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The temperature dependences of the longitudinal and transverse piezoresistivities have been measured
over the range 70-300°K for five pure bismuth crystals of different crystallographic orientation. An oscilla-
tory stress collinear with a direct current in the sample was employed. The data were analyzed by a least-
squares technique, and the temperature dependences of the piezoresistivity coefficients myy, 33, 714, 741,
(m13+mas), and (w31+4q) were obtained. These results are compared with published data on the change in
resistivity under hydrostatic pressure to obtain estimates of all eight piezoresistivity coefficients at room
temperature and seven of the coefficients at liquid-nitrogen temperature. The relative magnitudes of the
coefficients are compared with a theory based on the electron-transfer model.

INTRODUCTION

HE importance of piezoresistivity data in elucidat-

ing the band structures of semiconductors and
semimetals has been recognized for many years,! but
the data available for bismuth are relatively. incom-
plete.? The present work provides sufficient data to
warrant detailed analysis. Bismuth is characterized by
the point-group symmetry 3m. The form of the piezo-
resistivity tensor for this group has been given by
Smith,?® and is reproduced in Fig. 1. The representation
of the fourth-rank piezoresistivity tensor as a 6X6
matrix and the notation used throughout this paper
are explained in Ref. 3. There are eight independent
nonvanishing piezoresistivity coefficients, seven of
which can be determined using an experimental con-
figuration in which uniaxial stress is applied parallel
to the direction of the current. The eighth coefficient
12 cannot be determined in this way, but can be found
by comparison with data on the change in resistivity
with hydrostatic stress.
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F1G. 1. Piezoresistivity tensor for 3m point-group symmetry.

* Summer Development Program participant from Purdue
University.

!R. W. Keyes, Phys. Rev. 104, 665 (1956). References to
earlier work are given in this paper.

2 M. Allen, Phys. Rev. 42, 848 (1932); 49, 248 (1936).

3 C. S. Smith, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academlc Press Inc., New York, 1958), Vol. 6, p. 175.
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EXPERIMENTAL PROCEDURE

The most satisfactory geometrical arrangement for
piezoresistance measurements employs a sample in the
shape of a rectangular parallelepiped having a large
ratio of length to lateral dimensions (see Fig. 2). The
current and stress are introduced at the ends, so that
the current (which is held constant) and stress are
parallel to the long axis of the sample over most of its
length. For an arbitrary orientation of the crystal axes,
the change in electric field under stress can be resolved
into three components, one parallel to the long axis of
the sample and two perpendicular to it. These compo-
nents can be found by measurement of the three
voltages indicated in Fig. 2. It will be shown subse-
quently that seven of the piezoresistance coefficients
can be determined in this way, but at least three
different sample orientations are required. In this
work five different crystallographic orientations have
been employed, and the resulting redundancy has been
used as a check on the consistency of the measurements.

Figure 3 shows the systems of coordinates which
were used to describe the sample orientations. A system
of laboratory coordinates O-x'y’z’ is initially set up
coincident with the orthogonal set of crystal axes
commonly employed (binary-x, bisectrix-y, trigonal-z).
The positive direction of the bisectrix axis is determined
from x-ray diffraction patterns according to the con-

Fi1c. 2. Simplified
sample arrangement.
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vention given by Boyle and Smith.* Two successive
rotations of the primed coordinate system are then
carried out. An initial positive rotation by ¢ about the
7' (or 2) axis is followed by a positive rotation through
an angle 6 about the y’ axis. The 2’ axis is then co-
incident with the long axis of the sample, the positive
direction of current being the positive 2’ direction. The
stress is also applied along the 2’ axis and is defined to
be positive when compressive. The sample is cut so
that its two smaller dimensions are parallel to the x’
and y’ axes, respectively, in the rotated coordinate
system.

The components of the matrix of direction cosines
characterizing these rotations are?

a11=cosf coso,
a12=cosf sing,

a13=— sinf 5

ao1= —Sin(p ,

A22=COSQ, (1)
02320 y

az1=sinf cosp,
azs=sind sine,
az3=Ccosh.

Following Smith’s procedure?® for transformation of the
piezoresistance tensor, the following result is obtained
for the three piezoresistance coefficients (in the lab-

TaBLE I. Summary of sample orientations.

Sample
NO. '} %] 7rl'j'¢0
1 00 00 7r33,
2 90° 900 7I'33', 7!‘53'
3 45° 90° a3’y o3’
4 135° 15° w33’y waz'y was'
5 112.5° 90° a3’y T3

*W. S. Boyle and G. E. Smith, in Progress in Semiconductors,
edited by A. F. Gibson (Heywood and Company Ltd., London,
1963), Vol. 7, p. 1.
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oratory coordinate system) which are measured

33’ =11 sin*9+133 cos0+ (w13t 314 2744) sin cos?
+ (7144 2741) sin36 cosh sin3 ¢,

w13’ = (m1a-Fmrar) sinf cosh cos3 e, (2)
53’ = (11— 731) sin®d cosf+ (13— mrs3) sinf cos®d
+ (r14+741) cos?0 sin sin3 o — 74 sind sin3 ¢
+ (:1‘)1!‘44 sin4f.
These coefficients are defined by the relations
3Ez’ = 7r33/jz”<z' ;
6E1/’ = 7|'43ljz”€z’ 5 (3)

0B, = 753,jz’Kz' )

where OE is the change in electric field induced by the
application of a compressive stress, «, and 7. is the
current density. Since w12 does not appear in Eq. (2),
only seven piezoresistivity coefficients can be deter-
mined by applying Eq. (2) to piezoresistivity data on
at least three appropriately oriented samples. If the
orientations are chosen so that none of the 7;; vanish,
nine equations are obtained for the seven ;. However,
care must be taken to choose the orientations such that
at least seven independent equations are obtained.

Five different orientations, which are listed in Table
I, were used in this experiment. For all but one of the
samples, at least one of the transverse piezoresistivities
vanished identically because of the special symmetry,
so that only ten nonvanishing coefficients were meas-
ured. From these values, the angles given in Table I,
and the set of Eq. (2), ten equations for the seven
m; are obtained. Of course, not every subset of seven
equations taken from these ten is determinant. In fact,
inspection of the first of Eq. (2) reveals that only four

Fic. 4. Actual sample
arrangement.
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F16. 5. Temperature dependence of ;. X1=3" (sample 1);
Xo=mss’ (sample 2); Xg=ms3’ (sample 2); Xy=m33’ (sample 3);
Xs=ms3' (sample 3); Xe=mss’ (sample 4); X;=m4" (sample 4);
Xg=ms3’ (sample 4).

independent equations can be obtained by measure-
ment of 733’ no matter what orientations are employed.
Hence any subset of seven equations containing all of
the five equations for 33" will be indeterminant.

The lead arrangement shown in Fig. 2 is adequate
in principle, but it is in fact difficult to align the trans-
verse probes precisely enough to eliminate a contribu-
tion from the longitudinal piezoresistance. The con-
figuration shown in Fig. 4 was therefore adopted. The
voltage dividers connected between F and F’ and be-
tween C and C’ have a resistance (2 ) large compared
with the sample resistance (<4X107% Q). With a
known direct current /g, through the current leads G
and G, the sliding contacts 4 and B are adjusted so
that the voltages between 4’ and 4 and between B’
and B satisfy the following conditions:

Vara=Ve=Ia[ (p11—ps3)/2W, ] sin20,
Vpp=V,=0, 4)

where p11 and p3; are the two principal components of
resistivity, and W, is the dimension of the sample in
the y’ direction. The transverse piezoresistive voltages
are then measured between 4 and 4’ and between B
and B’ in Fig. 4.

The apparatus employed for piezoresistivity meas-
urements has been described elsewhere.> The sample
chamber normally contained helium gas at atmos-
pheric pressure to minimize temperature gradients.
This chamber was separated from the external liquid-
nitrogen bath by an evacuable sleeve. Temperatures
above 77°K were obtained by evacuating this sleeve
and supplying power to a heater inside the sample
chamber which surrounds the sample. Temperatures
below 77°K were obtained by allowing air to condense

5 W. E. Drobish, R. T. Bate, and N. G. Einspruch, Rev. Sci.
Instr. 37, 470 (1966).
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in the sample chamber and then pumping the air from
the chamber with the sleeve evacuated.

Because this measurement technique employs a
direct current in the sample, it is subject to error if a
temperature gradient due to Peltier heat transport is
allowed to build up. This gradient is always such that
the Seebeck effect increases the potential drop along
the sample.® If the Seebeck coefficient is a function of
stress, this gradient will also introduce an error in the
piezoresistance even when the frequency of the alter-
nating applied stress is high. The magnitude of this
effect has been checked by making measurements with
the sample directly immersed in liquid nitrogen and in
an ice water bath. Within the experimental error,
determined by the reproducibility of successive meas-
urements made under the same conditions, there was
no difference between the resistivity or piezoresistance
measured with the sample directly immersed in a bath
or in helium gas.

RESULTS

The measured piezoresistivity coefficients ;;/ cal-
culated from Eq. (3) are plotted as functions of tem-
perature in Fig. 5. After correction for sample strain
(see Appendix A) the coefficients 7;; were extracted
from these data by a least-squares technique using a
digital computer. It was found that the combinations
(m134m4s) and (w314744) could be fairly precisely de-
termined from the data, but w4 could not be reliably
determined. These results are plotted as functions of
temperature in Fig. 6. The probable errors in the coeffi-
cients can be estimated from the appropriate entries in
Table II.

DISCUSSION

Jain and Jaggi have previously shown’ that piezo-
galvanomagnetic effects in bismuth for stresses applied
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I16. 6. Temperature dependence of ;.

6 W. C. Myers and R. T. Bate, Rev. Sci. Instr. 31, 464 (1960).
7 A. L. Jain and R. Jaggi, Phys. Rev. 135, A708 (1964).
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TasLE II. Comparison with earlier results.

Coefficient
(107 Q@ cm3/kg) Present work Allen® Bridgman® Jain and Jaggi® Derived
w1 (295°K) 7.8844+0.64 7.2+0.16
(77°K 3.5140.21
w33 (295°K) 7.654-0.67 6.240.41 4.764-0.42
(77°K) 6.47£0.21 5.28-+£0.47
m1s+mas (295°K) 9.96-+2.08
(77°K 10.36:0.69
wa1+mas (295°K) 0.84+1.58
(77°K 0.68+0.52
w14 (295°K) —30.384-1.90
(77°K) —15.494-0.63
a1 (295°K) —1.8540.66
(77°K) —0.6740.22
2my+mas (295°K) 3.3 4.224-0.68
(77°K) 1.1540.31
mu+mietmis (295°K) 8.4
m1stma+2maa (295°K) 10.8 +1.9 7.130.99
m1a+27ma (295°K) —33.6 2.2 —27.040.54
m1z (295°K) 9.0 =£2.6
(77°K) 7.61+£0.90
731 (295°K) —0.1740.40
(77°K) —2.0640.28
mas (295°K) 1.0 £1.6
(77°K) 2.74+0.59
12 (295°K)

—8.5 £2.7

a M. Allen, Phys. Rev. 49, 248 (1936).
b P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1925).
¢ A, L. Jain and R. Jaggi, Phys. Rev. 135, A708 (1964).

d The probable errors resulting from the least- -squares fit indicate that the number of sxgmﬁcant figures stated is excessxve for many of the coefficients,
The results are expressed in this way only to indicate precisely the range of values within which the true value probably lies.

along the trigonal axis at 80 and 300°K cannot be
interpreted simply in terms of interband and/or inter-
valley transfer of carriers among bands which con-
tribute to conduction at very low temperatures.® These
workers, as well as Hall and Koenig,® suggest that this
behavior is the result of thermal excitation of electrons
from a valence band lying below the Fermi energy.

In the case of the piezogalvanomagnetic data, the
relative values of one piezo-Hall coefficient and one
piezoresistivity coefficient were found to be inconsistent
with the simple band model. This model also predicts
four relations among the piezoresistivity coefficients.
These are

T/ p1=m3/ps, (Sa)
(wutmz)/20=m41/ps, (5b)
m1s/maa= [ (ua—p2)/2us](01/ps),  (5¢)

w11/ p1— 31/ p3=TuT14/ P17 44 (5d)

Equations (5a) and (5b) are in fact valid for any band
model if the mobility anisotropy of each band is as-
sumed independent of strain. Since Eq. (5d) involves
no band parameters, one might anticipate that it also
has more general validity. On the other hand, Eq.
(5¢) is specific to the model. The present results cannot
be compared directly with Egs. (5) over the entire
temperature range covered because of the inability to
obtain 72 and 74 in the present experiment, but it is

8 A. L. Jain and S. H. Koenig, Phys. Rev. 127, 442 (1962).
9 7. J. Hall and S. H. Koenig, IBM ]. Res. Develop. 8, 241
(1964).

possible to do so at temperatures where the pressure
coefficients of these quantities have been measured.
The changes in the resistivity components per unit
hydrostatic pressure are »

A1=0p1/dp=mutm1t+mis,
Az=0p33/0p=2ma1+ms3.

Thus 74 can be obtained by combining the present
values of (w31+74) and g3 with the published values
of A;. Then 712 can be found if the derived value of
w44 is compared with Ay, 7y, and (r13+744). Although
A; has been measured at three fixed temperatures, 4,
has been measured only at room temperature. Thus
m12 can be estimated only at room temperature. A
summary of the present results at 295 and 77°K and
a comparison with earlier work is given in Table II.
The values of w3, w31, w4, and w2 derived by com-
parison of the present data with the pressure coefficients

TaBLE III. Test of relations between coefficients.
(Units are 10~% cm?/kg).

m13/p1 (295°K) =8.042.3
m3s/ps (295°K) =5.74+0.5

71'13/p1 (77°K) =267:’:32
‘ll'33/ps (77°K) =216:t07
(1ru+1r12)/2p1 (295°K) = —027:[:116
w31/ps (295°K) = —0.13+0.30
(m11/p1—ms1/ps) (T7°K)=18.84-1.2
(ra1/p1) (w14/7as) (17°K)=13.14-4.8
w1a/mas (T7°K) = —5.65+1.2 (dlmenswnless)
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are also given. In Table III, these coefficients are used
to test the relations between the coefficients derived
earlier.

Inspection of Table III reveals that relations (Sa),
(5b), and (5d) are satisfied within the errors of the
estimates, but mis/ms is negative, while Eq. (5c)
predicts a positive value. Further analysis of these
data, taking into account the possible influence of other
bands above and below the Fermi level, may explain
this discrepancy.
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APPENDIX A: CORRECTIONS FOR STRAIN

The measured piezoresistivity coefficients were cor-
rected for strain according to the following formulas:

1l'33l (true) = 7r33’ (measured)—pg’ (Sl3l+523l‘—S33’) 5
743’ (true) =y’ (measured)—p4s'Sis’,
w53’ (true) =ms3’ (measured)— ps'Say’ ,

where p;/ and S;,’ are, respectively, the resistivity tensor
components and the elastic compliance tensor compo-
nents in the laboratory (primed) coordinate system.
The convention used here (and throughout this paper)
is that i3 is positive when a compressive stress along
axis 3’ increases p;’. The corrections to 33’ were about
109, and were always positive. The corrections to s’
and w53’ were negligible.

PHYSICAL REVIEW

VOLUME 149,

NUMBER 2 16 SEPTEMBER 1966

Re-Evaluation of Some Thermodynamic Properties of Gadolinium Metal*

F. J. JELINEK, B. C. GERSTEIN, M. GrirreL,} R. E. SkocuporoLE,} aNp F. H. SPEDDING
Institute for Atomic Research and Department of Physical Chemistry, Iowa State University, Ames, Iowa
(Received 16 March 1966)

The heat capacity of Gd metal has previously been measured over the temperature range 15 to 355°K by
M. Griffel e al. In this note, the v coefficient (16XX10~* cal/g atom deg? in the original work) used in cal-
culating the electronic specific heat of Gd has been replaced by the more recent value of 22 X104, cal/g atom
deg?. This leads to a slightly higher calculated Debye temperature and a subsequent readjustment of the
lattice-specific-heat term. In addition, an error was discovered in the evaluation of the thermodynamic
functions, particularly the (S7°) term. A Simpson’s-rule integration procedure was applied to the original
heat-capacity data and the thermodynamic functions were re-evaluated. These changes lead to a magnetic-
entropy calculation considerably closer to the complete spin-order entropy, RIn8, than was reported in the

original work.

HEAT CAPACITY

HE total measured heat capacity at constant
pressure is commonly split into the following
terms:

Cp—_- Cq+ Ce+ Cm+ BC .

In this equation C,, C., and C, are respectively the
lattice, electronic and magnetic contributions to the
total C,. The quantity 8C is the dilatation term, which
is the difference between the heat capacity at constant
pressure and that at constant volume. In the original
work! this contribution to the total C, was found to be
0.034 cal/g atom deg at 25°C.

In evaluating the lattice heat capacity of Gd we
assume, as in the original work, that it may be repre-

* Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 1872.

1 Present address: Department of Biochemistry University of
Pennsylvania, Philadelphia, Pennsylvania. }

t Present address: Dow Chemical Midland
Michigan. )

1 M. Griffel, R. E. Skochodpole, and F. H. Spedding, Phys.
Rev. 93, 657 (1954).

Company,

sented by a single Debye curve. To obtain a suitable
value of ® p, the electronic heat capacity was evaluated
at low temperatures (7<20°K, where C,=0) and
subtracted from the corresponding value of C,. From
the difference a low-temperature @p of 153.7 was ob-
tained with the use of Beattie’s tables.? In making the
electronic-heat-capacity -calculation, a v coefficient of
22X 10~ was used? instead of the La v coefficient of
16X 104 cal/g atom deg.2 ‘

Adopting the value 153.7 as the Debye temperature
and utilizing Beattie’s tables once again, we evaluated
the lattice heat capacity (C,) as a function of tempera-
ture. These results are shown in Table I along with
the original smooth-curve C, results.

MAGNETIC ENTROPY

An error discovered in the publication of the thermo-
dynamic functions of Gd! lead to a recalculation of

2 J. A. Beattie, J. Math. Phys. 6, 1 (1926).

# K. A. Gschneidner, Jr., in Rare Earth Research 111, edited by
Leroy Eyring (Gordon and Breach, Science Publishers, Inc.,
New York, to be published).



