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The inhuence of magnetic breakdov n on the usual effective-Hamiltonian theory for Bloch electrons in a
magnetic field is discussed using a simple two-dimensional rectangular model. The theory is based upon an
expansion of the wave function in Wannier functions, but these have to be replaced by generalized Wannier
functions (suggested by Blount) to handle breakdown. It is shown how to construct a linear network es-
sentially equivalent to the network derived previously by the author for a nearly-free-electron model. The
de Haas —van Alphen effect is discussed by expressing the energy density of states in terms of a time-inde-
pendent Green's function on the network. It is shown how to construct a wave function lying on a two-
dimensional network as used by Pippard.

1. DTTRODUCTIQN

'HE theory of the motion of conduction electrons
in metals in high magnetic fields is important in

connection with experimental studies of the Fermi
surface. The theory is usually based on the concept of
an effective Hamiltonian and much work has been done
on the derivation of such an effective Hamiltonian. '—'
The theory is complicated by the fact that the magnetic
Geld causes some mixing-in of wave functions of other
bands into the wave function in the band of interest,
somewhat as a field acting on an atom causes some
admixture of higher states into the ground state, and
this alters the energy or the effective Hamiltonian. In
very rough teriiis, a perturbation expansion is derived
for the effective Hamiltonian in powers of the magnetic
field. Under certain circumstances, when the band gaps
are very small, magnetic breakdown' can take place,
wherein the electron tunnels from the Fermi surface
for one band on to the Fermi surface for another band.
The usual effective Hamiltonian theory fails in this
case, for it is no longer a problem of a virtual admixture
of other bands into the band of interest but a real
transition between bands.

Such transitions were discussed qualitatively by
Blount and later by the author. ' Pippard set up
some intuitive network models to study the effects of
breakdown, and such models have been used in con-
sidering the effect on magnetoresistance. ' The author'
(in a paper henceforth referred to as LN) derived an
equivalent network model with the assumption that
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the periodic poteritial was weal. enough to be treated
by the Born approximation. Such models are a de-
parture from the usual theory of the effective Hamil-
tonian, and it is the aim of this paper to connect the
two approaches.

This paper is, in effect, an extension of LN, and the
same model will be used again, a spinless electron
moving in a two-dimensional rectangular lattice at
right angles to the applied field. To discuss a general
problem in a special model may be a serious limitation,
but the following advantages can be claimed: First, the
reader has a definite model to visualize. Second, the
range of possible situations that can arise with mag-
netic breakdown is so large that a general discussion
would be excessively complicated. And third, the discus-
sion relates to the work in LN so that an immediate
comparison is possible. In fact, one of the main aims of
this paper is to show that the effective Hamiltonian
theory can lead to a situation very similar to that
discussed in LN, and thus provides a justification for
using the theory in LN outside the limitations of having
a very weak lattice potential.

The magnetic field is in: some sense a slowly varying
perturbation on the electronic motion, suggestirig that
a suitable set of basis functions is provided by the
Wannier functions. "This approach also has the advan-
tage that the wave functions are set up in real space
(rather than momentum space), giving a direct com-
parison with LN. Most authors have tried to avoid the
use of Wannier functions, probably because their
properties are not readily studied. In fact it is known
that in the situation where the band gaps are very
narrow, which is also the situation for obtaining break-
down, the Wannier functions are not well localized.
Usually these functions are constructed by integrating
over the Bloch waves in a single band, but Blount" has
suggested that, by constructing a more general type of
%annier function from the Bloch waves of severa1
bands, it is possible to obtain well localized functions.

"E.I. Blount, in Solid-State Physics„edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1961), Vol. 13.
See in particular pp. 309—335.

493



YV. G, CHAM HERS

l 27T
Q

27r
b

FIG. 1. The Fermi
"surface" in relation
to the Brillouin zone
boundaries repre-
sented by dashed
lines.

The subject matter of this paper covers three topics.
The first is a discussion of the effective Hamiltonian
theory in terms of Wannier functions. The second is the
theory of the de Haas —van Alphen effect with magnetic
breakdown. The effect is a very useful tool in the study
of Fermi surfaces and may give additional experimental
information on magnetic breakdown. Indeed, magnetic
breakdown was Grst postulated to explain some
de Haas —van Alphen results in magnesium. ' The third
topic is to show how a wave function can be localized
on a Pippard network. ' ' This should provide some
further justification for this approach. The second and
third topics could have been treated by the theory of
LN and are therefore to some extent independent of the
theory of the effective Hamiltonian.

The paper is divided into six sections, besides the
introductory and concluding remarks. Section 2 de-
scribes the model. Section 3 discusses the derivation of
the effective-Hamiltonian theory. Section 4 is concerned
with the failure of the theory in situations where mag-
netic breakdown tak.es place and the necessary modifi-
cations based on generalized Wannier functions sug-
gested by Blount. Section 5 discusses the treatment
needed at those places on the Fermi surface where
breakdown takes place, liriking up with the network
model in LN. All these sections are concerned with the
first topic, the effective Hamiltonian. The second main
topic, the de Haas —van Alphen effect, is treated in
Sec. 6, and the third topic, the construction of a wave
function on a network, is treated in Sec. 7.

The discussion contains assumptions that are made
without proof. These assumptions perhaps seem more
questionable in the Wannier representation, though
some of them have been made by other authors. The
Landau gauge is employed, as in LN, because it makes
the system one dimensional, but it also introduces
artificial turning points. These give mathematical
problems which are usually ignored. There is not much
discussion about the higher order terms in the expansion
of the effective Hamiltonian as a power series in the field
because they seem to be irrelevant, at least when there
is no spin-orbit coupling. Magnetic breakdown is better
treated by other means.

2. THE MODEL

The model consists of a spinless electron moving in a
two-dimensional rectangular lattice in the Oxy plane
with periods a = (a,0,0) and b = (O,b,0). A uniform mag-

3. THE EFFECTIVE HAMILTONIAN

The problem of deriving an effective Hamiltonian
has been considered by many authors using many
different methods, but the methods seem to be more or
less equivalent to the following derivation based on
Wannier functions. ""The units are chosen so that
b= 2m= 1, where m is the electronic mass. The
Schrodinger equation is then

(H —E)f—=L(p —A)'+ V(x) —Ejf(x)=0, (2)

where curl A=h= (0,0,h), V is the periodic potential
satisfying

V(x+R) = V(x),

with R any lattice translation, and p is represented by

R7r
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FIG. 2. Pippard net-
work construction in real
space. Note unusual
choice of axes. This
6gure can also represent
the Fermi surface in a
repeated scheme, with
axes as shown on right.
Shaded areas represent
hole orbit 5 and two
lenses I.1, I.2.

"J.M. Luttinger, Phys. Rev. 84, 814 (1951}."E.Brown, Phys. Rev. 1M, A1038 {1964).

netic field K is applied parallel to Oz. We have in effect
left out the z axis because most of the interesting
problems concern the motion at right angles to the
field. We shall assume that the Fermi "surface" is re-
lated to the Brillouin zone boundaries as is shown in
Fig. 1. (We shall use the word "surface" by force of
habit, even in a two-dimensional problem. ) The energy
is such that the surface has broken into the second band.
Ke shall assume that the surface is almost circular and
that the gaps which occur at points like 3 and 8 are
very small. Figure 2 shows the Pippard network con-
struction in real space. It is simply a repeated version
of Fig. 1, rotated by 90' and scaled by a factor 1/h,
where h is given by

h= ex/he.

Here e is the electronic charge, h is Planck's constant
divided by 2x, and c is the velocity of light. For later
convenience the abscissa (horizontal axis) in Fig. 2 is
used as the y axis, and the ordinate (vertical axis) as
the x axis. Ke have a four-sided hole surface 5 in the
first band and two lenses, I-~ and I.2, in the second.

The same sort of model was discussed in LN with the
assumption that the periodic potential was very weak.
so that the Born approximation could be used. This
time no such assumption is made and the problem will
be treated by an effective Hamiltonian. We may
imagine that the smallness of the band gaps is due to
some peculiarity in the periodic potential, such as
having two almost identical atoms in each unit ce11.
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i&—,. In the symmetric gauge we set A=-,'hXx. We
introduce the operator"

IT=p —A+hX», (3)

a„*(x—R)

X [exp(i-,'hX» R)]Ha. (x)d» (Sa)

M „(R)=(mR~n0)

u„*(x—R)

X [exp(i-,'hXx R)]a„(x)dx. (Sb)

If we substitute

P(x) =QR, „c„(R)a„(x,R)

into (2) we obtain

(9)

gs [exp(—i-,'h RXS)]
X [W (R—S)—EM (R—S)]c(S)=0, (10)

where the band indices have been left out so that S"

"M. H. Johnson and B. A. I.ippman, Phys. Rev. 76, 828
(1949).

which commutes with (p —A), while the magnetic
translation operators"

r(R)=expiII R

commute with the Hamiltonian H and obey the
relations

r(R)r(S)=[exp(i~h RXS)]r(R+S) (5)

where R and S are lattice translations. This follows
from the operator relation'

exp(A+B) = (expB) (exp') exp(i2[A, B]) (6)

(where [A,B] is the commutator of A and B) which
holds provided that (A,B] commutes with both
and B. I.et a„(x) be the Wannier function centered on
the origin for the eth band of the zero-Geld Hamiltonian
Ho. To solve (2) we expand P in a set of modified
Wannier functions"

a„(x,R) —= 7 (—R)a„(x)
= [exp(—i-,'hXx R)]a„(x—R) (7)

for the syinmetric gauge. It is assumed without proof
that these functions form a complete set. The assump-
tion is discussed towards the end of Sec. 4. We shall use
the Dirac notation ~mR) for a (x,R), and then by (5)
it follows that

(mR~ (H E) ~nS)=[exp—(—i-,'h RXS)]
X[W..(R—S)—EM..(R—S)],

where

W .(R) =(mR~H~~O)

H(k) =ps [exp( —ik S)]W(S) (13a)
and

TV(k) =ps [exp(—ik S)]M(S), (13b)

which are, of course, periodic in k, we may write (12) as

[H(P) —EÃ(P)]c(r) =0, (14)

where P= p ——,'hXr. The matrix operator H(P), derived
from the matrix function H(k) by replacing k by P in

(13a), is called the undiagonalized effective Harnil-
tonian. At times the term "effective Hamiltonian" will
also be used for the matrix function H(k) and the
context will indicate whether the operator or the
function is implied. Equation (14) is really no more
than the difference Eq. (11). We note the following
points:

1) A similar equation was derived by Roth' in much
the same manner, though the basis functions used are
Fourier transforms of the Wannier functions

q (k,x) =JR (expik R)a(x, R) =b(k —2hXx, x), (15)

where b(k, x) is a Bloch wave of wave number k, a
solution of the zero-field Harniltonian. Such functions
have also been used by other authors. ' 4 In this case
the operator P in (14) is replaced by

v. =k—-', hXivg,

and c(r) becomes a momentum-space envelope function
c(k).

2) The function c(r) is really only defined at the
lattice sites r= R and so of course it may be multiplied
by any function periodic in the lattice without changing
the problem. This fact will be used later.

3) When h=0 the functions a(x, R) become the
ordinary Wannier functions u(x —R) and in this case
we 6nd that

H .(k)=E .(k)-=E.(k)~ .,

iU „(k)=b
where E (k) is the zero-field band structure.

(17a)

(17b)

and M are matrices and c is a column vector. Then if
we set T= R—S and sum over T instead we obtain the
difference equation

Qr [eq)(i-', h RXT)]
X [W(T)—EM(T)]c(R—T) =0. (11)

The coefficients c(E) are of course only defined at
the lattice sites, but we shall assume that it is possible
to define a smooth function c(r) of a continuous variable
r, equal to c(R) when r= R."Then (11)may be written
by Taylor's theorem and Eq. (6) as

g, [exp —i(p —-', hXr) T]
X[W(T)—EM(T)]c(r) =0, (12)

where y= —iV'„. Then if we define the Fourier trans-
forms
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I'n. 3. Conven-
tion for E(y) as a
function of q, +by
(Eq. 23). Numbers j.
and 2 label the
bands. Also shown
are the areas for the
reQection phase
and propagation
phases 8 and p. The
quantity l labels the
pex1ods.

more than an algebraic diagonalization and it has to be
carried out step-by-step in powers of Ig.

Once we have carried out this process on (18) to a
suKciently high order, we may obtain %entzel-
Kramers-Brillouin (WEB) solutions for a scalar
equation

[E.„'(q.+hy, sd/d—y) E]u—„(y)=0, (21)

where E„'(k) is the diagonal matrix element of H'(k)
for the uth band. Such a solution (to first order in h) is"

4) We may perform gauge transfonnations on (14).
If we set c'(r) =e '«'&c(r), where X(r) is an arbitrary
real function, then c'(r) satisfies an equation like (14),
but with P replaced by P+WX. We use X=sihxy
to go over to the Landau gauge when P becomes

( iB/—Bx+hy, sB/—c)y) in two dimensions. Then we

may set c'(r) =e"* c(y), and (14) becomes

u+b') =
t e(y)&'" «pl ~~ &(9)dn ~,

where FC(y) is the solution of

E'(q.+hy, E)=E

(22)

(23)

fH (q,+hy, id/dy)—
EN (q—,+hy, id/dy—)5c (y) =0 (18).

This is a matrix difference equation with one inde-
pendent variable y. It may be written out explicitly
using (13), (6), and Taylor's theorem. It replaces the
system of coupled ordinary differential equations in
LN. Subsequently we shall use another gauge transform
with X= hey to shift the origin in k space.

The rest of the development is the same as that given

by Roth, ' and we only sketch it here. The work of Roth
can be used without modification because the equations
are gauge-invariant and may be applied to (18) as well

as (14) and can be used for the operator P as well as
the operator u in (16). The second stage after the
derivation of (14) or (18) is to expand H(k) and A (k)
as a power series in h. We may use (8) and (13), but
the expansion is equivalent to that given by Roth in
terms of matrix elements of Bloch functions. The zero-
order terms are diagonal, given by (17).The off-diagonal
terms are of order h, and the third stage is to transform
the matrix Hamiltonian so that these are removed.
Ke set

H'(P) =St(P)H(P)S(P)

iP (P) =St(P)$(P)S(P)

(19a)

(19b)

and choose 5 so that H'(P) is diagonal and iV'(P) is the
unit matrix. All the quantities are periodic and so they
are difference operators. The product of two difference
operators A (P) and B(P), derived from periodic func-
tions A(k) and B(k), is a difference operator C(P),
derived from. a periodic function C(k), given by

C(k)= (expi-', h vp)&wi)A(k)B(1) i, „
=A(k)B(k)+i-', h. VsA)&VsBq . . (20)

to first order in h. The second term on the right in (20)
arises from the fact that the components of P do not
commute. Such terms make the diagonalization in (19)

v(y) = clE'(k)/clh, for h, =q.+hy, h„=E(y). (24)

From u(y) we may construct the solution c(y) of (18)
by the difference relation

c,.(y) =S„„(q,+hy, id/dy)u. —(y) . (25)

The calculation of the correction terms of order fz

and h' which change E„(k) to E„'(k) are important for

calculating the magnetic susceptibility of Bloch elec-

trons at low fields. ' For our purposes, however, these
corrections will be regarded as small quantitative
corrections which do not affect the theory qualitatively,

just as in %KB theory we do not usually take account
of higher order corrections. So from now on we shall

use the zero-field band structure E„(k) instead of
E '(k). For the model we are using we plot K(y) as in

Fig. 3. This figure is essentially a portion of Fig. 2.
Since c(y) is arbitrary up to multiplication by a periodic
function, E(y) in (22) is not defined to within 2+/L
We shall therefore set up a convention giving it the
values as shown in Fig. 3. The convention has the
advantage that the sign of E is the same as the sign of

the velocity e of (24) and it links up naturally with the

method in LN. The numbers 1 and 2 in Fig. 3 are the
band labels. The phase integrals in (22) can be inter-

preted as areas lying between the curve in Fig. 3 and

the abscissa. Thus the area p shows the phase acquired
in propagation from A to 8.' The quantity t labels the
periods in the graph which is periodic in (q,+hy) with

a, period 2s./u.

4. MODIFICATION OF THE THEORY

For those values of y corresponding to A and A' in

Fig. 3 there is no real value for E(y) because of the gap
between the sheets of the Fermi surface. Figure 4 shows

the part of the Fermi surface around A highly enlarged.

"' G. E. Zil'herman, Zh. Eksperim. i Teor. Fis. 52, 296 (1957)
I English ttansl. : Soviet Phys. —JETP 5, 208 {195'llew.

"The phases are dimensionless. If we say that a phase corre-
sponds to a certain area in h space or in real space, that area must
be multiplied by k ' or It, to give the phase,
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The figure can also represent E(y) as a function of y,
as the axes indicate. A simple argument' suggests that
tunneling (breakdown) is possible with the amplitude
given by e ~ where

U= ImE(y)dy

integrated across the gap. Let us suppose that the
curves of Fig. 4 are approximately hyperbolas; then we
construct an ellipse as shown in the gap AIA~, with a
curvature at A& and A & equal to that of the hyperbolas.
Then we may write U=hii/h where hii is, in our units,
half the area of the ellipse in k space. We call hii the
breakdown field. Thus the gap A pA i in k space is of the
magnitude h~&, and for a metal with lattice spacings of
a few angstroms and a breakdown Geld of less than
10' 6, the gap is a fraction of a percent of the dimen-
sions of the Brillouin zone. We shall assume this for
our model.

The order of magnitude of h~ can also be written' as
hJi LPjE'&, where 6 is the energy band gap and Ep is
the Fermi energy. Thus we may write b, (hriEi)&. A
similar situation obtains at the gaps BB (Fig. 1), and
for simplicity we shall assume that the breakdown Geld
here is about the same as at AA'. It is also useful to
deGne a Geld hq equal to the area of the Brillouin zone
in our units. It would be of the order of 10' 6 and we
may write Ep IIg in units of energy.

When the gaps are so small the Wannier functions
are not well localized" and have an extent of h~ &, or
perhaps hundreds of lattice spacings. We can show why
this happens as follows: Let us consider the band-
structure function E(k) around the point A in Fig. 1 as
a function of k„. It has a branch point just off the real
axis at a distance q of about h~&. It then follows that the
Fourier transform W(R) of the band structure cannot
fall off faster than exp( —

q~y~) as R goes along the y
axis. But W(R) is the matrix element of the zero-field
Hamiltonian between u(x —R) and a(x) and hence the
Kannier functions cannot decrease faster than
exp( —-', q~y~). We have a similar result about the fall-off
of the Wannier functions as a function of x by consider-
ing the region around B in k-space.

This slow fall-off has serious consequences when
h h~. First, we cannot approximate the matrix
elements (8) by their zero-field values, and secondly
the difference equation (11) has very many large
coefFicients and becomes unmanageable in practice.
Other methods of deriving the effective Hamiltonian
by using functions like (15) cannot avoid the problem,
since they must lead to an equa, tion like (14), which is
equivalent to (11).

Blount has suggested a way out. A generalized
Wannier function may be deGned by

n. (x) = P„dk T *(k)b (k,x), (26)
(2m-)' nz

Fxo. 4. Portion of
Fermi surface in
repeated scheme
around A, highly
enlarged. The break-
down field is meas-
ured by half the area
of the dashed ellipse,
which has the same
curvature at AI and
A2 as the hyperbola.
Numbers j. and 2 are
the band labels.

where b (k,x) is a normalized Bloch wave for the mth
band of the zero-Geld Hamiltonian and T is a unitary
matrix. The integral is over a Brillouin zone so that
T(k) can be regarded as a periodic function. These new
functions forIn an orthonormal complete set like the
ordinary Wannier functions and we may carry out the
analysis of the last section through to (18) just as
before, but using these new functions. This time the
zero-field effective Hamiltonian is the nondiagonal
matrix

Hp (k) = T(k)E(k)T—'(k), (27)

where E(k) is the matrix de6ned in (17a). By an
appropriate choice of T it should be possible to arrange
that the matrix elements of Hp(k) are much smoother
functions of k than those of E(k). This is because the
branch points in E(k) very near the real axis can be
generated by the algebraic process of diagonalizing
Hp(k) and need not be in its matrix elements. Hence
the Fourier transform Wp(R) of Hp(k) would fall off
very quickly for large R. It should therefore be possible
to arrange that n(x) is quite localized, to, say, within a
few lattice spacings. Then we can approximate H(k)
by Hp(k) and 1V(k) by the unit matrix. The error in
(H L~'cV) would be —of order b, which is small in com-
parison with the band gaps provided h«(high@) &. (In a
model with spin the bands may suffer from spin-
degeneracy and terms of order h cannot then be
neglected. )

If we wish to use the basis functions (15) instead, '
we will modify them by replacing b„(k,x) in (15) by

b '(k, x) =Q T„'(k)b„(k,x). (28)

The problem is now transferred to the third stage,
the diagonalization procedure. We expect that the
main eKect is to undo the transform in (27) and we
shall 6nish up with the Hamiltonian E(P) to zero order
in h, just as before. However, we do not have to diago-
nalize for all bands, but only for the Grst two bands, and
moreover only for those values of k near the Fermi
surface (Fig. 1).Let us suppose we are interested in a
region on the Fermi surface in the first band, well away
from points like A or B.Then we would have to arrange
the transform (19) so that the oR-diagonal elements
H'i (k) and H' i(k) are negligibly small just in that
region. The diagonal element H'»(k) would be just
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J'i(k) to zero order in h. The same idea would be used
for the second band.

Except for points near 2 or 8, the elements of the
diagonalizing matrix would be expected to be smoothly
varying functions of k in the sense that the derivative
with respect to k would be of order hq &. Thus the
correction terms in (20) will be of order hjho and so
the diagonal Hamiltonian can be written as E(P) with
an error of order h. It is evident that we cannot use a
diagonalized Hamiltonian for k in the vicinity of the
breakdown points. Thus we use a transformation which
leaves the terms II'~2 and H'2~ large in such regions, but
removes all other interband terms. In this way the
effective Hamiltonian is a 2)&2 matrix with smoothly
varying elements. (In contrast the undiagonalized
Harniltonian derived by the theory of Sec. 3 has ele-
ments which are almost singular near the points A or 8
in k space. )

Such a Hamiltonian is not unique. Suppose we have
two Hamiltonians Hi(k) and H2(k) related by a unitary
transform so that they give the same band structure
and whose matrix elements are smoothly varying func-
tions of k in the region of the Fermi surface. Then we
can relate Hi(P) to H2(P) as in (19), but there will be
correction terms as in (20) which would be of order h.
If we ignore these, the Hamiltonians are equivalent. In
other words, any Hamiltonian with smoothly varying
matrix elements that gives the correct band structure
will be adequate for our purposes.

The usual theory of the effective Harniltonian also
suffers from nonuniqueness, but not in the zero-order
terms which are given by (17). This nonuniqueness is
associated with an arbitrariness in the phases of the
Bloch functions or with changing the Wannier functions
by using a diagonal matrix T „=5 expL —i8„(k)$
in (26), where 8„(k) is some real function of k. The
equivalence of such Hamiltonians does not appear to
have been proved. This brings into question the assump-
tion that the set of Wannier functions (7) or of their
Fourier transforms (15) is complete. The incompleteness
would not necessarily be disastrous, for (11) can be
derived by a variational argument, but it would mean
that changing the Wannier functions would give a
slightly different effective Hamiltonian. If the set is

incomplete, then it would seem that the best Wannier
functions to use are the most localized, since the ordi-
nary Wannier functions a„(x—R) or e„(x—R) do form
a complete set, and the localization would mitigate the
effect of the exponential function in (7).

If we are interested in the effects of spin-orbit
coupling on magnetic breakdown, then we need the
term of order h in the effective Hamiltonian. We would

have to consider a region in k space where breakdown

takes place, say, centered on ko. We could employ
t.uttinger-xohn theory" in this case by choosing the

' J. M. Luttinger and W. Kohn, Phys; Rev. 97, 869 (1955);
J. M. Luttinger, ibid. 102, 1030 (1956).

matrix T(k) in (26) for k near ko by

T .(k) = dx X *(k,x)b„(k,x),

S. TREATMENT AT SPECIAL POINTS

We shall assume that the WKB solution (22) is valid
except for the vicinity of the points 3, 8, and the
turning point T (Fig. 3). It is necessary to examine the
difference equations more carefully in these regions.
The usual method is to approximate them by differ-
ential equations, but first it is necessary to perform a
gauge transform so that the solution is slowly varying.
Suppose we are interested in a region near the point
y= yo, where the solution has a wave number Ko——E(yp).
Then instead of the solution u(y) we use the modified
solution

0(y)=e ' "~(y) (29)

and for convenience we shift the origin to yo. This is
equivalent to replacing the operator P= (q,+by,

id/dy) —in (18) or (21) by

p~ p'=po+p

Po= (q +hyp, Ep) .

(30)
with

( )

Around the new origin the expectation value of P is
small and we may expand the effective Hamiltonian in
powers of P. Thus, by (13a) we would write

H(P') =ps W(S)Lexp( —iPO S)j
X~1—iP S—', (P S)2+ "~.

We ignore the higher powers of P. This is hard to justify
mathematically, though it seems physically reasonable.
The assumption is that the missing terms are not
important until y becomes large enough to use the
WKB solution (22) and that then they can be accounted
for by using the WEB solution for the true Hamiltonian
rather than the truncated Hamiltonian. We are here
replacing a difference equation by an approximating
differential equation, the converse of the methods for
solving differential equations numerically. Thus around
the point T we would expect that the Hamiltonian

where the integral is over a unit cell 0 and g is a
I uttinger-Kohn function defined by

X„(k,x) = Lexpi(k k—o) xjb„(k,,x) .

The method of expanding the effective Hamiltonian as
a power series in (k—ko), described in the next section,
will give the nondiagonal Hamiltonian of k p theory
which can be diagonalized in the usual way. " Un-
fortunately, we cannot define T in this way all over the
Brillouin zone, for if we regarded it as a periodic func-
tion, it would have discontinuities at the zone boundaries
and the corresponding Wannier functions (26) would
not be well localized.
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n&.+Pk,+Eo
H(k) =

lg
2

1+
(32)

nk, Pkv+E()—
where Eo is the Fermi energy, 6 is the band gap, and o,

and P are certain coefficients. This Hamiltonian leads to
a second-order differential equation similar to the
Weber equation and may be solved in terms of con-
Quent hypergeometric functions, ""whose asymptotic
forms for large y may be calculated. These are solutions
for the nondiagonal Hamiltonian (32), but it should be
possible to relate them to the solutions of the diagonal-
ized. Hamiltonians E&(P') for (y —y&) sufficiently
negative and Ei(P') for (y —yi) sufficiently positive,
where ys and yi are the positions of As and A i (Figs. 4
and 5). The solutions of the diagonalized Hamiltonians
E;(P') (j=1,2) we shall call f,. These will have the
form (22), but their phase integrals are to be measured
from y;, as indicated in Fig. 5, and because of the gauge
transform (29) the areas are measured from a base line

Es(k) could be expanded as

Es(k) =E()—nk —P'k '

where we have taken the origin at T, Eo is the Fermi
energy, and n and P are certain coefficients. Then (21)
would become (with q, set equal to zero)

(0'd'/4' nI—X)4 (y) =o

This is the equation for the treatment of linear turning
points in WEB theory's and it indicates that a phase
shift of vr/2 must be put in at the turning point. A more
careful statement goes as follows: The coeKcient of the
reQected wave is equal to e' ~' times the coefBcient of
the incoming wave if the lower limit of the phase
integrals in (22) is put at the turning point. This
convention for the phase of the wave function will be
used because it gives a natural way of distinguishing
phase shifts acquired in propagation from those due to
reflection. lt does not imply that (22) is a valid solution
close to the turning point.

The situation is considerably more complicated at a
point like A. Here we set E() rr/b in (——29). A Hamil-
tonian which should describe the bands at such a point
might be to first order in k' "

E=E() (Fig. 5) instead of from the axis E=O, as in
Fig. 3. Suppose then that a solution (A'Ps++F'Ps )
for (y—ys) sufficiently negative joins on to a solution
(B'Pr +X'pi+) for (y —yr) sufficiently positive (Fig.
5b). Here the subscripts & refer to the direction of
propagation along the y axis. Then these coe%cients
will be related by some unitary matrix

(X') (e'&((1—Qs)»s

eibbQ

A'
(33)

e'»(1—Q')"i') (8'

where pi+ps ——bi+i)shirr for unitarity. Here (1—Q') & is
the tunneling amplitude and is given by Blount's
criterion' or the formula at the beginning of the fourth
section. Q is taken as real and represents the reflection
amplitude.

Now the solutions lt,+ are solutions of E, (P') and we
must relate them to the solutions I,+ of the E;(P) as
in (21).This is, of course, just undoing the gauge trans-
form (29) with E() 7r/b. But w——e would like to choose
the origin of the phase integrals in (22) at y;, and we
would like to use the convention of Fig. 3 for E(y).
Then the transforms are

Thus in effect P~ has been multiplied by e' (((b to undo
the gauge transform, and lt has been multiplied by
e' » ~ and e ' '&~ ~. This last multiplication by a function
periodic in the lattice does not matter, since really we
are solving difference equations. Now if a solution
(AN&++Fgs ) of Es(P) for (y —ys) sufficiently negative
joins on to a solution (Bur +Xur+) of Ei(P) for (y —yr)
sufficiently positive, then we shall have instead of (33)

K = Kp

FIG. 5. (a) Signed areas measuring the phase-integrals for the
solutions P;z of the diagonali7ed Hamiltonians. The subscripts ~
give the direction of propagation along Oy. (h) The amplitudes of
the solutions on the four arms.

Qeibre 2'((2 Ib—
Qei'(e'~(» '

(1—Q')' 'e'»ei~(()(») ")l BJ
(35)

The additional phases we shall call "extrinsic" phases,
as opposed to the phases y;, 8; which we shall call
"intrinsic. "The phase rr(yi y&)/b may be inter—preted
"P. M. Morse and H. Feshbach, Methods of Theoretical Physics

(McGraw-Hill Book Company, Inc. , New York, 1953), pp. 1095—
1099.

"U.
¹ Upadhyaya, University of Oregon, Eugene, Oregon

(unpublished).
20 Reference 18, p. 1403.

as the phase acquired by the wave as it propagates
through the gap while still oscillating with a wave
number rr/b. The phases 2 y s/b rand 2 y r/rb sare the
phases of positions of the turning points with respect
to the periodic lattice, and these phases are really the
key to the theory in LN, because they can vary from
one cell in Fig. 3 (l =0, say) to the next. This is because
changing yr and ys by 2s/ah changes the phases by
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~y Y =Yp

FIG. 6. Network to represent propagation of waves along the y
direction. Figure shows lth link corresponding to lth period in
Fig. 3. The points A~, A~', B~, B~' are junctions, as in Fig. 5(b).
Waves starting from a source at I'= I"0 and travelling to the rIght
are represented as starting at I', while those travelling to the left
at Q.

(2') /hab, which is not. necessarily an integral multiple
Of 27k'.

The situation at the point 8 where q,+hy=ir/b is
physically very similar, but this time there are no
"extrinsic" phase shifts. There is another difference. The
roles of h, and h„are reversed in comparison with (32)
and this leads to a slightly different equation. The
eGect of this can be illustrated in the classical limit
h((h~. There will then be abnost total reAection at the
junctions. But the points Ai and A2 (Fig. 5) will act
like the turning points T, and thus the phases bi. and b~

in (35) will be equal to i2ir. In the problem for the region
around 8 there are no turning points and so the corre-
sponding phases are zero. This shows that the lens I»
(Fig. 2) has its turning points at AA', whereas the lens
1.2 has them at points like T. This is a mathematical
rather than a physical problem and will not be treated
further.

This argument is in effect a justification of the
method used in LN, for it should now be evident how

we may set up a network (Fig. 6). The propagation
phase shifts like 8 and p are obtained by calculating the
appropriate phase integrals and are represented by
areas" as shown in Fig. 3. For the purposes of the next
section we shall simplify the phase shifts at the junc-
tions as in (35) by ignoring the difference (yi —ym).

The "extrinsic" phase for reRection to the left 27rye/b-
ean be written, as in LN,

a,t Ai. u —8+el,
at Ai'. n+b+el,

(36)

where n=27rq, /bh, b corresponds to the area as shown

in Fig. 3, and e= (2ir)'/hab corresponds to the area of
the unit cell in Fig. 3 or of the Brillouin zone."The
reflections to the right have an equal and opposite value.
We shall also ignore the phase —,x at the turning points
T. The argument with all the phases included will be
similar but somewhat more complicated.

6. THE de HAAS —van ALPHEN EFFECT

We need to calculate the terms in the energy density
of states at the Fermi level E which are oscillatory
functions of h. These are then put into the usual formula

for the free energy, "and from this the oscillatory terms

~' J. Callaway, Energy Band Theory (Academic Press Inc. ,
'

¹wYork, 1964), p. 258.

in the magnetic susceptibility can be calculated. The
oscillatory part of the density of states can be obtained
from a Green's function. "

The method is to find the density of states for the
one-dimensional difference equation (18) and then
integrate the result over q, from 0 to 2ir/a to obtain
the energy density of states for the two-dimensional
problem. Later we shall introduce a third coordinate s
to give a model for a three-dimensional system.

We assume that (18) has been derived using the
modified Wannier functions of Sec. 4, so that $(k) may
be approximated by the unit matrix. It is also con-
venient (as in LN) to assume that the field h has a
"rational" value given by

h= (2~/ab) (~/X), (37)

where P and iV are integers, although this time it will
not be assumed that X/S has been reduced to its lowest
terms. We may impose periodic boundary conditions
at the ends of a long line of S lattice sites in the y
direction. We shall use the notation V=eb to denote
the y coordinates of these sites. Then (18) is essentially
just a matrix equation with a very large matrix. If we
lump the band index and position index into a Greek
suffix (X, p, or i) and use the summation convention,
(18) may be written

(E6&,„—Hg„)c„=0. (38)

Let us call the eigenvalues E;.The Green's function (or
rather matrix) Gi„(E) is defined by

L (E+ie)bi„—Hi„]G„„=bi„, (39)

where e is a positive infinitesimal. Then the energy
density of states n(E) is just

ri(E) =P, b (E E,) = —ir
—' ImGM, —(E), (40)

which can be proved by diagonalizing H» by a unitary
transform. If we alter H by a unitary transform, theii
it is easy to show that the trace in (40) is unaltered, so
that we may carry out the procedure of diagonalizing
(18) in bands. This can be done almost everywhere,
except for lattice sites I' near the y coordinates of 3
and B. But these are small regions and will not con-
tribute much to the trace. We thus have to find the
Green's function G„(I',V') for the diagonalized Hamil-
tonian E„(P).Then it follows that

n(E)= ~ 'P„r ImG„(Y,—I )-.

To calculate the Green's function approximately for
a source at I" we first replace (q +hy) in (21) by a
constant (q,'+hV'). Then (21) becomes a difference
equation with constant-coe%cients. For a given value
of V' we have solutions t,"~~ where k„ is given by
E,„(q,+hY', h„)=E Lcompare (23)j. To obtain the
Green's function we replace the right-hand side of (21)

"L. M. Falicov and H. StachowIak, Phys. Rev. 147, 505 (1946) .
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by a source term —b». which may be written

~/b

~YY'
2'

exp[i~ (Y—Y'))d~,

since Y and V' are lattice translations. Then it follows
that

FIG. 7. Another network to represent
propagation of waves along the y direc-
tion. For measuring phase-integrals
vertical axis should be taken as E(y).

K(y)

-» exp[i. (Y—Y'))
6„(Y,Y') =— d. , (42)

27r .g, E+ ie E„(k—„~)

where k,=q.+hY . Since the integrand is periodic, the
path of integration may be displaced upwards (for
Y)Y') or downwards (for Y(Y') in the complex
~ plane, leaving behind the residues at poles very close
to the real axis. It is found that for each real positive
value k„of ~ satisfying E(k„k„)=E there is a residue

—iba '(expik„Y&) [exp(—ik„Y&)$, (43)

where V~ and V& are the greater and lesser, respec-
tively, of Y and Y' and a is the velocity BE/Bk, at
(k„k„). This residue (43) simply represents waves
propagating outwards from. the source. The contribution
to the integral from the displaced path falls off for

~

Y—Y'
~

large and represents "evanescent" waves
which are of no further interest.

The second stage is to allow the term (q,+hy) in (21)
to vary again. This will have two effects, one "quantita-
tive" and the other "qualitative. "The Green's function
will be modified locally because the coefFicients in the
difference equation are now slowly varying, but this
would be a small effect of order h. This might lead to a

small change in the energy density of states which will
not give an oscillatory contribution to the suscepti-
bility. The contribution (43) to the Green's function
presumably will now be replaced by

—ibu~(Y&)u (Y(), (44)

where u~ are the solutions of (21), given by (22). The
"qualitative" effect arises from the reQection of the
outward-travelling waves (44) from distant junctions
and turning points. These contribute to (41) and lead
to the de Haas —van Alphen oscillations. They can be
calculated by multiple-scattering theory. Suppose we
have a source at Y= Yp (Fig. 6). Then we must consider
all paths p in the one-dimensional system by which the
wave returns to I'o. It is better to represent the paths
on a diagram like Fig. 7, similar to Fig. 2. A wave
starting to travel to the right is presumed to commence
at P, while one to the left, at; Q. It always travels
clockwise round a circle. A re.ection to the left by a
junction like A ~ or A ~' transfers the wave on to the next
circle up and a reflection to the right on to the next
circle down. By (36) these reflections introduce phases
dependent on q„a phase 27rq, /bh for a reflection to the
left, and 27rq, /bh for a reflec—tion to the right. Let us
consider a wave starting out at Yp to the right (repre-
sented by starting at P in Fig. 7), being reflected by the
turning point T, and returning to Yp (at Q). The phase

shift due to the propagation is represented by the
shaded. area. The wave will also be phase shifted and
attenuated at the junctions. But when we perform the
sum in (41) this particular contribution will cancel out
because evidently the area varies with Fo and cancella-
tion will occur by "random phase. "To avoid this the
wave starting at P must return again from the left.
Such a path in Fig. 7 might go from P to T to Q to A ~'

and be reQected to I'~. However, the phase shift upon
reflection at A~' depends on q according to (36), and
so when we later perform the integration over q for
the two-dimensional density of states, this contribution
will also cancel out. To avoid this the path must return
again to its starting point on the same circle, and so in
fact it must be a closed orbit.

We need therefore only consider closed orbits. It can.
be shown, as we might expect, that for such a path the
sum of the propagation phase shifts and the "extrinsic"
phase shifts at the junctions is just h ' times the k-

space area of the orbit 5„. We may therefore express
the total phase shift and attenuation for a given orbit p

(45)l.„=c„exp(ih 'S„),
where c„gives the attenuation and the "intrinsic"
phases at the junctions and 5„ is the k-space area of a.

closed path p. If the path goes n times round a given
area, that area must contribute e times, and hole orbits
contribute negatively. In (44) we may phase u(Y) to
be real at V= Vo, It is then easy to see that the contri-
bution to G(Yp Y'p) from a given orbit p is simply

—ibt, /a (Yp) . (46)

This [by (37)j is equal to
2+X /a gQ 2' /Q

2x p

dk,

The integration over q is simple, since all the terms are
independent of q, . I.et us suppose that the sample has
dimension A in the x direction over which we impose
periodic boundary conditions. This just introduces a
factor A/2tr in the two-dimensional density of states
v(E). The sum over Yp on X sites is a little more
dificult. To go over to a scheme in k space, we replace
Y by k,/h and the sum over Yp by an integral, since the
rapidly varying terms cancel out by "random phase. "
Then we have

Xb g iVbh

d Y=— dk, .
&0 b o hb o
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since the terms we are keeping in the Green's function
are periodic in k, . This is valid since a displacement of
the source F'o by 2ir/ah only alters q„and we are keep-
ing only terms independent of q, . We may also write
dh, /v(I') as ds//i/, , where ds/, is an infinitesimal length
of arc on the Fermi surface and v& is the magnitude of
the velocity normal to the Fermi surface.

Then finally, for the oscillatory terms in the two-
dimensional density of states we have

le b dsg
v...= Q (i„+t„*),

(2ir)' v,
(47)

where at any point on the Fermi surface we have to
sum over all paths p passing through the point. We
integrate only within one Brillouin zone for each band.

As a simple example let us take the free-electron
model. The Fermi "surface" is a circle of area ~E (in
our system of units). The only orbits possible are once,
twice, thrice, etc., around this circle. Thus we may set
5„=p7rE, which gives

(gA b/4ir) Q (pi&wz/6+e i'm 8/A)—
@=1

The steady-sta, te term is just XAb/47r, so we find that
altogether

v=(iVAb/4') Q b(E/2h n). —

Thus we find that the possible energy levels are
multiples of 2h. They should be odd multiples of h, but
an error occurs because we have ignored a phase shift
of per for the pth orbit due to the turning points. The
formula also suggests negative energy states, but the
above theory only applies for E))h, when there are
propagating waves and the WEB theory can be used.

The rest of the analysis for the de Haas —van Alphen
effect is straightforward and only a rough sketch is
necessary. We process (47) term by teim and, as we
might expect, the oscillatory nature of each term comes
out in the free energy. The first step is to introduce a
third coordinate s and integrate over k, to obtain the
three-dimensional density of states A (E). This will, in
the usual way, pick out the extremal orbits by "sta-
tionary phase. " Then we take a particular term of
N(E), X~ exp[ih '5„(E)), where X~ is some coeKcient
which varies slowly with h and E, and 5„(E) is the area
of an extremal orbit at the energy E. The expression
for the free energy is

X(E)g(E)dE, (4g)

where Ã0 is the number of particles, p is the chemical
potential, and g is given by

g=hT ln(1+e~&—~~/'Q,

'f (E) (d'g/dE')dE, (49)

where d'g/dE' is the derivative of the Fermi distribution
function. It is very sharply peaked at the Fermi level
over a range a few kT in width. Within this range we
may assume that Sq(E) varies linearly with E, and so
the double integration of a particular term

X, exp[ih —'5, (E)7

in X(E) may be written as

X,(ih 'dS /dE) ' exp[ih '5~(E)j+Efi+f2, (50)

where fi and f2 are constants of integration. After the
final integration in (49), the first term in (50) gives an
oscillatory contribution to the free energy, with a
period in h ' corresponding to the extremal area 5„(E~),
where Eg is the Fermi energy.

It is conceivable that fi and f2 also give oscillatory
contributions. VVe can see this as follows in the two-
dimensional model: At some energy well below the
Fermi level the constant-energy contour in Fig. 1 will
be just breaking through in to the second zone. We shall
thus have a rather singular situation over a narrow
range of energy in this transition region. This could
lead to the constants of integration in (50) being
periodic in h ' with periods corresponding to areas in
this energy range, since they are derived by integrating
across this region. Similarly, the integration over k, in
the three-dimensional situation might pick up non-
extremal areas at those values of k, where the Fermi-
surface cross-section is in a transition region. This has
been discussed in more detail by Roth."

At any rate we have the simple result that all possible
orbits in a network may contribute to the de Haas-
van Alphen effect in the usual way, except that the
contribution of a given orbit will be attenuated by
imperfect transmission and reQection at the junctions
on the orbit. The transmission and reflection amplitudes
to be used are, of course, the quantities (1—Q')& and P
in (35), and not the squares which give the transmission
and reQection probabilities. The nth harmonic of a
fundamental period corresponding to some area should.
be regarded as being due to an orbit going e times
around that area. In particular, we do not expect to
find any periodicities corresponding to the area of the
Brillouin zone (as suggested in LN) because it is not
possible to find orbits with this area.

"1., M. Roth, Phys. Rev. 145, 434 ($966).

with T the temperature and k Boltzmann's constant.
Next we define 1 (E) by

821/dE'=1V(E), 1 (0)=1'(0)=0,

that is, the double integral of 1V(E) from E=O. Then
by integrating by parts twice we may write (48) as
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So far the wave functions we have used are Bloch
waves in the x direction with a wave number q and do
not resemble wave functions lying on a network in real
space, as suggested by Pippard. 7 8 Such wave functions
are readily constructed, however, as eigenfunctions of
the Hamiltonian (2) by the following method. Let us
first consider the free-electron problem. In this case
the components of the operator II (Eq. 3) measure the
position of the center (xo,yo) of a circula, r orbit according
to 14

II = —hyo, II„=hxp.

The operators satisfy the commutation rule,

$11.,11„]= —zh

Fn. 8. Heavy line
represents center of
track —x =K(y)yh
in real space. hx is
spread of wave func-
tion in x direction;
IV is width of track.

=K(Y) ih

=Y

We use (22) for N(y), taking the positive sign. Let us
write

~(y) = K(n)dn

for the phase in (22). Then by Taylor's theorem we may
write

and thus the uncertainty in measuring them both obeys
a relation

J(y+ nb) =J(y)+zzbK+-,'zz'b'K' (53)

+(x,y) = n (II.)e'""P(x,y) dX, (51)

with n(X) = exp( ——,'A'h). This wave function is circular,
with its center at (0,—q,/h). The function nP.) is
determined by the kinematics of the uncertainty
principle rather than the dynamical features of the
Hamiltonian. So we shall try a similar construction on
the envelope functions of Sec. 3 and show that this does
lead to a function localized on a network like that in

Fig. 2.
We start with the function

y(r) = e'z*'u(y),

where N(y) satisfies (21). (Strictly speaking this func-
tion is only defined on the lattice sites. ) Instead of
e'n~" we use an operator similar to r (izb) LEq. (4)jwith zz

integral, which acts on envelope functions and is equal
to expizzb (hx —id/dy) in the Landau gauge. This
operator commutes with the eHective Hamiltonian in
(18). The integration in (51) is replaced by a discrete
sum over n, and so we set up the wave function

4(r) =P„Lexp( 'bzz' )h]e'—&'-* "+'"' (Ny+ bz)z. (52)

AII AUy h.

The wave function obtained on separating the
Schrodinger equation in the Landau gauge as in Sec. 3 is

P= e"**w(y)

where w(y) satisfies the simple-harmonic-oscillator
equation

d'/dy'+ (q—,+by)' E]m(y)—=0

The wave function f is an eigenfunction of II, (with
eigenvalue q,), so that 611,=0,611„=~. To construct
a wave function where DII,=ALII„h'", we use the
operator e'"~" (with II„=p„+hx), which commutes
with the Hamiltonian, and set8

to second order. Here K=K(y) and K'=dK(y)/dy.
We leave out the higher terms, assuming that the
exponential in (52) cuts off the sum for large values of zz.

Then we have

+(r) =3~(y)j 'e"* Le'""'jl &(x,y)j

x(x,y) =2- Lexp( —zi~'b'h))

Xexpi(Kizb+zzbhx+-, 'K'&z'b') . (54b)

We expect X to peak for x= —K/h, for then the phase
is stationary as a function of e at v= 0. It will also peak
for x= K/h 2—zrzzz/bh —for zzz any integer. Thus it is
easy to see that the wave function will be localized on a
network as in Fig. 2. The argument fails at points like
3 and 8, because the effective Hami1. tonian cannot be
diagonalized and at T, because the WKB solution (22)
is invalid, but it is valid over the major part of the
network.

We may also calculate the way the wave function
falls off as x deviates from the value K/h. For this—
purpose we replace the sum in (54b) by an integral.
This should not cause a serious error since b'h h/ho((1.
We find that the wave function is like a Gaussian with
a width Ax= h 'L(h'+K")/hj&. Figure 8 shows a
portion of the track x= —K(y)/h (note that the axes
a,re chosen unconventionally). The track is shown as a
continuous line. The tangent of the angle 0 is just the
slope h 'dK(y)/dy. The line Dx shows the spread of
the wave function about the track. Resolving Dx on to
the direction at right angles to the track, we find that
the wave function has a width t/t/'=h —

& which can be
interpreted as the uncertainty in the position of the
electron owing to its zero-point motion in the magnetic
field. This width is of the order of (h@/h)l lattice
spacings and is constant along the track.

Thus the function 4(r) in (52) is localized on a net-
work as in Fig. 2. From (52) we find that if we compare
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the wave function at (x+2rr/hb, y) with its value at
(x,y), the magnitude is the same but the phase is
changed by 2srq, /hb, because of the phase-factor e" *

in (54a). There is no such periodicity over a distance
2ir/ha in the y direction because the wave-function
amplitudes are not periodic in the network in Fig. 6
since the phase shifts at A ~ and A ~' depend on I accord-
ing to (36). This is what we would expect by setting
up the wave function a,s R Pippard network' in the
Landau gauge used in this paper.

8. CONCLUDING REMARKS

Ke have set up the theory of the effective Hamil-
tonian in terms of Wannier functions and difference
equations. This method can be used to derive the wave
functions in configuration space, and it is hoped tha, t
this approach gives a clear picture of the situation Rs

well as of the problems involved. It is certainly one of
the more elementary methods, since all the matrix
elements Rre finite and do not involve 8 functions.
XVhen breakdown is liable to occur, the Kannier
functions have to be modified, and than the effective
Hamiltonian must be treated, a,t least in the regions of
breakdown, Rs a matrix.

The use of such a theory has enabled us to justifier
the network model used by. the author, " which can
readily be shown to be essentially equivalent to those
used by Pippard. ~ ' Then we have considered the
problem of the de Haas —van Alphen CR'ect with break-
down. The results are very much as we might expect.
Finally, we have shown how to construct a wave
function lying on R network as suggested by Pippard. ' '

All this has been done in the framework of R sin1ple
recta, ngular model. For the sake of completeness the
theory should be extended to deal with niore compli-
cated models, but the author does not expect that Rny
surprising new results would be found. The problem of
spin-orbit coupling has not been treated and it may be
important, particularly when the band gaps across
which breakdown takes place are produced primarih
by spin-orbit coupling. In this case we would have to
consider the effect of the first-order term in the elective
HRI11iltonlRI1 expanded Rs R power series I11 k.
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The band structure and Fermi surface of metallic white tin are successfully calculated, using a local-
pseudopotential approximation. A nevr, simple, and accurate model is found for including the spin-orbit
coupling within the framework of a pseudopotential Hamiltonian. The results are compared with experi-
mental data, and good agreement is found throughout.

I. INTRODUCTION

HIS paper contains a theoretical calculation of
the band structure and Fermi surface of white tin,

and a compa, rison of the results with experimental
data. It also introduces a new method for dealing with
the spin-orbit interaction. The study of tin is motivated
by many circumstances and considerations. These a,re
discussed in the following paragraphs, beginning with
the experimental situation and proceeding to the prob-
lems and possibilities to which the tin lattice structure
gives rise.
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In recent years, the Fermi surface of tin metal has
been the subject of a number of experimental investiga-
tions, but the complexity of the surface has thus far
prevented it from being fully understood. The present
calculation by a pseudopotential method is intended to
furnish a guide and a stimulus to further experimenta-
tion. The following experiments have shed some light
on the electronic structure of Sn: de Haas —van Alphen
effect, ' galvanomagnetic properties, ' ' cyclotron size
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