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Band Structure of Beryllium by the Augmented-Plane-Wave Method*
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The results of an augmented-plane-wave (APW) calculation of hexagonal-close-packed beryllium are
presented in the form of the Fermi energy, energy bands which were extended to energies much higher than
the Fermi energy, density-of-states curve below the Fermi energy, and electronic specific heat. The crystal-
line potential used in calculating the energy bands was obtained by superposing self-consistent Hartree-Fock
atomic-beryllium potentials on first-, second-, and third-nearest neighbors, and exchange was treated in the
Slater free-electron-exchange approximation. The good agreement between the theoretically and experi-
mentally determined Fermi surfaces which was found previously by the author is discussed. The general
features of the density-of-states curve for energies below the Fermi energy are in good agreement with the
soft-x-ray emission data, and the electronic specific heat coeKcient is in reasonable agreement with published
experimental results. The energy bands of hcp beryllium and hcp magnesium are discussed by comparing the
logarithmic derivatives of their respective wave functions across the respective APW sphere radii. The
results of comparing the logarithmic derivatives of beryllium and magnesium are used to emphasize the close
connection between orthogonalized-plane-wave and APW methods.

l. INTRODUCTION

'HE results of an augmented-plane-wave (APW)
calculation on hexagonal-close-packed (hcp)

beryllium are presented. Energy eigenvalues which
converged to 0.001 Ry were computed at 45 points in
1/24 of the Brillouin zone (B.Z.).The Fermi energy was
determined by using graphically interpolated energy
eigenvalues which were found at the equivalent of
1152 points in the B.Z. with an estimated error of less
than 0.01 Ry. The Fermi surface was constructed
from the intersections of these energy bands with
the Fermi energy and comparison with the experi-
mentally determined Fermi surface according to Watts'
has been made previously by the author. ' The agree-
rnent between the Fermi surface constructed from these
energy bands and the experimentally determined Fermi
surface was found to be quite good, and we discuss the
differences which were found. A density-of-states curve
was constructed for energies below the Fermi energy,
the general features of which are in good agreement
with the soft-x-ray emission data of Johnston and
Tomboulian. ' The electronic specific heat was found. to
be in reasonable agreement with the experimental
results of Hill and Smith' and Gmelin. ' Although the
energy eigenvalues and energy bands have been ex-
tended a good deal above the Fermi energy, we have
made no attempt to construct a density of states for
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energies greater than the Fermi energy. The energy
bands of hcp beryllium that we 6nd are compared to the
energy bands of hcp magnesium according to Falicov'
in the light of their respective Fermi surfaces and the
matching of the logarithmic derivatives of their respec-
tive wave functions across the APW sphere radii. We
use the results of comparing the logarithmic derivatives
of beryllium and magnesium to emphasize the close
connection between the orthogonalized-plane-wave
(OPW) method and the APW method.

Herring and HilP first discussed the band structure
of beryllium by the OPW method. They computed
energy eigenvalues at points of high symmetry in the
B.Z. and found a density of states, Fermi energy, and a
value for the electronic specific heat. It is useful to have
an independent calculation of the same material by a
different method; and since the APW method has been
used successfully in determining energy bands, it was
considered worthwhile to calculate the energy bands of
beryllium by the APW method. Moreover, computer
techniques developed by Saffren and Wood' have
greatly increased the ease of applying the APW method.
While this calculation was being completed, Watts'
proposed a Fermi surface for beryllium based on his
de Haas —van Alphen experiments and pointed out that
a Fermi surface based on Herring and Hill's calculation
would be qualitatively similar to the experimentally
determined Fermi surface if the Fermi energy is chosen
to be slightly different from the one calculated by
Herring and Hill. This result stimulated interest in
arriving at a theoretically determined Fermi surface for
which detailed comparison with the experimentally
determined Fermi surface could be made. The theo-
retically determined Fermi surface was constructed by

6 L. M. Falicov, Phi}. Trans. Roy. Soc. London A255, 55 (1962).
7 C. Herring and A. G. Hill, Phys. Rev. 5&, 132 (1940)' M. M. Sa8ren, Ph.D. thesis, MIT, 1959 (unpublished).
z J. H. Wood, Phys. Rev. 117, 714 (1960).
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the author' using the results of this calculation and is
made up of a hole region and an electron region. The
hole region is in the form of a closed six-cornered coronet
connected by tiny necks. The electron region is in the
form of two cigars each with a triangular midsection
which becomes circular as one moves toward the ends.
There is also a slight indentation at the midsection.
Reference to the free-electron Fermi surface con-
structed by Harrison' reveals that signiicant distor-
tions in the free-electron case have occurred for the
Fermi surface of beryllium.

Loucks and Cutler" carried out another OPW calcu-
lation of beryllium ending the energy eigenvalues at the
equivalent of 5184 points in the B.Z. From this they
found the Fermi energy, the density of states, a value
for the electronic speci6c heat, and the Fermi surface.
The theoretically determined Fermi surface found by
Loucks and Cutler is very similar to the one found by
the author, and both compare favorably with the
experimentally determined Fermi surface of Watts.
Watts has recently compared the theoretically deter-
mined Fermi surfaces found by the author and by
Loucks and Cutler with the Fermi surface found by the
de Haas —van Alphen eQect." Other band calculations
of beryllium have appeared, " but they do not allow

accurate comparisons to be made with the latest
experimental results.

The potential used in this calculation is described in
Sec. 2 along with a brief discussion of the APW method.
Exchange was included by the Slater free-electron-
exchange approximation. ' The results of this calcu-
lation are presented in Sec. 3 in the form of the energy
bands, density-of-states curve, and electronic specific
heat. The features of the Fermi surface found by the
author' are discussed in Sec. 3 in terms of the energy
bands and Fermi energy. Drawings of the Fermi surface
along with detailed numerical comparisons with the
experimental results of Watts' are given in Ref. (2) and
are not reproduced here. The theoretically determined
Fermi surface found by the author is discussed in
relation to the theoretically determined Fermi surface
found by Loucks and Cutler and the experimentally
determined Fermi surface found by Watts. In Sec. 4 the
energy bands of hcp beryllium are compared to the
energy bands of hcp magnesium according to Falicov'
in terms of their respective Fermi surfaces and in terms
of the logarithmic derivatives of the respective wave
functions at the APW sphere radii. A discussion of these
results from the viewpoint of the OPW cancellation
theorem of Cohen and Heine" is then given, and we

"W. A. Harrison, Phys. Rev. 118, 1190 (1960)."T. L. Loucks and P. H. Cutler, Phys. Rev. 133, A819 (1964).
's B. R. Watts, Proc. Roy. Soc. london) A282, 521 (1964)."J.F. Cornwell, Proc. Roy. Soc. (London) A261, 551 (1961);

R. Jacques, Cahiers Phys. 70, 1(1956);71-72, 31 (1956).
' J. C. Slater, Quuntum Theory of Atomic Structure (McGraw-

Hill Book Company, Inc. , New York, 1960}.
"M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).

emphasize the close connection of the APW method with
the psuedopotential method of Heine and Abarenkov. "

2. APW METHOD AND POTENTIAL

In order to obtain convergence in the energy eigen-
value solutions to the Hartree-Fock equation, the
choice of basis sets is important, i.e., the Bloch" wave
function must be expanded in a set of functions which
will lead to rapid convergence in energy. One possible
choice of basis function is the OPW and another is the
APW. The APW method was proposed by Slater" and
extended by Saffren and Slater. "The APW method has
become successful in recent years for determining band
structures; and for a description of the APW method,
its relation to other energy band methods, and the
associated literature, the interested reader is referred to
the recent book by Slater."

The details of calculating the energy eigenvalue s
using the APW method will not be reproduced here.
Wood' has given a detailed discussion of the method of
computation which has been employed. The ijth matrix
element for two atoms per unit cell and for the nth
irreducible representation is as follows:

(&—E)',"=(a/h)Z i'.*(E)«(O'I~ —El&4 )
R

= (g/h)P r.*(R)„,(k,"Rk,—E)S,',„,.

+—2cos[(Rk;—k,) r ]F;;
0

j,(let;—k, IE.)
F, =47rR s —(k","Rk —E)

00 I, zk;
+P (2l+ 1)J',

i

&/k, f/k;f u('(E„E).
X j&(h,R,)j&(k;E,)

ug(E„E)
The hcp structure is a nonsymmorphic space group and
the sum on the operators E. include nonprimitive
translations.

The origin is at the inversion center of the hcp lattice
and r„is the coordinate of one of the atoms in the unit
cell. The symmetry of the hcp lattice with this choice of
coordinate system has been discussed by Slater."The
order of the group of the wave vector is labeled g, and
h is the dimension of the ath irreducible representation.
The N~(R„E) are solutions to the radial Schrodinger
equation within a sphere of radius E., for energy E using
the spherical potential described below. The other

'6 V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).
'7 F. Bloch, Z. Physik 52, 555 (1928).' J. C. Slater, Phys. Rev. 51, 846 (1937}.
"M. M. Saffren and J. C. Slater, Phys. Rev. 92, 1126 (1953).' J.C. Slater, Quuntum Theory of Molecules und Solids (McGraw-

Hill Book Company, Inc., New York, 1965), Pol. II.
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TAsx.E I. Potential for hcp beryllium. The radial distance r is in atomic units, and the constant
potential between the spheres of radius R, is —1.6998 Ry.
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0.300
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0.420
0.500
0.580
0.660
0.740
0.820
0.900
0.980
1.140
1.300
1.460
1.620
1,780
1.940
2.100
2.260

—2Za(r) =r V(r)crystal

5.7580
3.5420
5.3437
5.1603
4.8293
4.5355
4.2723
4.0389
3.8384
3.6753
3.5511
3.4035
3.3443
3.3345
3.3360
3.4213
3.5215
3.6663
3.8609

&+ (&)exchange

1.3436
1.3785
1.3956
1.3983
1.3712
1.3161
1.2487
1.1826
1.1305
1.1020
1.1021
1.1177
1.3095
1.4576
1.6051
1,7485
1.8890
2.0294
2.1723

quantities are defined in the paper by Wood. ' Con-
vergence to 0.001 Ry in energy for each irreducible
representation was achieved by adjusting through trial
and error the number of APW functions together with
the maximum l value in the sum on l in the above
equation. A maximum value of i=12 was found to be
good enough. By convergence tests it was found that
about 21 plane waves were needed to obtain convergence.

The APW method requires a one-electron potential
spherically symmetric within spheres of radius E,
centered on the atomic sites and constant between the
spheres. R, was chosen so that the spheres surrounding
neighboring atoms touch, and E.,=2.159 atomic units
(a.u.) where 1 a.u. =0.529&&10 ' cm. This potential
should, of course, resemble the one-electron potential
due to the actual charge distribution as closely as
possible.

The crystalline potential was found by superposing
atomic potentials placed on first-, second-, and third-
nearest neighbors, and a spherical average taken. The
procedure for this has been discussed by Mattheiss. "
The number of neighbors used for constructing the
potential is based on an ideal c/a ratio. a=4.319 a.u.
and c=6.771 a.u."Although the c/a ratio for beryllium
is not ideal, this is not expected to greatly aGect the
potential. The free-atom potential for the beryllium
atom in the (1s)'(2s)' state was taken from a self-
consistent Hartree-Fock calculation by Clementi,
Roothaan, and Yoshimine. "Exchange was calculated
in the Slater free-electron-exchange approximation"
using the summed spherical potential. Thus, sym-
bolically we have V(r)crystal V(r)conlomb+V(r)exchange
V(r) c«tomb is the sPherical average of the total Coulomb

~~ L. F. Mattheiss, Phys. Rev. 133, A1.399 (1964).
~' Room-temperature lattice parameters are from %.B.Pearson,

A Hartdboott of Lattsce Spac&tgs artd Structures of Metals aud Alloys
(Pergamon Press, Inc. , New York, 1958).

23K. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys.
Rev. 127) N18 (1962).

potential at a lattice site from Grst-, second-, and
third-nearest-neighbor beryllium atoms, and V(r),„,h,„g,
=—6L3p (r)/8srg'tg. p(r) is the spherically averaged
charge distribution at first-, second-, and third-nearest-
neighbor sites due to the (1s)'(2s)' states of the beryl-
lium atom. The potential is given in Table I. For atoms
the Slater free-electron-exchange approximation is poor
far from the nucleus where the charge density is small.
In the case of solids one expects the approximation to
be less severe in the sense that electrons move more or
less independently of each other and therefore see the
same potential. We mention two of the many calcu-
lations concerning the validity of the free-electron-
exchange approximation: The main contribution to the
exchange energy of an electron gas in a periodic poten-
tial was found by Eyges'4 to come from the plane-wave
component of the wave function; according to Reitz25

the exchange energy of valence electrons in monatomic
metals is not altered much because of spatial variations
of the ground-state wave functions. Furthermore,
Mattheiss" demonstrated that quite reasonable bands
for the iron transition series could be obtained with the
APW method using the Slater free-electron-exchange
approximation and spherically averaging the summed

potentials as described above. Robinson et al.2' sug-

gested that electron correlations could be taken into
account by screening the exchange potential calculated
in the free-electron approximation. This procedure was
considered desirable since the free-electron approxi-
mation can overestimate exchange at the low-density
tails of atomic functions. '8 Screening would decrease
sharply the potential in this region. On the other hand,

. ~ L. Kyges, Phys. Rev. 130, 2218 (1963)."J. Reitz, J. Chem. Phys. 22, 595 (1954)."L.F. Mattheiss, Phys. Rev. 154, A970 (1964)."J.E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer,
Phys. Rev. Letters 9, 215 (1962).

28 F. Herman, J. Callaway, and F. S. Acton, Phys. Rev. 95, 371
(1954).
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appeared between I'4—and I's+ with I'4 (s-like) below
I's+ (p-like). Es (s-like) fell below I/'t (p-like) and the
s-like levels Mt+ and M's fell below the p-like level
M4 . These results are only schematic but give us
confidence in our. calculation. The energy bands have
been extended to energy values considerably higher
than the Fermi energy Ey than have any previous band
calculations to our knowledge. The Fermi energy''~
was determined by the following construction: One
plane was drawn midway between the planes I'E3f and
AUI' and another plane was drawn midway between
hUP and /II.H in 1/24 of the B.Z. (Fig. 1). Tiny
hexagons were chosen so as to fill up the entire B,Z. and
graphically interpolated energies were found at the
centers of the small hexagons for the equivalent of 1152
points in the B.Z. with an estimated error of less than
0.01 Ry. Placing the energies in ascending order and
counting up to the 2304th energy value gave a Fermi
energy (E/) =0.84&0.01 Ry measured from the bottom
of the band. "This interpolated mesh of points in 1/24
of the B.Z. was also used by the author to construct the
Fermi surface. ' The Fermi surface is composed of a hole
region in the shape of a coronet and an electron region
in the form of two cigars. The hole region arises from
the following features of the energy bands [see Fig.
2(a)j:(1) The Ts state goes above E/ and the T4 state
goes below E/ Lsee Fig. 2(a)j as one moves from I' to IC.
(2) The Zs state goes above E/ while the Zr state goes
below' E~ as one moves from F to M. The electron region
arises from the following features of Figs. 2 (a) and 2 (b):
(1) The Tt'state goes below E/as one moves from M to
IC while the T~ state goes below E~ as one moves from I'
to E. (2) The I'r state goes above I~'/ as one moves from
Eto H. I'& com'es into the doubly degenerate (without
spin) state Hr and this determines the height of the
cigars.

The hole regions of the theoretically and experi-
mentally determined Fermi surface are in very close
agreement, and the major difference lies in the fact that
the necks connecting the six corners of the theoretically
determined coronet are smaller than the experimentally
determined necks as found by Watts. The major area
of disagreement between the Fermi surface constructed
from the APW band calculation and the experimentally
determined Fermi surface of Watts lies in the "cigar-
like" electron orbits: the experimental cigars have a
slight indentation in the mid-section which is circular;
the theoretical cigars also have a slight indentation at
the mid-section but have more of a triangular appear-
ance. In addition, the length of the experimental
"cigar-like" orbit is longer than the theoretical ones.
The major area of disagreement between the Fermi
surface found by Loucks and Cutler" and the experi-

Mattheiss" showed that the free-electron approximation.
can underestimate exchange at the low-density atomic
tails, and any further reduction of the exchange poten-
tial in this region is not justified. In view of these
investigations we have used the "bare" Slater free-
electron exchange in our calculation. The only justi6-
cation for this is the good agreement of the Fermi
surface found from our energy bands with the experi-
mentally determined Fermi surface of Watts' as we
discuss in the next section.

3. RESULTS

Energy eigenvalues were computed at 45 points in
1/24 of the Brillouin zone (B.Z.) along major symmetry
directions and at points of lower symmetry in the planes
rEM, OUI', and AJH" as shown in Fig. i. The
coordinates k of the grid of points in 1/24 of the B.Z.
are given in terms of their components along bt, bs, and
bs of Fig. 1 such that k= 2s L(n/24) br+ (8/24) bs

+(y/24)bs]. ss The eigenvalues are listed in Table II.
The coordinates k at the points of the B.Z. at which the
eigenvalues were found are given in the first column in
terms of rr/24, P/24, p/24, and the symmetry labels for
some of the irreducible representations are given in the
second column. Energy eigenvalues E-versus-k curves
along the major symmetry directions are shown in

Fig. 2. These bands represent the (2s)' electrons of the
beryllium atom. The (1s)s electrons lie approximately
8.9 Ry lower in energy. The ordering of the bands is the
same as that of the OPW calculations of Herring and
HilV and I.oucks and Cutler" and are quite similar. As
a check on our calculations the lattice constants t, and
u w'ere increased together and energy eigenvalues were
found along the I'KM directions. We did not bother
about convergence or take the trouble to calculate a
new potential as the lattice constants were increased.
We found that c and a had to be increased by about
200% before beryllium became an insulator. A gap

FIG. 1. Brillouin
zone for the hcp struc-
ture showing 1/24th
of the volume in which
energy eigenvalue s
were found.
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"For hcp beryllium there are two atoms/cell and two electrons/
atom giving four electrons for each atom in the B.Z. Since a given
energy band can accommodate two electrons from each atom in
the solid, (4/2) && (1152)=2304 energies will lie below the Fermi
energy.

bl

"The notations are those ol C. Herring, J. Franklin Inst. 233,
525 (1942).

~ The reciprocal lattice vectors b1, b2, and b3 satisfy the follow-
ing relation: t; b;=5;g, i=1, 2, 3. In terms of a rectangular
coordinate system b&= (2/ov8)4, bs ——(1/owed) (4+v3g), bs (1/c)k, =
where i, j, k are orthonormal unit vectors. t&~ = ~t.

~

=a and:
(ts

~

=c are the constants for the hexagonal lattice.
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TAzzK II. Energy eigenvalues computed by the APW method. The energies are in rydbergs and are measured with respect to the
constant value of potential between APW' spheres (—1.6998 Ry). The points in k space at which the energy eigenvalues were calculated
are given in the 6rst column. See Sec. 3.

(~/24, P/24 v/24)

(o,o,o)

(3/24, 0,0)

{6/24,0,0)

(9/24, 0,0)

(12/24, 0,0)

(2/24, 2/24, 0)

(S/24, 2/24, 0)

(8/24, 2/24, 0)

(11/24, 2/24, 0)

(4/24, 4/24, 0)

(7/24, 4/24, 0)

(10/24, 4/24, 0)

Label (if any)

r,+
j. 4

+

yl

T2
T4

T2
T3'
T4

T4

Energy

—0.0598
0.8401
0.4587

—0.0267
0.8518
1.6657

0.5017
0.0725
0.8656
1.3271
0.6272

0.2358
0.7438
1.1876
1.6475
0.8315
1.5147

0.4046
1.4941
0.5450
1.2321
1.2398
1.0364
1.4214

—0.0156
1.6462
0.5160
0.8554
1.6672

0.0837
0.8715
1.3153
1.4977
0.6415
0.24'?5
0.7567
1.1644
1.3669
1.6975
0.8452
1.5229
0.4185
1.2614
1.5944
1.2507
1.0510
0.5562
1.2345

0.6830
0.1170
1.2528
0.8809
1.4014
0.2818
0.7939
1.0535
1.2827
1.738
0.8862
1.5394
0.4582
1.0536
1.6574
1.2784
1.0925
0.5872
1.2388

(n/24, P/24, y/24)

(6/24, 6/24, 0)

(9/24, 6/24, 0)

(8/24, 8/24, 0)

(0,0,6/24)

{3/24,0,6/24)

(6/24, 0,6/24)

{9/24,0,6/24)

(12/24, 0,6/24)

(2/24, 2/24, 6/24)

{5/24,2/24, 6/24)

(8/24, 2/24, 6/24)

Label (if any)

T2
T3
T4

T2'

Ts'
T4

Eg
Eg
E6
Ej
E5

Energy

0.3377
0.8999
0.9523
1.5159
0.8364
1.2588

1.7446
0.5221.
9.8544
1.6911
1.3026
1.7406
1.1603
0.6370
1.2437
1.7684

1.6548
1.2435
1.2534
0.5817
0.7007
1.7191

—0.0193
0.2949
1.0947

1.7805
0.0138
0.3309
1.1088
1.7003

0.1131
0.4341
1.1202
1.3738
1.6807
1.6171

0.2748
0.5728
0.9320
1.2132
1.4735
1.5070

0.4388
0.9462
1.6729
0.5479
0.9695
1.5788

1.4691
0.0252
1.6929
0.3436

1.7165
0.1243
0.4455
1.1305
1.3609
1.5229

1.7048
0.2866
0.5850
0.9400
1.2189
1.3550
1.5392
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TAsLz II (co@tinged)

(~/24 P/24 v/24)

(11/24, 2/24, 6/24)

(4/24, 4/24, 6/24)

(7/24, 4/24, 6/24)

{10/24,4/24, 6/24)

(6/24)6/24) 6/24)

{9/24 6/24 6/24)

(8/24, 8/24, 6/24)

Label (if any) Energy

1.7723
0.5594
0.9757
1.5564
1.7766
0.4526
0.9472
1.3645

1.7160
0.1575
1.2899
1.6906
0.4789
1.1492
1.4191

1.7657
0.3209
0.6199
0.9575
1.1898
1.2390
1.5041

1.6988
0.5927
0.9931
1.4658
1.7616
0.4936
0.9286
1.2200

1.7538
0.6676
1.0691
1.2374
1.6910
0.3764
0.9326
1.4205

0.6441
1.0172
1.3320
0.5612
0.8315
1.1758

1.7796
0.6340
1.0317
0.7009
1.2225

(3/24, 0,12/24)

(6/24, 0,12/24)

(9/24, 0,12/24)

R1—R3

R1—Rg

(12/24, 0,12/24)

(2/24) 2/24) 12/24)

(5/24, 2/24, 12/24)

LI
1-2

(8/24, 2/24, 12/24)

(11/24, 2/24, 12/24) S'

(4/24, 4/24, 12/24)

(7/24, 4/24, 12/24)

(10/24, 4/24, 12/24) S'

(6/24) 6/24) 12/24)

(9/24, 6/24, 12/24) S'

(8/24, 8/24, 12/24)

(n/24, P/24, y/24) Label (if any)

(0,0,12/24)

Energy

0.1014
1.5347

0.1322
1.5536

0.2319
13905

1.6970
0.3900
1.0571

0.5131
0.8680

1.6037
0.1463

1.5403
0.2523
1.5829

1.7675
0.4128
1.0727

1.5520
0.5280
0.8696

1.5172
0.2791
1.3835
1.4748

1.7793
0.4333
1.0715

1.3905
0.5696
0.8676

1.3611
0.4897
1.0237
1.2900

0.6366
0.8401
1.2376

0.7865
1.1965
0.6990

mentally determined Fermi surface according to Watts
also arises from the "cigar-like" electron orbits. Instead
of an indentation at the rnid-section of the cigars,
Loucks and Cutler found a definite bulge. Loucks"
later showed, however, that the "waists" in the "cigars"
were in fact a feature of the OPW band calculation of
Loucks and Cutler. " The length of the theoretical
"cigars" still continued to remain shorter than the
experimental ones. Thus, the band calculations pre-
sented here and of Loucks and Cutler both give rise to
nearly identical Fermi surfaces, both differing in nearly
the same way from the experimentally determined
Fermi surface of Watts.

"T. L. Loucks, Phys. Rev. 134, A1618 (1964).

A density-of-states curve is shown in Fig. 3. This is a
histogram which was constructed by dividing the
ordered energies into increments AE and counting the
number of states in each AK The value DE=0.08 Ry
was a compromise between detail and smoothness. The
smooth curve in Fig. 3 is drawn so that the area under
each square is approximately constant. The density of
states according to Herring and Hill is the dashed curve
in Fig. 3. Our density of states, which is similar to the
one of Loucks and Cutler, has more structure than does
that of Herring and Hill, but does not have as much
structure as the one given by Cornwell, "who used a
psuedopotential method for obtaining the energy levels
at a few symmetry points. It is customary to compare
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the calculated bandwidth with the soft—x-ray emission

data, although not much importance can be attributed
to this because of the low-energy tail of the x-ray data.
Johnston and Tomboulian' have found. that the x-ray
absorption edge coincides with the high-energy limit of
the emission line in beryllium and that the absorption
data have a peak. at the low-energy end. These results
are consistent with Fig. 3. Since the bands for E&Ef
have been found, it would be interesting to extend the

density of states to higher energies so that comparison
with the x-ray absorption data of Johnston and Tom-

boulian could be made. The density of states at the
Fermi energy, X(Ef), gives us the electronic specific
heat. We cannot say anything very conclusive about the
value of the electronic specific heat we find from our
density of states, since EJ intersects a very steep portion
of the density-of-states curve, and E(Er) is sensitive to
the construction of the histogram. Very roughly, we
6nd that y lies between 0.3)& TO and 0.5X10 '
(cal/'Ks mole). Hill and Smith4 found y=0.54X10—4

(cal/'Ksmole) while more recently, Gmelin' found
y= (0.44&0 04) X 10—4 (cal/ K' mole).
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