the deformation
gradients x;x are constants which may be identified
with the direction cosines defining the rotational portion
of the coordinate transformation relating the two co-
ordinate axes x1, ¥s, 3 and Xy, X», X3. In the notation
Of I, Xi; K= WiK.

(b) For the electrically neutral elastic solid, D=0,
E=0, and ¢=0; hence, the field equations and bound-
ary conditions reduce to the following:

((8¢/ 8%, k)xi; x+¥8:5),;=0

ti= ((8Y/ 0xi; k) k+¥0i ;.
Set Y= pX, where p is the mass density. Then,

14 ax dp
=p +X
axi;K axi;K

(47)
and

(48)

’
axi; K

but p=po/J, where po is the mass density in the initial
state and J=det[x;x]; hence,

dp/ 0%, k= — po/ J*(cofactor of x; k).

€0

Thus,
£V aX x_ )

——XjRk=p xj. k— po—|_cofactor of x;x | x

axi;K X, K 2
or

ax
%, kY8 =p—j k.. (49)
E)xi;K Xi K

The expression on the right of Eq. (49) is the stress
tensor of elasticity theory; Thus, Eq. (47) and (48) are
the standard forms for the elastic field equation and
boundary condition, respectively.!

5. Comment

The form of theboundary condition (33) is convenient
to use as a basis for the analysis of the thermodynamics
of nonlinear elastic dielectrics. We hope to report on
such a'study in a later paper.
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