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the wave function at (x+2rr/hb, y) with its value at
(x,y), the magnitude is the same but the phase is
changed by 2srq, /hb, because of the phase-factor e" *

in (54a). There is no such periodicity over a distance
2ir/ha in the y direction because the wave-function
amplitudes are not periodic in the network in Fig. 6
since the phase shifts at A ~ and A ~' depend on I accord-
ing to (36). This is what we would expect by setting
up the wave function a,s R Pippard network' in the
Landau gauge used in this paper.

8. CONCLUDING REMARKS

Ke have set up the theory of the effective Hamil-
tonian in terms of Wannier functions and difference
equations. This method can be used to derive the wave
functions in configuration space, and it is hoped tha, t
this approach gives a clear picture of the situation Rs

well as of the problems involved. It is certainly one of
the more elementary methods, since all the matrix
elements Rre finite and do not involve 8 functions.
XVhen breakdown is liable to occur, the Kannier
functions have to be modified, and than the effective
Hamiltonian must be treated, a,t least in the regions of
breakdown, Rs a matrix.

The use of such a theory has enabled us to justifier
the network model used by. the author, " which can
readily be shown to be essentially equivalent to those
used by Pippard. ~ ' Then we have considered the
problem of the de Haas —van Alphen CR'ect with break-
down. The results are very much as we might expect.
Finally, we have shown how to construct a wave
function lying on R network as suggested by Pippard. ' '

All this has been done in the framework of R sin1ple
recta, ngular model. For the sake of completeness the
theory should be extended to deal with niore compli-
cated models, but the author does not expect that Rny
surprising new results would be found. The problem of
spin-orbit coupling has not been treated and it may be
important, particularly when the band gaps across
which breakdown takes place are produced primarih
by spin-orbit coupling. In this case we would have to
consider the effect of the first-order term in the elective
HRI11iltonlRI1 expanded Rs R power series I11 k.

ACKNOWLEDGMENTS

The author would like to thank Professor E. Brown,
Professor L. M. Falicov, and Professor G. Trammell for
their help in discussing some of the topics in this article.

PHYSICAL REVIEW VOI UME 149, NUMBER 2 16 SEPTEMBER 1966

Band Structure and Fermi Surface of White Tin*)

GIDEQN WEIszt
Departroertt of Physics arid Irtstitnte for the Study of Itfetals, Uuiversity of Chicago, Chicago, Illinois

(Received 4 February 1966)

The band structure and Fermi surface of metallic white tin are successfully calculated, using a local-
pseudopotential approximation. A nevr, simple, and accurate model is found for including the spin-orbit
coupling within the framework of a pseudopotential Hamiltonian. The results are compared with experi-
mental data, and good agreement is found throughout.

I. INTRODUCTION

HIS paper contains a theoretical calculation of
the band structure and Fermi surface of white tin,

and a compa, rison of the results with experimental
data. It also introduces a new method for dealing with
the spin-orbit interaction. The study of tin is motivated
by many circumstances and considerations. These a,re
discussed in the following paragraphs, beginning with
the experimental situation and proceeding to the prob-
lems and possibilities to which the tin lattice structure
gives rise.
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In recent years, the Fermi surface of tin metal has
been the subject of a number of experimental investiga-
tions, but the complexity of the surface has thus far
prevented it from being fully understood. The present
calculation by a pseudopotential method is intended to
furnish a guide and a stimulus to further experimenta-
tion. The following experiments have shed some light
on the electronic structure of Sn: de Haas —van Alphen
effect, ' galvanomagnetic properties, ' ' cyclotron size

' A. V. Gold and M. G. Priestley, Phil. Mag. 5, 1089
(1960).

N. E. Alekseevskii, Yu. P. Gaidukov, I. M. Lifshitz, and
V. G. Peschanskii, Zh. Eksperim. i Teor. Fiz. 39, 1201 {1960)
LEnglish transl. : Soviet Phys. —JETP 12, 837 (1961)j.

N. E. Alekseevskii and Yu. P. Gaidukov, Zh. Eksperim. i
Teor. Fiz. 41, 1079 (1961) LEnglish transl. : Soviet Phys. —JETP
14, 770 (1962)j.

'R. C. Young, Phys. Rev. Letters 15, 262 {1965}.
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effects, ' ' drift size effect, ' ordinary' and special""
cyclotron resonance, magnetoa, coustic attenuation, " "
and anomalous skin eGect."' The superconductivity
experiments" should also be mentioned here. By
virtue of its tetragonal crystal structure, tin exhibits
a marked anisotropy in many of its properties. It is the
most anisotropic of known superconducting elements.
The calculation" of the anisotropy of the energy gap is
thus of some interest, but it cannot be done without a
detailed picture of the Fermi surface such as is furnished
by the present calculation.

An attractive feature of tin is its obtainability at a
very high purity. At liquid-helium temperatures, mean
free paths of the order of a millimeter make possible or
practical experiments such as Gantmakher's rich, almost
pictorial, size-effect experiments. 7 Such effects mill

undoubtedly be studied in detail from a theoretical
standpoint. It will then be useful to have available for
comparison both Gantmakher's experiment and a
picture of the Fermi surface which it measures. For
example, the present calculation should give us some
idea as to what kinds of Fermi surface correspond to
each of the several line shapes tha, t Gantmakher has
encountered.

The success of local-pseudopotential calculations of
the band structures and Fermi surfaces of numerous
simple metals gives us confidence in applying this
method to tin. In particular, we a,re encouraged by the
especially relevant examples of Ge, ' Sb," and Pb,"
which a,re neighbors of Sn in the periodic table. How-
ever, the Fermi surface is usuallv determined primarily
by the values of the band energies nea, r a few symmetry
points. The complexity and extent of the pieces of
Fermi surface in tin provide a somewhat more taxing

M. S. Khaikin, Zh. Eksperim. i Teor. Fiz. 43, 59 (1962)
/English transl. : Soviet Phys. —JETP 16, 42 (1963)j.' V. F. Gantmakher, Zh. Eksperim. i Teor. Fiz. 44, 811 (1963)
LEnglish transl. : Soviet Phys. —JETP 17, 549 (1963)g.

' V. F. Gantmakher, Zh. Eksperim. i Teor. Fiz. 46, 2028 (1964)
LEnglish transl. : Soviet Phys. —JETP 19, 1366 (1964) j.

V. F. Gantmakher and E. A. Kaner, Zh, Eksperim. i Teor.
Fiz. 45, 1430 (1963) LEnglish transl. : Soviet Phys. —JETP 18, 988
(1964)g.

M. S. Khaikin, Zh. Eksperim. i Teor. Fiz. 42, 27 (1962)
/English transl. : Soviet Phys. —JETP 15, 18 (1963))."J.F. Koch and A. F. Kip, Phys. Rev. Letters 8, 473 (1962)

"M. $. Khaikin, Zh. Eksperim. i Teor. Fiz. 39, 513 (1960)
LEnglish transl. : Soviet Phys. —JETP 12, 359 (1961)j.

"A.A. Galkin, E. A. Kaner, and A. P. Korolyuk, Zh. Eksperim.
i Teor. Fiz. 39 1517 (1960) /English transl. :Soviet Phys. —JETP
12, 1055 (1961)j."T.Olsen, J. Phys. Chem. Solids, 24, 649 (1963).

'4 B. E. Miller (to be published).
"R.J. Kearney, A. R. Mackintosh, and R. C. Young, Phys.

Rev. 14Q, A1671 (1965)."E.Fawcett, Proc. Roy. Soc. (I ondon) A232, 519 (1955).
"R.G. Chambers, Can. J. Phys. 34, 1395 (1956)."D. H. Douglass, Jr., and L. M. Falicov, Progress in I.oe Tees-

perature Physics, edited by C. J. Gorter (North-Holland Publish-
ing Company, Amsterdam, 1964).

"A. Bennett, Phys. Rev. 140, 1902 (1965).
'" D. Burst, Phys. Rev. 134, A1337 (1964)."L. M. Falicov and P. J. I,in, Phys. Rev. 141, 562 (1966).
&' g., Pndersson and A. Gold, Phys. Rev, 139& 1459 (1965),
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Fxt . 1. The crystal lattice of white tin.

test than is usual of the efficacy of the local pseudo-
potential approximation.

Tin has an atomic number 50, so tha, t its electrons
should experience a considerable spin-orbit interaction.
The spin-orbit interaction is of great importance in
heavy elements like lead, where it is about 1.7 eV for
the P3/2 P]/2 splitting of Pbn. In tin it is considerably
weaker, about 0.5 eV for the corresponding splitting,
but its importance is greatly enhanced by the noncubic
crystal structure. The AS white-tin lattice has tvro
atoms per unit cell, and its space-group properties result
in sticking-together of the spinless bands in pairs along
two symmetry lines on the Brillouin-zone faces. '3'4
The spin-orbit interaction lifts this degeneracy at all
points but two. Thus the effects of spin are of essential
importance in tin. They must be taken into account,
if possiMe, not as a perturbation but on the same
footing as the crystal pseudopotential. Tin thus pro-
vides an interesting opportunity to test a nevr, simple
way of incorporating the spin-orbit interaction into a
pseudopotential secular equation. This method is
developed in Sec. III.

Finally, while tin is the only example of the AS
lattice structure at normal pressures and temperatures,
germanium and silicon are known to take the more
compact white-tin structure at higher pressures. "
To investigate the high-pressure behavior of these
materials, calculations such as the present one vrill

be necessary. Many of the general features of the band
structure of white tin may be expected to persist, and
in that sense this calculation should serve as a model or
starting point for the others.

Section II describes the white-tin lattice and its
Brillouin zone, as well as the method of calculation and
the resulting band structure. Section III develops the
present formulation of the spin-orbit interaction, and
describes the inhuence of spin upon the band structure.
Section IV is devoted to a description of the resulting
Fermi surface. Section V compares the results vrith the
available experimental data. Section VI is a brief dis-
cussion of the results.

"S. Mase, J. Phys. Soc. Japan 14, 1538 (1959).
'4 M. Miasek and M. SuGczynski, Bull. Acad. Polon. Sci. Ser,

Sci. Math. Astron. Phys. 9, 483 (1961).
'~ T. Yoshioka and P. A. Beck, Trans. Met, Soc, AIMK 233,

1788 (1965),



506 GI D EO N WE I SZ

kz

[oolj
H

TmLE II. The reciprocal lattice. All coordinates are given
in units of (2'/a) (a/c) =1.840.
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FIG. 2. The Brillouin zone,

Basis vector

G2
G3

Symmetry point
F
I,
X
P
V

(G,G„,G,)

(2,0,0)
(o', 2',0)
(1,0,a/c)

(0,0,0)
(~,'0,'0)
(0.5,0.5,0)
(0.5,0.5,0.92)
(0.5,0.0,0.92)

II. CALCULATION OF THE BAND STRUCTURE

A. Crystal Structure

The white-tin structure is shown in Fig. 1. It may
be viewed as a body-centered tetragonal lattice with
two atoms per unit cell. The lattice constants, ex-
trapolated to O'K," are

Special point
8'
II

tion is given by

(0,0,0.u7)
(0,0,1.19)

The ratio

a=5.80 A,
c=3.15 A.

ii = a/c = 1.84

Let 6', be the operator which projects any function onto
the space 8' spanned by the core orbitals Ib,), and let
(P, be the corresponding projection operator for the
space S' of the valence solutions. Thus,

shows that the lattice is far from being cubic. The
primitive vectors of the direct and reciprocal lattices
are given in Tables I and II, respectively. The Brillouin
zone is shown in Fig. 2. The coordinates of the symmetry
points are listed in Table II. Throughout this paper,
energies will be quoted in rydbergs, and k vectors in
units of ke ——2m/a=1. 08X10' cm '.

TmLE I. Basis for the direct lattice. The atoms
in the unit cell are located at &(—„'a,o, ~c).

Basis vector (x,y, z)

(a,o, —c)
(0,~,0)
(0,0,c)

-'6 These values were extrapolated using the thermal-expansion
coefhcients from the American Institute of Physics IJgndbook,
edited by D. E. Grey (McGrew-Hill Book Company, 1nc.,
New York, 1963).

B. The Pseudoyotential

A pseudopotential model is used in this calculation,
and the pseudopotential coefficients required are deter-
mined by fitting them to a few well selected experimen-
tal data. The pseudopotential approach is by now
established as a convenient and Qexible framework for
the study of many problems, among them the elec-
tronic structure of simple metals, semimetals, and semi-
conductors. The following paragraphs contain a brief
exposition and interpretation of the pseudopotential
formalism as we use it here.

Suppose that IP,) is the wave function of a valence
electron, so that the spinless crystal Schrodinger equa-

(2.2)

(P„+(P,=1, or (P„=1—(P, . (2.3)

These projection operators commute with the Hamil-
torIian, i.e., they satisfy the useful relations

(PBCp =Xp5' )

6'2= 6'.
(2 4)

Now
I P„) satisfies the equation

(2.5)

The new operator 3Cp' is in a very important respect
superior to its parent when 1$„.) is expressed in terms
of a finite basis. Its advantage is that it eRectively re-
moves from the problem an undesirable subspace,
which contains no part of the solution. This supple-
mentary condition is quite important here, for the
following reason. A small set of plane waves adequately
represents the valence wave functions outside the
relatively small core regions. But the core wave func-
tions have an entirely different character, being es-
sentially similar to bound states. That is, they are con-
centrated in a small region, so that their Fourier or
plane-wave expansions are of not negligible size in a
rather extended region in k space. Thus, it would take
a very large number of plane waves to remove effec-
tively the undesirable subspace, and thus its inQuence,
from the problem. The term "undesirable" is used here
with a serious intent, as the corresponding error hE.„,,
in the energy of an approximate valence wave functiofi
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where p, is the part of p in S', and 8, is a typical core
energy. This quantity is so important that even in an
orthogonalized-plane-wave (OPW) calculation, import-
ant errors may be caused by inexact knowledge of the
core states lb'), which does not allow the complete
elimination of lg, ). In fact, the magnitude of (2.6)
show s that the problem originates, not only in the over-
whelming dissimilarity of the plane waves to the

I bi)
outside the core regions, but equally in the rather large
overlap of those plane waves with the core wave func-
tions. This overlap is expressed by (p, lg, ).

Before the pseudopotential equation is derived, we

digress for an apology. It is hoped that the argument of
the foregoing paragraphs has sketched the reasons why
the Schrodinger equation

3(". l~) =&6.I~) (2 7)

is used, with its modified Hamiltonian, when lg) is a
sum of plane waves. %hile all this is very well known, it
was felt that too much has sometimes been made of the
arbitrariness of the pseudopotential as it is sometimes
derived. It was felt not only that the difference between
a good pseudopotential and a bad ooe is tangible, and
ought to be understood, but also that the derivation of
the appropriate form of the spin-orbit intera, ction (as
shown in the next section) should be clearly free of any
arbitrariness. Equation (2.7) can be expanded

3co'l4)=(1 —ip )&o(1—& ) l4)=&o(1—ip ) I4)
=&(1—(p.)10).

(2 g)

Since an equation for the "pseudo wave function"

Ig) is being sought, we rewrite Eq. (2.8) as

3'ol4)+%—3('o)iP le) —(~p+ V~) le)=&I&) (2 9)

where the new operator

Vn P,(E E,) I
b,)——(b, I

— (2.10)

is an effective repulsive potential. This can be seen by
looking at its diagonal matrix elements, which are
positive. In the new secular equation (2.10) the matrix
elements of the pseudopotential,

(2.11)V„V+
are considerably smaller than those of t/. The operator

R"=(1/2m)P'+V&=Xp+Vg (2.12)

is known as the pseudo-Hamiltonian.
If the fact that V„is a nonlocal operator is overlooked,

only the Fourier coefficients V~(G), for a few reciprocal
lattice vectors G, are of importance.

The approximation that V„ is simply a superposition
of local, spherically symmetric atomic pseudopoten-
tials U(lrl) has indeed proved quite successful in
numerous energy-band calculations. Thus, energy bands
in good quantitative agreement with experiment have
been calculated with the use of as few as two or three
coefficients U(l G

I ). The matrix elements of the

FIG. 3. Typical behavior of
pseudopotential form factors.

U (q) 0

—2/3 E

5'(G) = (1/&)
y in unit cell

(2 14)

The successful local-pseudopotential calculation. of
the band structures or Fermi surfaces of the elements
above, below, and to the right of tin in the periodic
table suggests that the use of this simple approximation
wouM be successful in tin as well. The energy bands are
determined by the form of U(q). The general behavior
of the curve of U(q) as a function of q is shown in Fig. 3.
In general there is a value qp such that, for g) gp, U(g)
is very small and may be neglected. Thus, only four
pseudopotential coeKcients enter the present calcula-
tion; namely, U~, U~, U3, U4, which correspond to the
reciprocal-lattice-vector types Gi ——(2,0,0), Gs= (1,0,1),
Go=(2, 2,0), and G4 ——(2,1,1). While the U; may be
determined by 6tting to empirical data, it is useful to
have some starting point. Four available estimates of
the U; are listed in Table III." '0 It is to be noted that
two of the estimates, one based upon extrapola, tion
from Si and Ge, and the other based upon optical data,
need a slight correction, " approximately 0.02 Ry for
U~ and U~, to account for the fact that gray tin is a

TmLE III. Pseudopotential-form-factor
estimates in rydbergs.

Source U1 U2 U3 U4

Model potential calculationa
Model potential calculationb
Optical data'
Extrapolation from Ge and Sid

This calculation

—0.126
—0.077
—0.120
—0.170
—0.110

—0.107
—0.058
—0.085
—0.140
—0.060

0.010 0.010
0.038 0.055
0.050 0.055
0 035 0 045
0.030 0.020

a See Ref. 29. b See Ref. 30. e See Ref. 28. "See Ref. 27.

'7 P. J. Lin and L. M. Falicov, Phys. Rev. 143, 441 (1966).
2 M. L. Cohen and J. K, Bergstresser, Phys. Rev. 141, 789

(1966).
2o A. O. E. Animalu (unpublished).
'0 A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 {1965)."K.H. Bennemann, Phys. Rev. 139, A482 (1965).

pseudopotential in this approximation are

(k'
I V, I k) = V„(G)&k' —k—G

= U(l Gl)5(G)b, (2.13)

where G is any reciprocal lattice vector, and the struct-
ure factor, normalized to unity, is
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I'"ro. 4. The calculated energy bands of white tin without spin-orbit effects.

"covalent-bond" substance, while white tin is metallic.
Nevertheless, the various sets of U, are in disagreement
among themselves. In fact, none of these sets of U;
gives good results in the present calculation. Then only
the following general observations give us some
guidance:

/

IGtl is c»se to I( sl a"d IGsl close to IG4I so
that effectively only two averages values need be fitted
initially;

2. Two quantities, U2 —U& and U4 —U3, are between
0.019 and 0.035 Ry. and between 0.000 and 0.017 Ry,
respectively. The values of the U; arrived at by proper
fitting and used in the present calculation are listed in
Table III. The data used in the fitting are discussed in
Sec. V of this paper.

C. Mechanics of the CaIculation

In the neighborhood of each symmetry point, or
other point of special interest, a plane-wave basis ap-
propriate to that point was taken. A typical basis set
numbered approximately 50 plane waves. In this
way, good convergence was obtained, and there was no
need for interpolation. The seemingly large number of
plane waves required can be traced to three factors:
the asymmetry of the lattice; the large Fermi sphere
with eight electrons per unit cell; the size of U~
and U2.

The energy bands for the "empty lattice" case,
U(G) =—0, are shown in Ref. 32h, and the results of the
present calculation are shown in Fig. 4, with the sym-
metry labels of Ref. 32a. Some gross effects that the
lattice potential works upon the Fermi surface ca,n
readily be seen: the introduction of electrons along the

"(a) M. Rliasek and M. Suff'czynski, Bull. Acad. Polon.
Sci. Ser. Sci. Math. Astron. Phys. 9, 4'/7 (1961). (h) M. Miasek,
ibid. 10( 39 (1962).

W region of the I"H line in zones 2, 3, and 4, and the
removal of the electron regions of zone 5 at I' and zone
6 at U. It will be noted tha, t all of the energy levels on
the XI' and XJ lines remain doubly degenerate. This
degeneracy is preserved only at I and I., when spin-
orbit effects are included. Since the Fermi surface is
extremely close to X, the splitting of the stuck-together
third and fourth bands must be quite small there, and
magnetic breakdown" may be expected to occur at small
or modera, te fields. Therefore, it is certainly important to
understand the effects of the spin-orbit interaction in
this region. The spin-orbit coupling is also of interest in
the neighborhood of the point 1~V, where the spinless
levels of zones 4, 5, and 6 are fairly close to each other
and to the Fermi energy. Compared with this close
energy spacing, the spin-orbit coupling is large. In
the 8' region it certainly does not sufFice to include this
interaction as a perturba, tion.

III. SPIN-ORBIT COUPLING

The orthogonalized-plane-wave (OP%) method has
proved to be accurate in calculating spin-orbit
effects. 34 "" It is the goal of this section to learn as
much as possible from the experience of such cal-
culations, and to apply this experience to the building
of a model" compatible with the pseudopotential for-
mulation. As the OP% formalism is closely related to
the plane-wave pseudopotential formalism, there should
be no difhculty in understanding the origin and nature
of the spin-orbit matrix elements that arise in the
latter.

"M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 7, 231
(1961).

34 L. M. I"alicov and M. H. Cohen, Phys. Rev. 130, 92 (1963}."L.Liu, Phys. Rev. 126) 1317 (1962).
36 A. O. E. Anirnalu obtains essentially the same result by a

different approach (unpublished).
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The spin-orbit Hamiltonian is

K,= (A'/4m'c')(VVX p rr), (3 1)

symmetric potential in each atomic cell. This allows
X,, to be expressed a,s a sum of atomic Hamiltonians.

where V is the lattice potential, p is the momentum
operator, and e is the Pauli spin operator.

Let us denote spinors by capital letters. For example,
Xl(r —r,) e, (3.9)

13m =&~.= &~ 1'P~i, (3.2)
where / is the angula, r-momentum operator.

If the core orbitals are expressed in the formwhere in our notation s is the spin index, t are the core-
function quantum numbers, (nlrb), and s andi are com-
bined in R. The spinors 8g are not necessarily the core
eigenfunctions of the full Hamiltonian, but they are
eigenfunctions of the spinless Hamiltonian Xo, with the
eigenvalues

Eg ——E],——E]. (3 3)

It will be assumed here, as it is in the theory of atomic
sta, tes, tha, t the actual core functions are linear combina, —

tions, in spin spa, ce, of the no-spin core functions. Thus,
the projection operator for the space spanned by the
core sta, tes is

where I('~ is the identity operator in spin space.
The Hamiltonian equation that corresponds to Eq.

(2.8) is

(1—6'.)(~o+~.)(1—tP.) I
C')=E(1—6'.) I

C'), (3 5)

which, because of Eq. (3.4), immediately reduces to

~"
I
c'&+(1—6')~.(1—6')

I
C)=El ~& (3|)

where the K&' is precisely the pseudo-Hamiltonian of
Sec. 2 multiplied by t('. I.et us denote the matrix
elements of the new operator by

3'-'","' '= (k'~'I (1—tp.)&.(1—tl'.) Ik~&, (3 7)

~k' ',k &k~ I~ lk~& PR &k~ I+8)(+BI~ Ik~&

—Z~ &k"'l3'- l&~&gg, lks&yg, g, , &k'~'I&~&

X&&el&, l&z &&&z I»&. (3.8)

Terms such as these occur also in the OPW problem, so
that the various existing OP% calculations may be
used to justify some of the simplifying approximations
which will presently be made. In these calcula, tions it is
found that, for states that contain an I symmetry al-

ready included in the core states, the double summation
(the "core-core term") makes the largest contribution
to (3.8). In magnesium, " for example, the core-core
and core—plane-wave terms account for 99% or more of
the contributions. Therefore, these are the terms which
must be evaluated precisely. Because of the singularity
of VV near the atomic nuclei, the largest contribution
comes from these regions. Here, the overlap of core
orbitals and potentials is negligible, so that in Eq.
(3.8) all the matrix elements of K, except the one be-
tween two plane waves are calculated using a spherically

37 I.M. Falicov (private communication).

f „,.(r) = R„,(r) V, (e,y), (3.10)

where the angular functions Y» are the spherical
harmonics, the matrix elements can now be calculated.
This is done in the Appendix. The result, if as is the ca,se
in tin, the cores contain only s, p, and d states, is

xk. , „'-'=5(k—k') L(A'/4mc') U(l k' —k
I )

—Xt—i~g(k' k)]ik'Xk e, , (3.11)

The quantity 5 is the structure factor, U the Foul lcl
transform of the crystal potential, and X& and 'A2 posi-
tive consta, nts tha, t account for the contribution of the
core p states and d states, respectively. The only ap-
proximations that have been made are Eq. (3.9) and,
in the Appendix, a very accurate approximation,
probably good to within 1% for p-like valence states
and better for d-like ones. The term involving the cry-
stal potential U accounts for the matrix elements of
the original spin-orbit Hamiltonian between two plane
waves. Consequently, as has been explained following

Eq. (3.8), it only contributes 1% or less of the spin-
orbit matrix element under typical conditions. If the
a,tomic potentials were 5 functions, this term could be
exactly replaced by a change in X~. For actual lattice
potentials, such an approximation results in an error of
about 30% of the original small value, which was about
1% of the main contribution. The other relativistic
corrections can be thought of as equivalent k-depenclent
pseudopotentials. Therefore, since we determine our
pseudopotentials empirically, these corrections are
automatically included in the model as described in the
last section.

In tin, the energy levels for which the spin-orbit
interaction concerns us are expected to be p-like, so
that we set ) 2=0, The value of ) ~ was arrived at in the
following fashion. It has been found that the spin-
orbit splittings for the valence electrons in a, solid tend
to be close to the corresponding atomic values. Thus,
the spin-orbit splitting of the low-lying p-like states
at the symmetry point F should most closely resemble
that of the s'p ground state of the singly ionized tin
a,tom. The experimental value for the atomic case"
is 0.039 Ry. The assumption that this value hE f,, is
essentially unchanged in the solid is borne out by the
OPW calculation of the spin-orbit splittings for gray

'8 Atomic energy Levels, edited by C. E. Moore, Nat. Bur.
Std. Circ. No. 467 (1949).
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0,I .2 .3 .4 .5 .6 .7 .8 .9 I 0
I" x L

Fxo. 7. The Fermi surface contours in the I'XL plane.
The notation is the same as in Fig. 6.

face 4(a) and a crossed pair of electron "pancakes"
along the I'XP (110)-type planes. Zone 5 has two
electron-like surfaces, the first consisting of vertical
cylinders centered on I', and the second a large multiply
connected sheet, usually thought of as consisting of
"pears" and "connecting pieces. "The tapered end of a
"pear, " near the point 8', will be called the tip, and
the Bat end the top. The top is roughly square, with its
edges along the (100)-type directions. The "connec-
tions" are centered on the point V, and extend in
the (100) directions to connect a top-up pear with a
top-down pear. Their cross section is in the shape of a
four-pointed star, with the distance between the points
narrowing in the direction of the pear tip to which
they are attached. The electrons in zone 6 are con-
tained in a cigar-shaped piece around the point V,
and in four cigar-shaped pieces starting near the point
tV and extending toward the corners of the pear
tops.

According to the present calculation, the crystal
potential modifies the NFE Fermi surfaces as follows.
The zone-2 hole surface at the point 8' disappears. In
zone 3, the hole cylinders extending from S' are
destroyed, leaving only the cylinders along the XI'
lines, as is shown in Fig. 6. In zone 4, electrons are in-
troduced along FH near 8', so that there is a region,
to be called the "neck, " connecting the electrons of
4(b) with the electrons outside 4(a), as is illustrated
schematically in Fig. 8. See also Figs. 6, 7, and 9 for
cross sections. In zone 5, the cigar around I' disappears,
and the pear network remains essentially unchanged.
It is schematically illustrated in Fig. 10, while some
cross sections of it may be found in Figs. 6, 9, and 11.In
zone 6 the piece around the point V disappears, while

the "cigars" near the points 8' are amalgamated into a
vertical shape of square cross section (Figs. 6 and 9)
with slight prongs in the directions of the original
"cigars." With the magnetic field 8 parallel to the
(100) direction, there are, according to the calculation,

open orbits on zone 5 as well as a very narrow band of
them on zone 4. With B parallel to (110), the calcula-
tion predicts open orbits on zone 5, but, because of the
presence of the neck, not on zone 4,

In this section vie compare the results of the calcula-
tion with the available experimental information. The
various relevant experiments are discussed; the data
used in the determination of the fitting parameters
a,re explicitly shown. The quantitative agreement
between the calculation and the experimental data is
shown to be excellent throughout, except in the sixth
zone, and in a sma, ll region of the fifth zone, where the
agreement is only fair.

A. Size EBect

Z-" 0

FIG. 8. Schematic cross
sections of the fourth zone in
several planes perpendicular
to the c axes at various heights.
The electron regions are shaded.

z=.~ (

The cyclotron size-eRect experiment of Gantmakher' '
is outstanding for its convenience of interpretation, its
accuracy, and the wealth of information it contains.
A magnetic field 8 is appHed parallel to the surface of
a thin plate. If the electron mean free path is long
enough, the surface impedance, measured at anomalous
skin-eRect frequencies, shows singularities at certain
magnetic fields; namely, the magnetic fields at. which
certain extremal electron orbits fit perfectly across the
plane (see Fig. 12). If the normal to the surface is n,
the experiment measures the caliper (2p in Fig. 12) of
an orbit in the n&&B direction in momentum space.
The orbits may be extremal in possessing the smallest
or largest caliper in their vicinity. Sums of calipers may
also be measured, for favorably shaped Fermi surfaces.
In this eRect, extremal electrons accelerated at one
boundary of the plate set up intense current sheets in
the interior. Thus a whole chain of orbits may be
detected. Gantmakher reckons his experimental error
to be about 2—3/~, in addition to an ambiguity some-
times as much as S%%uq, due to the lack of any theoretical
model for the line shapes of the size-effect experiment.
Figure j.3 exhibits Gantmakher's results for different
planes of rotation of the magnetic field. These Ggures
will also be referred to as O', O', and O'. Thus, the
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energy contours in the (x,yl
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FIG. 9. The Fermi surface contours in the I'LR plane.
The notation is the same as in Fig. 6.

appropriate curve numbered 5 will be referred to as
G'5. Note that the directions indicated on these dia-

grams represent the directions of the semicalipers
in momentum space. Tables V—VIII compare the size-

effect extremal semicalipers with the calculated ones.
The curve G'1, for the orbit f, resembles the predic-

tions of the free-electron model extremely well. The
deviations amount to approximately 0.01(2s/u), which

is within experimental error. But G'1 as well as the
calculation definitely show a reduced curvature for
II=0' (Fig. 13). The extreme flatness of the Fermi
surface at the point 0 (Fig. 5) makes it possible to

observe chains of orbits t The .curve G'1 also measures
with a caliper close to the free-electron model.

Curve G'11 LFig. 14(e)j, which comes from an orbit
over two pears, is also close to its nearly-free-electron-
model value. Both the curves G'4 and G'15 measure the
width of the neck of zone 4, at different field directions.
In G', the vertical columns of zone 3 can be seen. Note
tha, t the maximum calipers for the (110)-type direc-
tions are seen at two different field directions, so that
the bottoms of G'10 and G'11, when translated vertic-
ally, fit the bulge near the top. Only one of the calipers
of the smallest orbit is perhaps detected experimentally.
The curves G'6 and G'6 go up to the approximate height
and angle given by the calculation, which is determined
roughly by the location of the pear tips, but the experi-
mental curves start (0=90') at a value smaller than
the theoretical one. In the light of the present calcula-
tion, curve G'14 cannot be the caliper of a single orbit.
It is in fact twice the caliper G'9, which is due to orbits
over the ridges of the zone-4 Fermi surface. Both the
possibility of G'14 and the fatness of the 0'9 and G'14
curves stem from the circumstance that a large number
of zone-4 orbits have approximately the same caliper in

hixiiiixxhlexxwxhlwixv&

E

lb/
5(

FIG. 10. Schematic diagram
of cross sections of the 6fth-
zone electron regions. The cross
sections by the FLR plane
(middle diagram), and cross
section in two horizontal
planes (upper and lower dia-
grams). The electron regions
are shaded.

8a

c

IP

oft p;

pp

(ioo}

FIG. 12. Electron trajectory in momentum space (right) for the
size effect, and the corresponding orbit in real space. The magnetic
6eld is perpendicular to the plane of the drawing: ub and ce are
boundaries of the sample.
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G Curve
Figure No. Expt. Cale. Zone Label Description

1
2

1 3
1 4
1 15
2 2
2
1 12
2 10
2 11
2 12

0.515
0.35
0.4
0.305
0.19
0.43
0.66
0.1
0.125
0.093
0.083

0.51
0.35
0.42
0.34
0.17
0.46
0.66
0.177
0.145
0.087
0.07

41
5 Fig. 13
5 0
4 v

4

6
3
3
3

z=O
z =0.92

Pear crown
z=O

Neck
z=0
z=O

Smallest orbit
Greatest orbit
Greatest orbit
Largest caliper of

smallest orbit

TAnrz V. Semicalipers for B in the [001jdirection.

[ooi]

I.2
8po

1.0

0.8

impossible for more than a narrow strip of open orbits to
exist on the fourth zone in the (100) direction, with 8
in the (010) direction. Curves G'2 and G'11 come from
the same open orbit in zone 5, and cumulative calipers
should be observed LFig. 14(k), (1)g. Gantmakher sees
them in Ref. 8. There he also identifies such a series of
two types of cumulative calipers in the (110) direction.

the L001j direction. (See the horizontal dotted lines
in Fig. 6.) Curve G 2 gives an experimental picture of
the pear top (see calculation in Fig. 11), and G'5
shows how the points of the corresponding star-shaped
connections narrow as they near the tip of the next
pear. Both G'5 and a section of G'10 (cr(10') were

TABLE VI. Semicalipers for B in the L100$ direction.

0.6

0.4

0.2

[OOIj

IN

0.2 0.4 0.6 0.8 I.0 [ioo]

G Curve
Figure No. Expt. Calc. Zone Label Description I.2

5 020
6 0.25
7 0.425
2 0.405
6 0.547
1 0.176

11 1.02
9 0.51

0.21
0.32
0.45
0.42
0.53
0.18
1.04
0.525

5 Fig. 11
5 Fig. 15
5 Fig. 12, BF'Il
5 Fig. 11
4
6
5
4 Like e' and g'

14 1.05 1.05 4

Open orbit, y =0
y =0.5
y ~0.35
Open orbit, y =0
y ~0.2
y=0
Open orbit, y =0
See dotted lines on

Fig. 6
Double the foregoing

orbita

I.O

0.8

0.6

0.4

a Most of the orbits on the zone-4 Fermi surface have calipers between
0.52 and 0.53, as can be seen from the relevant horizontal lines in Fig. 6.

seen only when the component of the electric Geld
parallel to the magnetic Geld was nonzero, as should be
the case for orbits at the extremal point of which the
electron has a large velocity in the magnetic-Geld direc-
tion. This is in accord with the identification of these
orbits. Note that the data of 6'1 and 6'10 make it

0.2

0 8
ll Q2 0.4 0.5 0.8 I.O [I (0]

TAnLE VII. Semicalipers for B in the L110) direction.

G Curve
Figure No. Expt. Calc. Zone LabeL Description

2 3 0 195

2 6 025

2 7 0.42
2 9 0.49
3 2 0.466
3 3 0.426

3 1 027

0.475
0.52
0.51
0.485

5

5
5

0.37

0.1975 5 Fig. 21(b) incomplete
orbit through
(0.35,0.0,1.1)

Inner caliper from
extended orbit near
preceding orbit

Flg. 8) g=y
Fig. 20(d)
Fig. 8, x=y
Fig, 20{a), near

g =y+0.125.
x=y

0 02

FIG. 13. Gantmakher's experimental semicalipers in the (010)
[Ref. 6g, (110) LRef. 6g, and (001) LRef. Ij planes. The different
symbols denote diGerent experimental line shapes. The light con-
tinuous lines are the central cross sections of the Srillouin zone.
The x's are the magnetoacoustic data of Ref. 13. The axes of the
bottom figure should be interchanged for the magnetoacoustir,
dy, ta.,
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Fto. 14. Sketches of electron orbits (dotted lines, if any) on the Fermi surface. A top-up pear is indicated by a +, a tip-up pear by
a O. All orbits shown come from the fourth-zone multiply connected sheet L(d), (f), and (g)] or the fifth-zone multiply
connected sheet. Cumulative calipers are shown in (k).

In Ref. 7 he identifies G'3 and G'4 as coming from open
orbits. The natural assumption that the two calipers
of Ref. 8 are the G'3 and G'4 of Ref. 7 is contradicted
by the estimate4' that their ratio is =0.5, in Ref. 8,
whereas the ratio is 0.68, in Fig. 13.Although the width
of the line shape is considerable in the relevant experi-
mental graph of Ref. 8, it does not, seemingly, su)Bee to
explain the discrepancy. If there is such a discrepancy it
may be explained by our interpretation of 633 as the
orbit of Fig. 14(a), near x=y+0.125. When, instead,
cumulative calipers are observed, they depend on a
region of open orbits centered on the x =y+0.25
orbits LFig. 14(b)). A number of orbits around that of
Fig. 14(a) are filtered out in the cumulative case, so that
if a broad strip of orbits with a range of calipers were
originally involved, the position of the experimental line
could certainly shift. In our understanding of the experi-
ment, a highly convoluted periodic open orbit, for ex-
ample the one in zone 5 in the (100) direction, G'11,
should exhibit calipers somewhat larger than its period
Lsee Fig. 14(1)$. This seems to be confirmed in G'11
and G~4. In other words, the relevant cumulative
calipers in such a case should be given by the formula

D=eDp+ f'i, (5.1)
where n is an integer, Do is the actual period of the orbit,

"This is the estimate of Ref. 8 and also the appearance of the
relevant data graph in Ref. 8r

a,nd 5 represents the amount of the backwards convolu-
tion. In Ref. 8 the Ds in Eq. (5.1), for the (100) and (110)
open orbits wa, s found to be 2—3'Po larger than the cor-
responding periods of the reciprocal lattice. This was
attributed to a,n error in sample thickness. It would be
interesting to perform a careful test to see if Eq. (5.1)
holds for G~11, since our calculation predicts that 5
is 4% of Ds, and thus should be observable. If Eq.
(5.1) does hold, it could be used to determine the sam-
ple thickness precisely, and eliminate it as a source of
error for the G' curves.

B. Cyclotron Resonance

Ke now discuss the cyclotron-resonance experi-
ments that have been performed on tin. In contrast to
the size-effect experiment, the results here are less
convenient to interpret quantitatively. We point out a
few interesting data.

The cyclotron ma, sses found by Khaikin' will be
denoted by the number he has given to them (Fig. 4,
Ref. 9) and the letter K. The magnetic field ranges over
the same directions as in the G' and G' data diagrams.
In Ref. 9 the observation is made that the existence of a.

surface such as the free-electron surfa, ce of zone 4b
would have given rise to sharp resonances which could
have been observed a.t all angles, and which were not,
in fact obseryed. The r orbit does give rise to a sllarp



BAND STRUCTURE AND FERM I SURFACE OF WHITE Sn

TABLE VIII. Selected semicalipers for B in general directions.

6 Curve
Figure No.

11
8

10
10
5
9

Location
on expt.
figure

@=0.5
s axis intercept
s maximum
o.= 10'
x=0.5
a =10'

Quantity

Magnitude

Magnitude

Expt.

0.6
0.6
0.6
1.08
0.24
0.91

Calc.

0.6
0.535
0.535
1.11
0.27
0.94

Zone Description

TT' in Fig. 12, Fig. 20(e)
Fig. 20(f) (~ra)
Fig. 20(i) (MS), symmetric about i'
Fig. 20(g), through XI' line
Fig. 20(h), one pear and two connections
Fig. 21(a), two pears

resonance E4, which is cut oG by the neck, at 70'
on the diagram, as compared with 72' for G'4, and
72' maximum for the calculation. E9 can then be
identi6ed with the "earring" orbit through the neck.
Ei corresponds to G'1, the P orbit. E8 is the 6fth-zone
orbit around the connecting piece, Fig. 14(m), as will
be argued presently. Cyclotron resonance experi-
ments'0" have been performed in slightly nonparallel
fields, and in field directions normal to the surface (the
so-called Gait configuration). In both cases the mag-
netic field was in the (100) direction, or near it. In
Ref. j.1 a mass m*=0.49m, was found to belong to a
noncentral extremal cross section, such that it has a
large velocity in the (100) direction over a part of its
orbit. This is the mass ES that has been identified as
belonging to the fifth-zone connecting pieces. Koch
and Kip, '0 using the Gait configuration, obtain a mass
of 0.57m, which is only seen when the electric field is in
the (100) direction. This is the result that would be
obtained from a cylindrical Fermi surface tilted be-
tween the (100) and the (001) directions. Again, the
description fits the connecting pieces, and the fifth
zone must certainly be responsible. It would be interest-
ing if both masses were detected by the same experi-
ment. However, at present we can only suggest one
location on the Fermi surface. Koch and Kip also found
masses of 0.2m, and 0.3m, for an electric field polarized
in the (001) direction. This configuration is good for
detecting Fermi-surface cylinders tilted between (110)
and (010).Only the third and fourth zones in the region
of the XI' lines fit this description.

C. de Haas-van Alphen Effect

TABLE IX. Calculation of de Haas —van Alphen periods.

Zone Period (G ')

3 8 X10 7

33 X10 '
4 232 X10-s

839 X10 9

638 X10 s

5 1.23*X10 s

1.76 X10 s

6 354 X10 7

615 X10 s

3—4 0.746X10 8

Gold and
Priestley

sllLooij

8285X10 7

828 X10-s

Description

Basal plane
Maximum area
T

Neck

(Fig. 13) surrounded by
4 pears, 4 connections.

Smallest area
Around the bulge, near

the spikes
g orbit vrith magnetic

breakdown to zone 3

as compared with the 20' upper bound from Ref. 9,
the 18% upper bound from Ref. 6, and 18% from the
calculation. The period of the oscillation E is in fair
(10%) agreement with the calculation. The effective
mass of 0.5m, agrees with Khaikin's value, 0.53ns„
for E9. The curve H is consistent with the angular
dependence that the orbit about the 6fth-zone connec-
tion should have. The fact that H is 30% too large is in
good agreement with Gantmakher's experiment, since,
according to our interpretation of the latter, our
theoretical horizontal caliper is 12% too large, and our
vertical caliper 28% too large. Gold and Priestley's
mass, 0.45m„agrees with the mass m*=0.49m, that
Khaikin" has obtained with a slightly skew magnetic
field. Since Gold and Priestley claim 10% accuracy for
the masses, their measurement is also in agreement
with the m*=0.57m, of Koch and Kip. The period
CC' has the proper angular dependence for the sixth-

A number of de Haas —van Alphen periods and
cyclotron masses have been obtained by Gold and
Priestley' (referred to here as GP). It is unfortunate
that the experimental errors were considerable for the
large areas, while the small areas cannot be expected to
be too accurate in the calculation. Table IX lists the
major de Haas —van Alphen periods that we have cal-
culated. Diagrams in Ref. 1 show the de Haas —van
Alphen periods (referred to by capital letters) in the
major planes, as well as the amplitude variation for 8
in the (100) plane. The amplitude dependence of the
oscillations E is striking, so that we recognize the zone-4
earring orbit immediately. K is extinguished at 172,

3 7.4 X10 '
431 X10 s

4 4.38 X10—s

114 X10 s

5 ~13 X10 s

4 318 X10 s

08 X10 s

3.63 X10-s

6 1.43 X10 7

sllLitoj

iiIIDooj

K286X10 s

4 7 Xj0-s

2.1 X10 '

Zone face
FXI' plane
Zone face
VXI' plane
Central orbit including

spikes, a10Fo

Earring
Largest area
Fig. 15, orbit about

connection
Fig. 11
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FIG. 15.Line-shape
symbols used by
Gantmakher (Ref.
6g together with
kinds of orbits to
which they may
correspond.

makher in our Fig. 13. The resemblance of the mag-
netoacoustic calipers to the size effect ones is often clear,
but the accuracy of this type of experiment cannot com-
pa.re with that of the size effect. Nor is the interpretation
of the calipers as free from ambiguity. The magneto-
acoustic eFfect has also been used to observe open-
orbit resonances"" in tin. The study of the general
open-orbit topology of tin wa, s done by the galvano-
magnetic-effect study of Ref. 2. There it was shown tha, t
there exists a, two-dimensional region of open orbits
(see Ref. 2). In the past this region has been accounted
for by nearly-free-electron-like fourth-zone surface.
Not surprisingly, this is also in agreexnent with the
present calculation. Measurements of the magneto-
resistance have also been used4 to observe an effect
which is due to magnetic breakdown between the third
and fourth zones, near the symmetry point X.

zone surfa, ce, and is once more in good agreement with
Gantmakher. According to the latter (G'13,G'1), our
calculated area should be in error primarily because we
overestimate its height by 28%%uo. We do, in fact, over-
estimate the area by 23%%u~. The effective masses 0.26m,
for C and 0.34m, for C' identify CC' with Khaikin's
E9 L0.27m, at (100) and 0.37m, at (110)j as zone 6.
The effective masses of GP and of K are in agreement
with the essentially square (001) cross sections and
slight spikes of the sixth zone. The curve 8 certainly
has the angular dependence that an orbit on the knobs
of the zone-3 cylinders should have. That is, the area
increases slowly as the magnetic field 8 is tilted away
from (001). Its area is 14%%uo less than the calculated one.

Note in the amplitude diagram of GP that the maxi-
mum in 8 at 40' is to be expected, when, at some
magnetic-6eld inclination, the 8 orbit slides down to
meet the symmetric orbit centered on the point X.
The bump on the E-amplitude curve may also cor-
respond to a coalescing of two extremal areas. The
curve 6'4 coalesces with a companion curve in this very
interval. The orbit in question is r, and the angular
dependence of the period 8 is the correct one (slow
decrease with tilting from (001)]. The calculation is

18/q away from the experiment. Again, the mass of
GP, 0.51m„agrees roughly with that of Khaikin, which
is 0.43m, .

We remark in passing that Miller, '4 in a mag-
netoacoustic-attenuation experiment with S~j (001) has
found two de Haas —type oscillations, one corresponding
to GP's oscillation A, the other having a very long
period, around 10 ' G '. We have no such area, but it
might arise, for instance, from the spikes in zone 6, in a
more accurate calculation.

D. Other Experim, ents

The rnagnetoacoustic-effect experiments will not be
discussed in detail. The data from the best such ex-
periment'3 giving calipers has been included by Gant-

E. Other Considerations

Finally, we consider the line shapes that characterize
the singularities which Gantmakher has obtained, in the
size-effect experiment. The quantity he measured was
the derivative of the surface reactance with respect to
the magnetic 6eld. He classified the line shapes into
four kinds, denoted by solid or empty circles or squares
in the graphs of his results. The search for a pattern in
the occurrences of the various line shapes was taken up
for the following reasons:

1. The size-effect experiment would become more
valuable if information couM be gotten from the line
shapes.

2. Possible theoretical calculations of the line shapes
could be checked conveniently.

3. If a rule were found, it might actually serve as a
guide in a model calculation.

4. Any such pattern in the line shape could. be used
as a check on our assignments of calipers.

Guessing a rule from the "pattern" of a few data is,
however, a, precarious undertaking. There are too many
variables that could easily be influential.

Thus, the pattern we have found is to be taken as a
suggestion or speculation. We have noticed that when
the line shape changes for any of the calipers, it is always
adjacent to one that is itsneighbor in Fig. 15. This
whole pattern is included in the curve 6'i. Two
quantities that could vary continuously in this way are
the shape of a single orbit, and the curvature of the
calipers as the projection of the momentum on the
direction of the magnetic 6eld is varied. Concentrating
on the former possibility, a pattern does seem to exist.
We show our guess in Fig. 15. The line shape of the
solid squares represents pointed orbits; that of the open
circles, gently curved convex orbits; that of the open
squares, slightly concave orbits with two points of
contact that are not too pronounced; that of the solid
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circles at least predominantly with open. orbits whose
opposite extremes are dissimilar in Qatness, or not very
fiat. This kind of scheme would, for instance, cast doubt
upon our assignment of G'12 (although here the prox-
imity to G'11 might make the line shape unreliable as a
guide), which we attribute to the largest caliper of the
smallest orbit on zone 3.

In addition to the pseudopotential coeKcients, the
Fermi energy was used as a fitting parameter, for
practical reasons, and finally set equal to 0.730 Ry. The
experimental parameters used for the determination of
the pseudopotential coefficients were:

1. the height of the pear top, derived from G'11;
2. the location of the large, Qat portion of the fourth

zone, derived from G'1;
3. the size of the star-shaped fourth-zone orbit in the

basal plane, determined from G'4 and G'2;
4. the size of the fourth-zone neck, determined by

G'j.5 and G'4, as well as the height of the neck;
5. the supposed size of the srnaBest orbits of the third

zone.

Some of these Fermi-surface parameters were in
conQict with each other: 3 and 5, for example. One of
the good features of the pseudopotential technique is
that the particular form of the secular equation is a
strong condition which does not allow, for reasonable
pseudopotentials, as much arbitrariness as the number
of 6tting parameters would suggest.

VI. DISCUSSION

The local-pseudopotential approximation has been
found to be adequate for white tin. The main effect
of the pseudopotential is to change the nearly-free-
electron model so as to eliminate the holes in zone 2,
and the electrons in zone 5 at F and zone 6 at V, and to
spread the surfaces apart at W.

In the QP% calculation of Ref. 42, self-consistency
was simulated by choosing the value of a certain
parameter V(0) so as to cause the zone-5 surface to
exist in the neighborhood of F. The existence of this
surface was considered to have been conclusively
demonstrated by experiment. However, this is not
so, and therefore we think that Ref. 42 is in error. The
present paper shows some minor quantitative discre-
pancies withexperiment in the fifth and sixth zones.
It is also not free of the possibility of error in the
assignment of the experimental data to theoretically
calculated values. However, the over-all agreement is
quite satisfactory and it is expected that the use of
more pseudopotential coeKcients would improve the
agreement.

This calculation has given us a detailed picture of the
Fermi surface. It has also proved the possibility and
convenience of including the spin-orbit interaction in
the pseudopotential formalism in a general way. This is

4'M. Miasek, Phys. Rev. 130, 11 {1963).

of the utmost importance in the study of the electronic
properties of heavy elements like lead" and bismuth. "

APPENDIX: SIMPLIFICATIOÃ OF THE
SPIN-ORBIT MATRIX ELEMENTS

Summing on the spin indices in (3.8), we obtain

Kg, ,g,
'- ——&k's'll'. , I ks) —Q~ &k's'I Bg.&

X&~~ I3'.Ik.&
—E~ &k's'l~ l~~&&~~l»)

+Z~Z~ (k's'l&~ &&~~ I3' l&~&&&~lks& (A1)

Simplifying, and introducing the notation

(A2)
gives

Beg, ,g, '-'= (s'le I s) (&k'IA.
I k)—Q, (k'I b,)(b, lA. I k)

—E~ &k'IA lb~&&baulk&+Zr~ &k'lb~ &

X&b, IAlb, &&b, lk&}

=(s'I~Is& {A-+(A"yA +A )
XS(k—k') }, (A3)

where the structure factor S (2.14) arises from assuming
spherically symmetric atomic potentials and pseudo-
potentials. From Sec. III, A. is the operator

A.= (A/4m'c') V VX p,

but is approximated by

&(Ir r'1)l(r r~)
all atoms i

(AS)

when it is acting upon the core states I b&& In the latte. r
case, the plane waves and the core states are ex-
pressed in terms of spherical harmonics Y~, so that

b-~-(r) =&.~(~) I'~"(~A) (A6)

where Y~q(8, C) is the spherical harmonic with the rota-

4' S. Golin is presently calculating the band structure of bismuth
(private communication).
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tional index m=0 in any coordinate system with s
in the k direction. .

The matrix element between plane waves is

~PI'
4mc' 0)Y a= e3, b= e~ sina+eg cosn (A14)

Condon and Shortley. Let the unit, vectors in the k'

and k directions be denoted by a and b, respectively,
and let

~
a) and

~
b) denote the FP(0,C') quantized along

these directions. Let {eq,em, es} be a right-handed
orthonormal basis, chosen so that

The problem is to compute the vector

M= (a[L[b).
Since

(A15)

where 0 is the volume of the atomic cell. Taking ad-
va, ntage of Eq. (3.4), the integral is

e "'V VX hke" 'd'r

(ai L,=O,

we need only compute M, and M„. The correspond-
ing operators are

(k—l ') Xk Ve'&~-'&'d'r

L,= ,'(L++L ),-

L„= 'i(L+ —L—), — (A17)

= ihk'X kU(~ k' —k
~
)S(k—k') Q&V, (A9)

where the Fourier transform of the potential has been
expressed in the form (2.13).

All the integrals in A&' and A."can be factored into
their angular parts, and their radial parts. The radial
integrals which depend on k are

& ni(k) = & '" i'(47r(2l+1))'"j((k'r) t(r)

X&«(r)r'dr (A10)

8 ~(k)=Q 'I2 i'(4m(2l+1))'~' we arrive at

L V)' ——(l(i+1))'"VP

L+Vt,-'= (l(l+1))"'VP,

(L,++I;)
i
b') =0,

(A19)

(A20)

where the L+ are the usual raising and lowering
operators L,&iL„. From Eq. (A17) it is clear tha, t
only the m=+1 components of b) contribute to
M. This part of I,b) will be called b'). By the well-

known addition theorem for the spherical harmonics,

~

b') = (l(l+1))—'"Pt'(n) {Yg '—Y('} (A18)

where the functions I' are the associated Legendre
polynomials. By using the fact that

Xj &(kr)R«(r)r'dr. (A11)
so that M, =O, Also,

The j» are spherical Bessel functions. The 8» are the
familiar orthogonality coeKcients of the OP% method.
For small k, both the A» and the 8» are proportional to
kl

~„=(alL„I»=—(al(L+-L-) Ib)
= —itt (cos(x)

i (sinn—)(dP~(cosn)/d cosn) . (A21)

A»~~k', B»„~k». (A12) Fina, lly,

(a|Le b)= —it dP~(cosn)/d cosn)aXb. (A22)This approximation is much better for A»„ than for
8»„, but even for 8» it holds extremely well. For ex-
ample, for the outermost p and d core states, the most
demanding relevant case, it holds within l%%uo in gray
tin at values of the k vector twice as large as the Fermi
k vector in white tin.

Now we need onl corn ute the an ular matrix
elements

The quantity in the brackets are 1 for /= 1, and —,
' cosa

for /=2. Naturally, this quantity is zero for t=0.
These results allow' the matrix elements of the spin
part of the Hamiltonian to be written in their final,
simple form:

p
~v",g, ' '= —iS(&—k') $—(A'/4me') U(~ k' —k

~ )
(A13) + Z,yX, (k' k)]k'Xl o... (A23)

Throughout the derivation we use the notation of for a substance with only s, p, and d core states.


