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Stark-Induced Temporal Intensity Variations in Spectral Lines*
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The eRect of externally produced Stark splitting upon Gne-structure-level probabilities is investigated in
order to describe periodic intensity variations previously found in hydrogen lines. Coupled differential
equations for the probability amplitudes of mixed levels are solved exactly in terms of initial amplitudes;
effects due to spontaneous transition probabilities and Lamb shift are included. In general, the time-de-
pendent line intensity is a combination of exponential decays and sinusoidal oscillations. The frequencies
of oscillations are discussed in detail, and the eRects of diRerent initial conditions upon the intensities are
considered for several special cases.

ECENT observations' of the spectra emitted by a
beam of hydrogen atoms which had been excited

by passing through a thin foil showed a time-periodic
variation in line intensity when the beam particles were
in the presence of an electric or magnetic field. This
effect was ascribed to a quantum-mechanical resonance
which resulted in time-dependent populations of emit-
ting states of quite different transition probabilities;
the resonance arose from a Stark mixing of the states
produced either by the actual electric Geld or by a
motional electric field (v/c) &(B. The frequencies of the
intensity variation were calculated from the usual
resonance factor sin'(hE/2A)t, where AE is the energy
difference in the states which would be produced by the
field; reasonable agreement was found between the cal-
culated and measured frequencies. ' In this paper, we
shall give a more detailed treatment of this phenomenon
and obtain more exact expressions for the frequency
factors and decay lifetimes which are involved.

For simplicity, we shall consider only the case of two
levels whose energies in the absence of the Geld are Ej
and Es= Ei+ttt8. In the case of hydrogen levels related
by l= j~—,', the energy difference A5 is simply the
Lamb shift. Both of these levels can decay to a lower
level with spontaneous transition probabilities per unit
time A~ and A2, we assume that A5 is so small that the
separate spectral lines cannot be resolved. The observed
intensity I of the line will then be proportional to the
sum of products of the A's and the average probabilities
of occupations of the levels; thus, if c~ and c2 are the
probability amplitudes of the two levels, we can write

with the omission of a constant multiplicative factor.
We assume that in the presence of a small external

electric Geld Ii, the perturbation potential t/'=eFs
(e)0) has a nonvanishing matrix element Vis= Vsi ——itv

connecting these two levels. For example, in the case
of the hydrogen atom and for the levels related by
i= j&s (such as si/9 and Pi/s), this matrix element con-
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nects states of the same ns and is"

cs = —ivcie'"+ cs».a = —ivcie'" ——,A pcs, (4)

where we have accounted for the existence of the
spontaneous transition probabilities by adding the
terms —~A,c;.

The exact solutions of (3) and (4) in terms of the
initial values t,"~0 and c~o at t =0 are found to be

ci(t) = to ' expL ——,'(At+As) t——',ibt]
&& Lcip(co cosset —n singlet) ivcsp singlet)—, (5)

cs(t) = p/
' exp) —e(Ai+As)t+si6t)

&& [ iver p sine—et+esp(pp cosp/t+ct slntot)], (6)
where

~—(v2 ~2)1/2

a =-,'(A i—As) ——,'i6.
(7)

(g)

The results (5) and (6) are more complicated than
they appear at Grst sight because I is complex when
6/0. If we write pe= po,+i&o;, then we find that (5) and
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Av = 3e—Fartirrt'$rt' (j—+—,') '1) ' '/4 j(j+1), (2)

where u is the Bohr radius. If the states are like
(i=j——',); and (t+1);~i (such as si/s and Ps/s or Ps/s
and ds/s), the matrix element can be calculated from
the Pauli state functions as given by Bethe and Salpeter'
with the result that, in this case, Av is obtained by
multiplying the result given in (2) by the additional
factor jL(j+1)'—r/t'j'/s.

In the presence of the Geld, the original states are no
longer eigenstates of the complete atomic Hamiltonian
and the coupled differential equations of motion for the
probability amplitudes become

cl — ivcse +cl sp n ives e sA lcl (3)
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pp, = 5(A1—A2)/Spp„,

ppp
——v{1—[(A 1

—A 2)2/16p2] }'/2

(12)

(13)

What remains now is to use the results (9) and (10)
in order to calculate the intensity from (1). Although
this will result in a complicated expression, it is evident
that the intensity will in general be some superposition
of exponentially decaying terms which will be modulated

by factors containing oscillating terms whose circular
frequency will be the p1„of (11).In evaluating the beam
averages required in (1),we should take into account the
fact that the atoms are excited by independent collis-
ions in the foil, so that the initial probability amplitudes
of different states will have incoherent phases and we
will be able to set cross terms like (cip*c2p), equal to
zero. In addition, one must sum over the possible
values of nz in order to obtain the total level populations
needed for (1).

In order to illustrate the effect of the mixing produced
by the 6eld, let us consider the extreme case in which
one of the initial c's is zero; because of the symmetry in

(9) and (10), any choice will do, so let us take cpp=O
to be specific. We then find from (10) that

~
c2(t) (

'=
( cipt '[e'/(p1 2+ pp')](sinh'pr;t+sinpp/„t)

Xexp[—-', (A 1+A2)t], (14)

which vanishes in the absence of the 6eld so that
m=0. We note that the oscillating term has an exponen-
tial decay factor equal to the average of those associated
with the two states, while the sinh cv,t term gives rise
to three terms with different exponential decay factors of
21(A1+A2) and 2(AI+A2)&2cp;, although the last two
terms will not appear if A~=A2 so that co,=0.

We also see from (11) and (13) that if B=O and
Ai ——A2 ——A, then the frequency is simply I/=DE/2A
where hE would be the total energy difference produced
in the two levels by the Stark effect, the formula which
was used previously. ' In this exceptional case, however,
we find from (1), (5)—(7), that I=Ae ~'[(~eip~2),

(6) become

ci(t) = p1
' exp[ —p(A, +A2)t —2ittt]

X{cip[(Q1coshp11t 212 slnhppjt)cosp1gt

—(n cosh ppt+i pIsinhId, t)sinp1„t]

+Itcpp(sinhcp;t coscd, t i—cosh';t sinp1„t) }, (9)

c2(t) = p1
—' exp[——,'(Ai+A2)+2'ibt]
X {vcip(sinhpp;t cospI„t i co—shpp;t sinp1„t)

+c2p[(p1 coshp1;t+iu sinhpp;t) cosp1,t

+ (n coshp1;t ip—1 sinhp1;t) sinp&„t] }, (10)
where

2—1/2 {(~ 2+ 1g 2)+[(~ 2+ 1
g 2) 2

+1)2(A A )2]1/2}1/2 (11)

+(~ cpp
~ )„],which is simply an exponential decay with

no trace of oscillation. If 8=0, but A~/A~, then the
frequency becomes ppp as given by (13) and shows the
correction necessitated by the difference in spontaneous
transition probabilities; for the cases considered in
Ref. 1, this correction amounts to only about 1 part in

500. On the other hand, if 5&0, but A~=A2, then co,

becomes just (p2+ —'P)I/' this is, however, an unlikely
case. In these latter cases, there are oscillatory terms
present.

If one is dealing with sufhciently large values of the
principal quantum number e, it may not be too un-

reasonable an approximation to simply get 5=0. If this
is the case, then p1 in (5)—(7) becomes simply pIp. We see
from (13), however, that if the applied field is suffi-

ciently small, oro will be a pure imaginary and there wiH.

be no oscillations at all but only exponential decays. The
condition for oscillation is seen to be

~
w~ )p ~

Ai —A2~.
For the value m=6 in hydrogen, the critical value of
the applied field turns out to be about 0.08 V/cm;
all of the fi.elds used in Ref. 1 were greater than this
value. We can see from (5)—(7) that for fields so small

that there are no oscillations, the probabilities will

decay with three different lifetime factors —',(Ai+A2),
12(AI+A2)&2(n' I/')' —' and with corresponding ampli-
tudes which depend upon the initial relative popula-
tions. In the special case in which one initial probability
is zero, we can easily find from (14) that these terms with
different relaxation factors will have relative amplitudes
of —2, 1, 1, respectively.

In summary, then, if 5 can be neglected and the ex-
ternal field is large enough, then the frequency will be
half the Stark shift corrected for different spontaneous
transition probabilities, whereas, if 5&0, then meas-
urement of the frequencies of oscillation could provide
a means of measuring the Lamb shift. Furthermore, it
may well be possible to determine the relative popula-
tions of the levels as produced in the foil by measuring
the relative amplitudes of the oscillating terms as given

by (5) and (6).
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for several stimulating discussions. After the work re-
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called attention to his paper' in which he discusses a
somewhat similar, although less general, problem.

Pote added i22 proof. The desirability of indicating the
existence of other formally analogous phenomena has
been pointed out to us. For example, it has been
found that the neutral K meson decays with two life-
times, and Feinberg' has shown that as a result of
the difference between the K' and its antiparticle there
can be possible transitions between the long- and short-
lived K"s in the presence of matter.
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