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The results of an augmented-plane-wave (APW) calculation of hexagonal-close-packed beryllium are
presented in the form of the Fermi energy, energy bands which were extended to energies much higher than
the Fermi energy, density-of-states curve below the Fermi energy, and electronic specific heat. The crystal-
line potential used in calculating the energy bands was obtained by superposing self-consistent Hartree-Fock
atomic-beryllium potentials on first-, second-, and third-nearest neighbors, and exchange was treated in the
Slater free-electron-exchange approximation. The good agreement between the theoretically and experi-
mentally determined Fermi surfaces which was found previously by the author is discussed. The general
features of the density-of-states curve for energies below the Fermi energy are in good agreement with the
soft-x-ray emission data, and the electronic specific heat coefficient is in reasonable agreement with published
experimental results. The energy bands of hcp beryllium and hep magnesium are discussed by comparing the
logarithmic derivatives of their respective wave functions across the respective APW sphere radii. The
results of comparing the logarithmic derivatives of beryllium and magnesium are used to emphasize the close
connection between orthogonalized-plane-wave and APW methods.
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1. INTRODUCTION

HE results of an augmented-plane-wave (APW)
calculation on hexagonal-close-packed (hcp)
beryllium are presented. Energy eigenvalues which
converged to 0.001 Ry were computed at 45 points in
1/24 of the Brillouin zone (B.Z.). The Fermi energy was
determined by using graphically interpolated energy
eigenvalues which were found at the equivalent of
1152 points in the B.Z. with an estimated error of less
than 0.01 Ry. The Fermi surface was constructed
from the intersections of these energy bands with
the Fermi energy and comparison with the experi-
mentally determined Fermi surface according to Watts!
has been made previously by the author.2 The agree-
ment between the Fermi surface constructed from these
energy bands and the experimentally determined Fermi
surface was found to be quite good, and we discuss the
differences which were found. A density-of-states curve
was constructed for energies below the Fermi energy,
the general features of which are in good agreement
with the soft-x-ray emission data of Johnston and
Tomboulian.? The electronic specific heat was found to
be in reasonable agreement with the experimental
results of Hill and Smith* and Gmelin.’ Although the
energy eigenvalues and energy bands have been ex-
tended a good deal above the Fermi energy, we have
made no attempt to construct a density of states for

* Work performed at MIT supported by the U. S. Office of
Naval Research and the National Science Foundation.

T Supported by the National Science Foundation (NSF-F19994)
and the U. S. Army Research Office, Durham (ARO-G233).

1 Present address: Mithras, Inc., 701 Concord Avenue, Cam-
bridge, Massachusetts 02138.

1B. R. Watts, Phys. Letters 3, 284 (1963).

2 J, H. Terrell, Phys. Letters 8§, 149 (1964).

3R. W. Johnston and D. H. Tomboulian, Phys. Rev. 94, 1585
(1954). See also references to other x-ray data in the paper of
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energies greater than the Fermi energy. The energy
bands of hcp beryllium that we find are compared to the
energy bands of hcp magnesium according to Falicov®
in the light of their respective Fermi surfaces and the
matching of the logarithmic derivatives of their respec-
tive wave functions across the APW sphere radii. We
use the results of comparing the logarithmic derivatives
of beryllium and magnesium to emphasize the close
connection between the orthogonalized-plane-wave
(OPW) method and the APW method.

Herring and Hill” first discussed the band structure
of beryllium by the OPW method. They computed
energy eigenvalues at points of high symmetry in the
B.Z. and found a density of states, Fermi energy, and a
value for the electronic specific heat. It is useful to have
an independent calculation of the same material by a
different method ; and since the APW method has been
used successfully in determining energy bands, it was
considered worthwhile to calculate the energy bands of
beryllium by the APW method. Moreover, computer
techniques developed by Saffren® and Wood® have
greatly increased the ease of applying the APW method.
While this calculation was being completed, Watts!
proposed a Fermi surface for beryllium based on his
de Haas-van Alphen experiments and pointed out that
a Fermi surface based on Herring and Hill’s calculation
would be qualitatively similar to the experimentally
determined Fermi surface if the Fermi energy is chosen
to be slightly different from the one calculated by
Herring and Hill. This result stimulated interest in
arriving at a theoretically determined Fermi surface for
which detailed comparison with the experimentally
determined Fermi surface could be made. The theo-
retically determined Fermi surface was constructed by

¢ L. M. Falicov, Phil. Trans. Roy. Soc. London A255, 55 (1962).
7 C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).

8 M. M. Saffren, Ph.D. thesis, MIT, 1959 (unpublished).

¢ J. H. Wood, Phys. Rev. 117, 714 (1960).
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the author? using the results of this calculation and is
made up of a hole region and an electron region. The
hole region is in the form of a closed six-cornered coronet
connected by tiny necks. The electron region is in the
form of two cigars each with a triangular midsection
which becomes circular as one moves toward the ends.
There is also a slight indentation at the midsection.
Reference to the free-electron Fermi surface con-
structed by Harrison' reveals that significant distor-
tions in the free-electron case have occurred for the
Fermi surface of beryllium.

Loucks and Cutler!! carried out another OPW calcu-
lation of beryllium finding the energy eigenvalues at the
equivalent of 5184 points in the B.Z. From this they
found the Fermi energy, the density of states, a value
for the electronic specific heat, and the Fermi surface.
The theoretically determined Fermi surface found by
Loucks and Cutler is very similar to the one found by
the author, and both compare favorably with the
experimentally determined Fermi surface of Watts.
Watts has recently compared the theoretically deter-
mined Fermi surfaces found by the author and by
Loucks and Cutler with the Fermi surface found by the
de Haas-van Alphen effect.”? Other band calculations
of beryllium have appeared,’® but they do not allow
accurate comparisons to be made with the - latest
experimental results.

The potential used in this calculation is described in
Sec. 2 along with a brief discussion of the APW method.
Exchange was included by the Slater free-electron-
exchange approximation.”* The results of this calcu-
lation are presented in Sec. 3 in the form of the energy
bands, density-of-states curve, and electronic specific
heat. The features of the Fermi surface found by the
author? are discussed in Sec. 3 in terms of the energy
bands and Fermi energy. Drawings of the Fermi surface
along with detailed numerical comparisons with the
experimental results of Watts! are given in Ref. (2) and
are not reproduced here. The theoretically determined
Fermi surface found by the author is discussed in
relation to the theoretically determined Fermi surface
found by Loucks and Cutler and the experimentally
determined Fermi surface found by Watts. In Sec. 4 the
energy bands of hcp beryllium are compared to the
energy bands of hcp magnesium according to Falicov®
in terms of their respective Fermi surfaces and in terms
of the logarithmic derivatives of the respective wave
functions at the APW sphere radii. A discussion of these
results from the viewpoint of the OPW cancellation
theorem of Cohen and Heine' is then given, and we

10W. A. Harrison, Phys. Rev. 118, 1190 (1960).

1T, L. Loucks and P. H. Cutler, Phys. Rev. 133, A819 (1964).

12 B. R. Watts, Proc. Roy. Soc. (London) A282, 521 (1964).

18 J, F. Cornwell, Proc. Roy. Soc. (London) A261, 551 (1961);
R. Jacques, Cahiers Phys. 70, 1 (1956); 71-72, 31 (1956).

1“7, C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc., New York, 1960).

15 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
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emphasize the close connection of the APW method with
the psuedopotential method of Heine and Abarenkov.!®

2. APW METHOD AND POTENTIAL

In order to obtain convergence in the energy eigen-
value solutions to the Hartree-Fock equation, the
choice of basis sets is important, i.e., the Bloch!” wave
function must be expanded in a set of functions which
will lead to rapid convergence in energy. One possible
choice of basis function is the OPW and another is the
APW. The APW method was proposed by Slater'® and
extended by Saffren and Slater.!® The APW method has
become successful in recent years for determining band
structures; and for a description of the APW method,
its relation to other energy band methods, and the
associated literature, the interested reader is referred to
the recent book by Slater.?

The details of calculating the energy eigenvalues
using the APW method will not be reproduced here.
Wood? has given a detailed discussion of the method of
computation which has been employed. The ¢jth matrix
element for two atoms per unit cell and for the ath
irreducible representation is as follows:

(H—E)i= (g/h)%l To*(R)u(pi| H—E

R¢;)
~ (/)T L R { (ks Rkj— E)bs s

1
+52 cos[ (Rk;—k;)-r,] Fij] .

J1(| Rk;—k;i| R,)

Fi~=47rR32{ — (ks Rk;— E)
’ ’ | Rk;— k|

3 QI1)P K Rby

+z, G l([killkj|>
X'(kR)'(kR)u——————ll(Rs’E)

TR IR su,(Rs,E)}'

The hep structure is a nonsymmorphic space group and
the sum on the operators R include nonprimitive
translations.

The origin is at the inversion center of the hcp lattice
and 1, is the coordinate of one of the atoms in the unit
cell. The symmetry of the hep lattice with this choice of
coordinate system has been discussed by Slater.® The
order of the group of the wave vector is labeled g, and
# is the dimension of the ath irreducible representation.
The u;(R,,E) are solutions to the radial Schrodinger
equation within a sphere of radius R, for energy E using
the spherical potential described below. The other

16 V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).

17 F. Bloch, Z. Physik 52, 555 (1928).

18 J, C. Slater, Phys. Rev. 51, 846 (1937).

18 M. M. Saffren and J. C. Slater, Phys. Rev. 92, 1126 (1953).

20§, C. Slater, Quantum T heory of Molecules and Solids (McGraw-
Hill Book Company, Inc., New York, 1965), Vol. II.
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TasBLE L. Potential for hep beryllium. The radial distance 7 is in atomic units, and the constant
potential between the spheres of radius R, is —1.6998 Ry.

7 —2Z,(#)=rV (#)crystal 7V (#)exchange r —2Z(r) =7V (r)crystal 7V (r)exchange
0.010 7.9281 0.0945 0.300 5.7580 1.3436
0.020 7.8519 0.1839 0.340 5.5420 1.3785
0.030 7.7726 0.2687 0.380 5.3437 1.3956
0.040 7.6908 0.3408 0.420 5.1603 1.3983
0.050 7.6072 0.4248 0.500 4.8293 1.3712
0.060 7.5225 0.4965 0.580 4.5355 1.3161
0.070 7.4371 0.5642 0.660 4.2723 1.2487
0.080 7.3514 0.6281 0.740 4.0389 1.1826
0.090 7.2659 0.6884 0.820 3.8384 1.1305
0.100 7.1808 0.7452 0.900 3.6753 1.1020
0.120 7.0130 0.8490 0.980 3.5511 1.1021
0.140 6.8496 0.9406 1.140 3.4035 1.1177
0.160 6.6916 1.0211 1.300 3.3443 1.3095
0.180 6.5395 1.0914 1.460 3.3345 1.4576
0.200 6.3938 1.1152 1.620 3.3360 1.6051
0.220 6.2545 1.2049 1.780 3.4213 1.7485
0.240 0.1215 1.2496 1.940 3.5215 1.8890
0.260 5.9946 1.2872 2.100 3.6663 2.0294
0.280 5.8736 1.3183 2.260 3.8609 2.1723

quantities are defined in the paper by Wood.® Con-
vergence to 0.001 Ry in energy for each irreducible
representation was achieved by adjusting through trial
and error the number of APW functions together with
the maximum / value in the sum on / in the above
equation. A maximum value of /=12 was found to be
good enough. By convergence tests it was found that
about 21 plane waves were needed to obtain convergence.

The APW method requires a one-electron potential
spherically symmetric within spheres of radius R,
centered on the atomic sites and constant between the
spheres. R, was chosen so that the spheres surrounding
neighboring atoms touch, and R,=2.159 atomic units
(a.u.) where 1 a.u.=0.529X10-8 cm. This potential
should, of course, resemble the one-electron potential
due to the actual charge distribution as closely as
possible.

The crystalline potential was found by superposing
atomic potentials placed on first-, second-, and third-
nearest neighbors, and a spherical average taken. The
procedure for this has been discussed by Mattheiss.?!
The number of neighbors used for constructing the
potential is based on an ideal ¢/a ratio. ¢=4.319 a.u.
and ¢=6.771 a.u.? Although the ¢/a ratio for beryllium
is not ideal, this is not expected to greatly affect the
potential. The free-atom potential for the beryllium
atom in the (1s5)%(2s)? state was taken from a self-
consistent Hartree-Fock calculation by Clementi,
Roothaan, and Yoshimine.?® Exchange was calculated
in the Slater free-electron-exchange approximation!
using the summed spherical potential. Thus, sym-
bOliC&Hy we have V(r)crystal =V (’)Coulomb+ V(’)exchange-
V () Coutomb 1s the spherical average of the total Coulomb

2T, F. Mattheiss, Phys. Rev. 133, A1399 (1964).

22 Room-temperature lattice parameters are from W. B. Pearson,
A Handbook of Lattice Spacings and Structures of Metals and Alloys
(Pergamon Press, Inc., New York, 1958).

Z E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys.
Rev. 127, 1618 (1962).

potential at a lattice site from first-, second-, and
third-nearest-neighbor beryllium atoms, and V (7)exchange
=—6[3p(r)/87'*. p(r) is the spherically averaged
charge distribution at first-, second-, and third-nearest-
neighbor sites due to the (1s5)%(2s)? states of the beryl-
lium atom. The potential is given in Table I. For atoms
the Slater free-electron-exchange approximation is poor
far from the nucleus where the charge density is small.
In the case of solids one expects the approximation to
be less severe in the sense that electrons move more or
less independently of each other and therefore see the
same potential. We mention two of the many calcu-
lations concerning the validity of the free-electron-
exchange approximation: The main contribution to the
exchange energy of an electron gas in a periodic poten-
tial was found by Eyges* to come from the plane-wave
component of the wave function; according to Reitz?®
the exchange energy of valence electrons in monatomic
metals is not altered much because of spatial variations
of the ground-state wave functions. Furthermore,
Mattheiss*® demonstrated that quite reasonable bands
for the iron transition series could be obtained with the
APW method using the Slater free-electron-exchange
approximation and spherically averaging the summed
potentials as described above. Robinson e @l.?” sug-
gested that electron correlations could be taken into
account by screening the exchange potential calculated
in the free-electron approximation. This procedure was
considered desirable since the free-electron approxi-
mation can overestimate exchange at the low-density
tails of atomic functions.?® Screening would decrease
sharply the potential in this region. On the other hand,

% 1,. Eyges, Phys. Rev. 130, 2218 (1963).

2 T, Reitz, J. Chem. Phys. 22, 595 (1954).

26 I.. F. Mattheiss, Phys. Rev. 134, A970 (1964).

27 J. E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer,
Phys. Rev. Letters 9, 215 (1962).

28 F. Herman, J. Callaway, and F. S. Acton, Phys. Rev. 95, 371
(1954).
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Mattheiss® showed that the free-electron approximation
can underestimate exchange at the low-density atomic
tails, and any further reduction of the exchange poten-
tial in this region is not justified. In view of these
investigations we have used the ‘bare” Slater free-
electron exchange in our calculation. The only justifi-
cation for this is the good agreement of the Fermi
surface found from our energy bands with the experi-
mentally determined Fermi surface of Watts! as we
discuss in the next section.

3. RESULTS

Energy eigenvalues were computed at 45 points in
1/24 of the Brillouin zone (B.Z.) along major symmetry
directions and at points of lower symmetry in the planes
TKM, AUP, and ALH?® as shown in Fig. 1. The
coordinates k of the grid of points in 1/24 of the B.Z.
are given in terms of their components along by, bs, and
bs of Fig. 1 such that k=27[(a/24)bi+ (8/24)b.
+ (v/24)b; ). The eigenvalues are listed in Table II.
The coordinates k at the points of the B.Z. at which the
eigenvalues were found are given in the first column in
terms of «/24, 8/24, v/24, and the symmetry labels for
some of the irreducible representations are given in the
second column. Energy eigenvalues E-versus-k curves
along the major symmetry directions are shown in
Fig. 2. These bands represent the (2s)? electrons of the
beryllium atom. The (1s)? electrons lie approximately
8.9 Ry lower in energy. The ordering of the bands is the
same as that of the OPW calculations of Herring and
Hill” and Loucks and Cutler! and are quite similar. As
a check on our calculations the lattice constants ¢ and
a were increased together and energy eigenvalues were
found along the TKM directions. We did not bother
about convergence or take the trouble to calculate a
new potential as the lattice constants were increased.
We found that ¢ and ¢ had to be increased by about
2009, before beryllium became an insulator. A gap

b3

Fic. 1. Brillouin
zone for the hcp struc-
ture showing 1/24th
of the volume in which
energy eigenvalues
were found.

by

% The notations are those of C. Herring, J. Franklin Inst. 233,

525 (1942).

# The reciprocal lattice vectors by, bz, and bs satisfy the follow-
ing relation: t;-bj=8;, =1, 2, 3. In terms of a rectangular
coordinate system b;—— (2/a\/3)i bz— (1/aV3) (34+v37), bs= (1/c)k,
where %, 7, £ are orthonormal unit vectors.
|ts| =c are the constants for the hexagonal lattice.
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appeared between I's~ and I'st with I's~ (s-like) below
I'st (p-like). K; (s-like) fell below K; (p-like) and the
s-like levels M+ and My fell below the p-like level
M. These results are only schematic but give us
confidence in our calculation. The energy bands have
been extended to energy values considerably higher
than the Fermi energy E; than have any previous band
calculations to our knowledge. The Fermi energy £,
was determined by the following construction: One
plane was drawn midway between the planes TKM and
AUP and another plane was drawn midway between
AUP and ALH in 1/24 of the B.Z. (Fig. 1). Tiny
hexagons were chosen so as to fill up the entire B.Z. and
graphically interpolated energies were found at the
centers of the small hexagons for the equivalent of 1152
points in the B.Z. with an estimated error of less than
0.01 Ry. Placing the energies in ascending order and
counting up to the 2304th energy value gave a Fermi
energy (E;)=0.8420.01 Ry measured from the bottom
of the band.® This interpolated mesh of points in 1/24
of the B.Z. was also used by the author to construct the
Fermi surface.? The Fermi surface is composed of a hole
region in the shape of a coronet and an electron region
in the form of two cigars. The hole region arises from
the following features of the energy bands [see Fig.
2(a)]: (1) The T, state goes above E; and the T’y state
goes below E; [see Fig. 2(a)] as one moves from I' to K.
(2) The =3 state goes above E; while the Z; state goes
below E; as one moves from I' to M. The electron region
arises from the following features of Figs. 2(a) and 2(b):
(1) The T+’ state goes below E; as one moves from M to
K while the 7'y state goes below E; as one moves from T’
to K. (2) The P, state goes above E; as one moves from
K to H. P, comes into the doubly degenerate (without
spin) state H; and this determines the height of the
cigars.

The hole regions of the theoretically and experi-
mentally determined Fermi surface are in very close
agreement, and the major difference lies in the fact that
the necks connecting the six corners of the theoretically
determined coronet are smaller than the experimentally
determined necks as found by Watts. The major area
of disagreement between the Fermi surface constructed
from the APW band calculation and the experimentally
determined Fermi surface of Watts lies in the “cigar-
like” electron orbits: the experimental cigars have a
slight indentation in the mid-section which is circular;
the theoretical cigars also have a slight indentation at
the mid-section but have more of a triangular appear-
ance. In addition, the length of the experimental
“cigar-like” orbit is longer than the theoretical ones.
The major area of disagreement between the Fermi
surface found by Loucks and Cutler and the experi-

3t For hep beryllium there are two atoms/cell and two electrons/
atom giving four electrons for each atom in the B. Z. Since a given
energy band can accommodate two electrons from each atom in
the solid, (4/2)X (1152)=2304 energies will lie below the Fermi
energy.
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TasiLe II. Energy eigenvalues computed by the APW method. The energies are in rydbergs and are measured with respect to the
constant value of potential between APW spheres (—1.6998 Ry). The points in % space at which the energy eigenvalues were calculated
are given in the first column. See Sec. 3.

(a/24,8/24,v/24) Label (if any) Energy (a/24,8/24,v/24) Label (if any) Energy
(0,0,0) ot ~0.0598 (6/24,6/24,0) T 0.3377
Ty 0.8401 0.8999
Iyt 0.4587 Ts 0.9523
T 1.5159
(3/24,0,0) =1 —0.0267 r Oasea
0.8518
8 1.6657 1.2588
1 .501 (9/24,6/24,0) T 1.7446
(6/24,0,0) > 8.0(7)22 pbss:
9.8544
0.8656
1.3271 1.6911
o 0.6272 Ty 1.3026
1.7406
(9/24,0,0) o 0.2358 Ty 1.1603
0.7438 Ty 0.6370
1.1876 1.2437
>3 1.6475 1.7684
0.8315
1.5147 (8/24,8/24,0) K, 1.6548
(12/24,0,0) M 0.4046 Ks 12435
K 1.2534
1.4941
_ K, 0.5817
My 0.5450
K; 0.7007
1.2321 17101
Myt 1.2398 .
My 1.0364 (0,0,6/24) Ay —0.0193
My 1.4214 Az 0.2949
(2/24,2/24,0) T, —0.(6)152 1.0947
1.646 3/24,0,6/24
T 0.5160 (8/24,0,6/24) ooeas
T4 0.8554 0.3300
1.6672 1.1088
(5/24,2/24,0) 0.0837 1.7003
?%{;ﬁ (6/24,0,6/24) 0.1131
) 0.4341
1.4977
1.1202
0.6415 i
(8/24,2/24,0) 0.2475 16807
0.7567 1.6171
1.1644
1.3669 (9/24,0,6/24) 0.2748
1.6975 0.5728
0.8452 0.9320
1.5229 1.2132
1.4735
(11/24,2/24,0) Ty 0.4185
! ' 1.2614 1.5070
1.5944 12/24,0,6/24 U 0.4388
Ty 12507 (12/24,0,6/24) ' 0.9462
Tsj 1.0510 1.6729
T4 0.5562 U, 0.5479
1.2345 0.9695
(4/24,4/24,0) Ts 0.6830 Us 1.5788
T: 0.1170
1.2528 (2/24,2/24,6/24) 1.4691
Ty 0.8809 0.0252
1.6929
1.4014 Ao
7/24,4/24,0 0.2818 .
(/24,4/24.0) 0.7939 (5/24,2/24,6/24) 1.7165
1.0535 0.1243
1.2827 0.4455
1.738 1.1305
0.8862 1.3609
1.5394 1.5229
(10/24,4/24,0) Ty 0.4582 (8/24,2/24,6/24) 1.7048
1.0536 0.2866
1.6574 0.5850
Ty 1.2784 0.9400
Ty 1.0925 1.2189
Ty 0.5872 1.3550.
1.2388 1.5392
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TaBLE 11 (continued)
(a/24,8/24,7/24) Label (if any) Energy (e/24,8/24,v/24) Label (if any) Energy
(11/24,2/24,6/24) 17723 (0,0,12/24) A, 0.1014
0.5594 1.5347
?gggz (3/24,0,12/24) Ri—R; 0.1322
1.7766 1.5536
0.4526 —
09472 (6/24,0,12/24) Ri—R;3 (1)%3(1)2
13045 9/24,0,12/24 1.6970
Ri—R .
(4/24,4/24,6/24) 1.7160 (9/24,0,12/24) =Ry Lo
0.1575 1.0571
1.2899 :
1.6906 (12/24,0,12/24) Ly 0.5131
0.4789 L, 0.8680
1.1492
1.4191 (2/24,2/24,12/24) N éﬁ)gg
(7/24,4/24,6/24) 1.7657 ’
0.3209 (5/24,2/24,12/24) 1.5403
0.6199 0.2523
0.9575 1.5829
1.1898
1.2390 (8/24,2/24,12/24) 1.7675
1.5041 0.4128
1.0727
(10/24,4/24,6/24) 1.6988
0.5927 (11/24,2/24,12/24) s 1.5520
0.9931 0.5280
1.4658 0.8696
1.7616
0.4936 (4/24,4/24,12/24) S 1.5172
0.9286 0.2791
1.2200 1.3835
1.4748
(6/24,6/24,6/24) 1.7538
0.6676 (7/24,4/24,12/24) 1.7793
1.0691 0.4333
1.2374 1.0715
1.6910
0.3764 (10/24,4/24,12/24) S’ 1.3905
0.9326 0.5696
1.4205 0.8676
(9/24,6/24,6/24) 0.6441 (6/24,6/24,12/24) S 1.3611
1.0172 0.4897
1.3320 1.0237
0.5612 1.2900
0.8315
1.1758 (9/24,6/24,12/24) N 8228?
(8/24,8/24,6/24) Py 1.7796 1.2376
Py 0.6340
Ps 1.0317 (8/24,8/24,12/24) H 0.7865
0.7009 H, 1.1965
1.2225 Hs 0.6990

mentally determined Fermi surface according to Watts
also arises from the “cigar-like’ electron orbits. Instead
of an indentation at the mid-section of the cigars,
Loucks and Cutler found a definite bulge. Loucks®
later showed, however, that the “waists” in the “cigars”
were in fact a feature of the OPW band calculation of
Loucks and Cutler.!t The length of the theoretical
“cigars” still continued to remain shorter than the
experimental ones. Thus, the band calculations pre-
sented here and of Loucks and Cutler both give rise to
nearly identical Fermi surfaces, both differing in nearly
the same way from the experimentally determined
Fermi surface of Watts.

2T, L. Loucks, Phys. Rev. 134, A1618 (1964).

A density-of-states curve is shown in Fig. 3. This is a
histogram which was constructed by dividing the
ordered energies into increments AL and counting the
number of states in each AE. The value AE=0.08 Ry
was a compromise between detail and smoothness. The
smooth curve in Fig. 3 is drawn so that the area under
each square is approximately constant. The density of
states according to Herring and Hill is the dashed curve
in Fig. 3. Our density of states, which is similar to the
one of Loucks and Cutler, has more structure than does
that of Herring and Hill, but does not have as much
structure as the one given by Cornwell,®® who used a
psuedopotential method for obtaining the energy levels
at a few symmetry points. It is customary to compare
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the calculated bandwidth with the soft-x-ray emission
data, although not much importance can be attributed
to this because of the low-energy tail of the x-ray data.
Johnston and Tomboulian® have found that the x-ray
absorption edge coincides with the high-energy limit of
the emission line in beryllium and that the absorption
data have a peak at the low-energy end. These results
are consistent with Fig. 3. Since the bands for E>E;
have been found, it would be interesting to extend the
density of states to higher energies so that comparison
with the x-ray absorption data of Johnston and Tom-

H. TERRELL

149

1.8
E(RY) KS% u
HKZ Uy !

1.6 L2

M) Us

Ke Py M3
K3 —\ M3
L2 Ha 2

L Uz
P2
1.0 M3z
U,
L L
0.8! Hy
Er Er

P/
- 3
Ks H3
o.s/
K1 Py

+
0.4~ M)

M=
2 Lo

T
C\CJ

(b)

F16. 2. Energy bands for hcp beryllium. Energies are given in
rydbergs and are measured with respect to the constant potential
between the APW spheres (—1.6998 Ry).

boulian could be made. The density of states at the
Fermi energy, N (Ey), gives us the electronic specific
heat. We cannot say anything very conclusive about the
value of the electronic specific heat we find from our
density of states, since E;intersects a very steep portion
of the density-of-states curve, and N (E;) is sensitive to
the construction of the histogram. Very roughly, we
find that v lies between 0.3X10~* and 0.5X10~*
(cal/°K2 mole). Hill and Smith* found y=0.54X10"*
(cal/°K2 mole) while more recently, Gmelin® found
v=(0.444-0.04) X 10~* (cal/°K2 mole).
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¥16. 3. Density of states for beryllium. Solid curve found using
results of APW band calculation. The dashed curve is taken from
Herring and Hill (Ref. 7). N(E)=No. elecs/(atom)(0.08 Ry).

4. DISCUSSION

In this section we will compare qualitatively the band
structure of hcp beryllium to the band structure of hcp
magnesium from the viewpoint of the APW method.
This is achieved by comparing the logarithmic deriva-
tives of beryllium and magnesium for one APW wave
function at their respective APW sphere radii. This
comparison enables us to understand the differences
between the Fermi surfaces of beryllium and magne-
sium. We next discuss the APW method in the light of
the OPW cancellation theorem of Cohen and Heine.!®

It is requried that the trial solutions in the APW
method be plane waves in the constant-potential region
between the spheres which match in value the general
spherical solutions to the Schrédinger equation inside
the spheres of radius R,. Slater® has discussed the APW
method from the viewpoint of scattering theory and has
shown that the diagonal APW matrix element can be
written approximately in a form which exhibits the
energy dependence as the difference between the
logarithmic derivatives %) (R,,E)[ui(R,,E) and j;' (kR,)/
ji(kR;) at R,. u;(R,,E) is the solution of the radial
Schrodinger equation for angular momentum 7 and
energy E using the crystalline potential, while 7;(kR;)
is the spherical Bessel function of angular momentum
I which comes from the familiar series expansion for the
plane wave. It turns out that if for some % the logarith-
mic derivatives are approximately equal, then the
electron bands are approximately free.

The logarithmic derivatives for beryllium ‘and
magnesium are shown in Figs. 4 and 5.3 The potential
of Falicov® (modified slightly for the APW method)
was used for magnesium and the potential of Table II
was used for beryllium. The zero of energy (k=0) was

# The author wishes to thank J. F. Kenney for the use of his
computer program to generate the 7i'(kR,)/71(kR,).
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chosen at the bottom of the band and the abscissa was
determined from the condition E=%2. The curves show
that: (1) As ! increases, the difference between the
logarithmic derivatives at R, decreases, and (2) match-
ing is better for magnesium than for beryllium.

When the matching at R, is poor, we may regard the
linear combination of APW functions needed for con-
vergence in energy as providing scattered wavelets. This
scattering corresponds physically to the absence of the
‘“anti-resonance” in energy of slow incident electrons
scattering off the spherical APW potential. This is
analogous to the Ramsauer-Townsend effect as has been
emphasized by Slater.?

We point out that this discussion is related to the
psuedopotential method of Heine and Abarenkov!® for
calculating electronic structures of nontransition metals.
In setting up the potential seen by a conduction electron
in a metal, they discuss separately the potential of
the electron inside the ion core of one of the atoms and
the potential in the region between the ions. The
potential in the region between the ions was obtained
by a dielectric screening calculation following Cohen
and Phillips* while the potential inside the ion core was
fitted to the spectroscopically measured energy levels
of the free ion in the spirit of the quantum-defect
method of Ham.?® However, as Kuhn and Van Vleck?®®
showed, the logarithmic derivative of the wave function
at the surface of a suitably defined sphere (analogous
to the APW sphere of radius R;), which surrounded the
ion was all that was necessary to obtain the band
structure.

The differences in the logarithmic derivatives be-
tween beryllium and magnesium shown in Figs. 4 and 35,
no doubt go a long way toward explaining the fact that
the bands, and consequently the Fermi surface of

F16. 4. Logarithmic derivatives of the radial wave functions
#1(R,,E) and the spherlcal Bessel functions j;(%R.) as a function
of energy (E) for magnesium. The abscissa is determined from the
relation E=£? and is in rydbergs.

3¢ M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961).
3 F. S. Ham, Solid State Phys. 1, 127 (1955); Phys Rev. 128,

82 (1962), 128 2524 (1962).
T. S. Kuhn and J. H. Van Vleck, Phys. Rev, 79, 382 (1950).
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T16. 5. Logarithmic derivatives of the radial wave functions
1#1(Rs,E) and the spherical Bessel functions 7;(kR,) as a function
of energy (E) for beryllium. The abscissa is determined from the
relation E=%? and is in rydbergs.

magnesium, are more free-electron-like than is the case
for beryllium. The Fermi surface of magnesium has been
found by Falicov® by the OPW method and more
recently by Dimmock, Freeman, and Furdyna® by the
APW method. Both calculations showed that the Fermi
surface was very close to the free-electron Fermi surface
constructed by Harrison.l® We have already noted that
distortions in the free-electron Fermi surface occur for
the case of beryllium.

Consider next these results from the viewpoint of the
OPW cancellation theorem of Cohen and Heine.!® The
OPW cancellation theorem says roughly that the
effective potential ¥V (r) acting on an electron in a metal
is cancelled in strength in proportion to how well the
bound states form a complete set in the region where
V(r) is large. From this it follows that there is no
cancellation of a level / when none of the core levels are
I-like. Since there is no p-core level of the beryllium
atom, one expects the cancellation to be poor. Mag-
nesium, on the other hand, has a neon core and the
theorem says we may expect more cancellation.

The matching of logarithmic derivatives across R, in
the APW scheme and the OPW cancellation theorem
are describing the same physical situation: (consider
beryllium).

(1) The absence of a p shell in the OPW scheme
means there will be no cancellation of V() for p levels.
In the APW scheme one expects the difference in
logarithmic derivatives at R, for I=1 to be large.

(2) Since for large ! the centrifugal potential term in
the Schrodinger equation excludes bound states from
the interior region of V(r), the effective potential V (r)
acting on an electron in a metal is not being effectively

3 J. O. Dimmock, A. J. Freeman, and A. M. Furdyna, Bull.
Am. Phys. Soc. 10, 377 (1965).

J. H. TERRELL

149

cancelled in the OPW scheme. In the APW scheme the
centrifugal potential term causes bound states to be
excluded from the region of the APW sphere of radius
R, and the #;(R,,E) becomes more plane-wave-like.
This provides better matching with the plane waves
outside the sphere of radius R,.

The OPW method is provided with a useful device
for reasoning in the form of the cancellation theorem of
Cohen and Heine. An analogous theorem from the
viewpoint of the APW method does not exist. Since the
Cohen and Heine OPW cancellation theorem is derived
from a variational statement which requires that the
effective potential acting on an electron be a minimum,
an analogous theorem in the APW scheme might take
the form of a variational statement on the phase shift
across the APW sphere radius R,. This is at present
under study.

5. SUMMARY

The results of an APW band calculation for hep
beryllium have been presented in the form of the Fermi
energy, the energy bands which were extended to
energies much greater than the Fermi energy, the
density-of-states curve below the Fermi energy, and the
electronic specific heat. The energy bands were found
to be quite similar to the bands found by Herring and
Hill and Loucks and Cutler. The potential used in
obtaining the energy bands was constructed by super-
posing atomic-beryllium potentials on first-, second-,
and third-nearest neighbors while exchange was treated
in the Slater free-electron-exchange appropriation. The
density-of-states curve compared favorably to the
x-ray emission data of Johnston and Tomboulian, and
the electronic specific heat was found to be in reasonable
agreement with the published experimental results.

The Fermi surface was described in terms of the
intersections of the Fermi energy with the energy bands
and a qualitative comparison with the experimentally
determined Fermi surface found by Watts was made.
The logarithmic derivatives for one APW wave function
at the APW sphere radius R, were found for beryllium
and magnesium, and these results were compared from
the viewpoint of the OPW cancellation theorem of
Cohen and Heine. We also indicated that the APW
method is related to the pseudopotential method of
Heine and Abarenkov.
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