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from nonelectrostatic forces. From calculations of the
elastic shear constants of beryllium" it is expected that
the nonelectrostatic forces of interest are contributed
by the kinetic energy of the conduction electrons and
ion-core repulsive interactions. The relative importance
assigned to these two contributions was found by
Bernstein" to be sensitive to the energy-band model
chosen for the calculations. Harrison" has attempted
to calculate the physical properties of polyvalent
metals from first principles and has obtained some
information about the phonon spectrum in Zn, and for
Al has obtained a dispersion relation. Further calcula-
tions of this type are needed to give an adequate de-
scription of the dispersion relations in polyvalent
metals, and they are certainly desirable for giving a
unified approach to various physical properties.

In calculating quantities such as frequency distribu-
tions, specific heat, and Debye-Wailer factor for Be
from the lattice dynamical models one would certainly
expect to obtain the best results from the MAS model
of DeWames et at. , in view of the better agreement
between this model and the neutron-scattering data.
Young and Koppel" have applied the extended Slutsky-
Garland model to the calculation of coherent inelastic
neutron scattering from polycrystalline Be, a case
where there is justification for using a simpler model.
This model 6ts the dispersion-relation data with maxi-

29 W. A. Harrison, Phys. Rev. 129, 2512 (1963); 136, A1107
(1964).

mum deviations of about 10%, although it does not
satisfy the elasticity conditions in the long-wavelength
limit. In view of the fact that an accuracy to within

10%%u~ is acceptable for the neutron-scattering kernel
calculations, the simplified central-force model should
suffice for this purpose and is expected to require less
computation time than the more elaborate models.

V. CONCLUSIONS

Comparison of the extended dispersion-relation data
for Be with lattice dynamical models reveals continued
discrepancies between the models and experimental
data, although considerable improvement has been
made in the modified axially symmetric model of
DeWames et at. Application of Rosenstock's sum rule
test to the dispersion-relation data demonstrates the
presence of trace-variable or nonelectrostatic forces in
the dynamics of the solid. From theoretical calculations
of the elastic shear constants of beryllium it is expected
that these nonelectrostatic forces are due to the kinetic
energy of the conduction electrons and ion-core re-
pulsive interactions.
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The inQuence of impurities, or solute atoms, upon the de Haas —van Alphen effect associated with a metal
having a Fermi surface of arbitrary shape is investigated. It is shown that the well-known result of Dingle for
the decrease in amplitude of the oscillations in the magnetic susceptibility may be derived without recourse
to the additional phenomenological assignment of a specilc line shape to each Landau level. The relaxation
parameter used by Dingle is shown to be twice the lifetime of a state at the Fermi energy. This is compared
with the relaxation time for electrical conduction for a class of impurity potentials of variable range in real
space. The derivation of the Dingle result presented here depends only upon certain continuity arguments
related to the effect of impurities on the electronic band structure. These are investigated in detail for the
free-electron model. Simultaneously, the method yields the change in period of the oscillations upon alloying.
The conditions under which the rigid-band model is app)icable to this problem are derived and a possible
generalization is suggested to account for the changes in period which are observed when the solute and
solvent have the same valency. The information which can be obtained from experiment concerning the
change in amplitude and period is correlated with previous theoretical studies.

I. INTRODUCTION

HE qualitative aspects of the inliuence of im-
purities on the amplitude of the oscillatory com-

ponent of the magnetic susceptibility of metals [de
Haas —van Alphen (dHvA) effect) have been under-
stood ever since the pioneering work of Dingle. ' On

'R. B. Dingle, Proc. Roy. Soc. (London) A211, 517 (1952).

the basis of an assumed Lorentzian line shape, char-
acterized by a "relaxation time" 7-, for every Landau
level, he showed that each harmonic in the oscillatory
magnetization was modified in magnitude by the
multiplicative factor exp[ 2rrl/&o, r j where—co,= eB/ntc
is the cyclotron frequency and l is the order of the
harmonic. Moreover, Dingle's treatment, originally
vabd only for free electrons, has since been extended



I NF LUE N CE OF I M PURI TIES

by Williamson et al. , using the method of Lifshitz and
Kosevich, ' to describe the effect of impurities on the
dlvA effect associated with a Fermi surface of arbi-
trary shape.

While one cannot dispute the fact that Dingle's
treatment contains all the essential features for de-
scribing the amplitude reduction, it is, nevertheless, not
entirely satisfactory from a fundamental point of view.
For apart from the question of the precise significance
of the parameter r, the artifice of ascribing a Lorentzian
line shape to a state which is, despite the quantization
of the energy of motion in the plane perpendicular to
the field 8, part of a quasi-continuum, seems itself
somewhat nebulous. Moreover, without further gen-
eralization, the treatment does not describe the ac-
companying change in the period of the oscillations.
The approach, although undoubtedly partly successful,
is essentially phenomenological in nature.

An attempt at a Inore rigorous treatment of the
problem was made some years ago by Bychkov, 4 who
used what are by now' standard methods involving a
temperature-independent Green's function. ' Unfortu-
nately, his treatment was restricted to free electrons, to
the Fermi pseudo-potential approximation (i.e., Dirac
3-function scattering potentials), and it is not readily
generalized without ad hoc assumptions relating to the
energy dependence of parameters which enter in this
approach. Moreover, the interpretation of v, as derived
by Bychkov, differs from that conjectured by Dingle,
and in fact we will show it to be incorrect. In addition,
changes in the period were not considered.

Nevertheless, the above approach is useful because
it provides the clue to a simpler method of deriving
the Dingle result. For under the circumstances in-
herent in Bychkov's work, namely no bound states
either real or virtual, we have shown previously' that
the results of the Green's-function method are simply
equivalent to the statement that the number of band
states is conserved upon addition of impurities. Thus
by direct application of this principle one can circum-
vent a great amount of mathematical labor and obtain
directly the physical properties of interest.

The purpose of the present paper is to show in detail
how this leads to a simple, yet fundamental, derivation
of the Dingle factor. Initially, in order to avoid the
incidental mathematical approximations inherent in the
Lifshitz and Kosevich approach, we shall consider the
nearly free-electron model, where also one can examine
the general conditions of validity in some detail. The
generalization to a Fermi surface of arbitrary shape is
found then to present no difficulty.

2 S. J. Williamson, S. Foner, and R. A. Smith, Phys. Rev. 136,
A1065 (1964).

3I. M. Lifshitz and A. M. Kosevich, Zh. Eksperim. i Teor.
Fix. 29, 730 (1955) )English transl. :Soviet Phys. —JETP 2, 636
(1956)g.

4 Yu. A. Bychkov, Zh. Eskperim, i Teor. Fiz. 39, 1401 (1960)
[English transL: Soviet Phys. —JETP 12, 977 (1961)].' S. F. Edwards, Phil. Mag. 6, 617 (1961).' A. D. Brailsford, Proc. Roy. Soc. (London) A292, 433 (1966).

It is shown in general that the effect of impurities is
precisely of the form derived by Dingle if his paramet:er
r is defined as twice the lifetime of a state at the Fermi
energy, as determined by scattering off the impurities.
This factor of two was mentioned by Dingle himself';
it is the difference between the line-shape parameter
he derived using classical mechanics and that obtained
from Keisskopf-Wigner perturbation theory. ~ There-
fore, it is to be expected that this difference appear
also in our final result, which is based upon quantum
mechanics.

Simultaneously, the method presented here yields
the accompanying change in the period of the oscilla-
tions. The conditions under which the previous rigid-
band-model result of Heine' is valid are elucidated.
By a slight generalization, suggested by the study of
Williamson eII al. , a model is presented for describing
those changes in period which arise when the impurity
(solute) and host metal have zero relative valence.

In conclusion, the relation of the lifetime to the
electrical resistivity relaxation time is discussed for a
simple class of scattering potentials, and then compared
with the experimental data presently available.

The paper is divided as follows. Section II contains
a recapitulation of the derivation of the dHvA effect
for free electrons and a treatment of the effect of im-
purities for this model. The assumptions involved are
discussed in the Appendix. Section III is devoted to a
generalization of the treatment to a Fermi surface of
arbitrary shape. The significance of the relaxation time
is discussed in Sec. IV, while Sec. V contains a brief
summary of this work.

IL NEARLY FREE ELECTRONS

d = (L'eB/2m hc), (2)

if the normalization volume is taken as a cube of side

7 For a full discussion see, for example, W. Heitler, Quurbtum
Theory of Eadiatzorb (Clarendon Press, Oxford, England, 1957),
p. 163 ff.

V. Heine, Proc. Phys. Soc. (London) A69, 505 (1956).
~ R. E. Peierls, Quantum Theory of Solids (Clarendon Press,

Oxford, England, 1964), p. 147 B.

In this section we shall consider the effect of im-
purities on an otherwise free-electron gas in a magnetic
field. The treatment of the dHvA effect will follow
Peierls' version of Landau's original method, ' although
slight modifications are included with an eye to later
generalization.

It is necessary to recapitulate some of the standard
results for the free-electron model. In the presence of
a 6eld B, whose direction defines the s axis, the energy
levels, s(m, k,), are given by

e(e,k,)=ka, (e+-,')+ (k'k, '/2nz),

where e is a positive integer or zero, co, is the cyclotron
frequency previously defined, and all other symbols
have their usual significance. Each of the levels (1) is
d-fold degenerate, d being given by
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length L. Thus, the number of states below an energy
e, Z(e) say, is (apart from spin, which we shall ignore
in the detailed kinetics)

I, )2m~'"
Z(e) =—

( )
d Q Pe—hcp, (e+-', )g'", (3)

pr 4 h') .=o

where the summation in (3) extends over those values
of n for which the radicand is positive.

The Helmholtz free energy of the system F is given
by

Z(e) f(e)de,

where f(e) is the Fermi function

f(e)= L1+exp((e—g)/KT) 1-', (5)

q is the Fermi energy, S is the total number of electrons
[including spin, which also accounts for the factor of
2 in (4)j, ic is Boltzmann's constant, and T is the
temperature.

It is well known that if the summation in (3) is
approximated by an integration, the value of Z(e) so
obtained is identical with that for B=O. Thus, in
general, Z(e) can be decomposed into two contributions

Z(e) =Zp(e)+Zi(e), (6)

where Zp(e) is the number of states below the energy e

in the absence of a field and Zi(e) is an oscillatory
function whose existence depends solely upon the quan-
tization of the electronic motion in the plane perpen-
dicular to B. Thus F may also be decomposed into two
contributions,

where C= (2Id/7r) (2mcdg/h)' ' aild

(e/Aeq) ~/&

Ii(e) = exp (—2s.ily') dy. (13)

F„,=2eT Z Ret2vriP'(~t+(2r+1)irjeT) j, (15)
r=O

0

Hence, using the definition (11), after changing the
order of the integration, we Gnd

00 Puo,
G(e)=C Re Q (—1)'

(2~i)'

( e I /2

—Ii(e) exp (2vrile/hcp, ) . (14)
(hM~

The sum over l in the first term in (14) yields the value
(—mp/12). Since this part of G is slowly varying, its
contribution to Fj may be approximated immediately
from (10) by replacing (Bf/Be) by —8(e—q) in the
usual way. " One may verify that this leads to the
Landau diamagnetism. ' The remaining contribution to
Fi from (14) cannot be so evaluated because it varies
rapidly over an energy interval ~T, near e=p, if
AT K,. However, if one approximates Ii(e) by I&(~)
in (14), always a valid procedure except near the
quantum limit, the resulting integration in (9) is
evaluated easily by contour integration in the upper
half of the complex energy plane. The only singularities
of the integrand are the double poles of (Bf/Be) at the
points e=g+(2r+1)7riicT, where r is an integer. One
obtains then for this contribution to F&, F„,say, the
result

where

F=Fo+Fi, (7) where

Zi(e) =ReY(e), (16)

Fo=Ãg —2 Zp(e) f(e)de,

is the free energy in zero field, by definition, and

P] 2 Zi(e) f(e)de,

Bf(e)
G(e) de. (10)

Here G(e) is defined by

G(e) = Zi(c')de'.

The function F~ contains the contribution from both
the Landau diamagnetism and the dHvA effect. In
order to separate these it is necessary to perform the
decomposition (6) of 2(c). This is achieved by the use
of the Poisson summation formula, 9 which when applied
to (3) yields

" (—1)'
Zi(e) =C Re Q Ii(e) exp(2vrile/hcp), , (12)

2xil

~OSC

L gT fico

2x'

~ (—1)' cosf (2s.liI/hcp, )—pr/4}

P sjnh (2s lKT/hcp, )
~ (17)

Although (17) will be of later interest for compara-
tive purposes the main reason for presenting
analysis is to bring out one important feature of this
approach: If one is interested only in the dHvA effect
terms (15), they can be obtained inunediately from
(9) with Ii(e) replaced by Ii(~ ) in the defining equa-
tion (12) for Zi(e). This approximation is invalid for
small e, of course, and it is for this reason. that G(c)
has to be introduced so that one may extract the
Landau diamagnetism, which is associated with' the
behavior of Z(e) at small c. However, the point we

"Reference 9, p. 92.

with the above approximation for Ii(e). Thus, with
Ii(~)=(1—i)/4+i, from (12), (15), and (16), after
summing over the residues we obtain the standard
expression'
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wish to emphasize here is that (15) and (16) are vahd
under general circumstances; they do not depend upon
the free-electron model. This simplifying feature is
extremely useful in the remaining analysis.

We are able now to determine the eBect of impuri-
ties on Ii„,. I et us suppose that as a result of virtual
scattering o8 the impurities, a state at an energy e in
the absence of impurities is shifted upward in energy
by an amount A(e), a function of energy alone. The
quantity A(e) is to be calculated, say, by perturbation
theory using the states pertaining to the levels (1) as
a zero-order approximation. However, as we are inter-
ested in d, (e) only for large quantum numbers, we shall
anticipate that A(e) is for all practical purposes the
value obtained for zero Geld. At present this is inessen-
tial. It may be regarded for the moment simply as
a heuristic assumption; we shall return to the point
later after obtaining the final result (23).

Under the preceding conditions, as long as A(e)
varies slowly over an energy interval of the order of
its own magnitude, the number of states below the
energy e, Z'(e), in the impure "metal" is related to the
corresponding quantity for the pure metal by

Z'(e) =Z(e —A (e))

solely on the basis of continuity. This is all we need.
For with the definition (16) and Eq. (12), after the
decomposition (6) it follows that

(—1)'
v'(.)=c p

i-i 4v27riP"

Xexpt (2~@(e—A(e))/a~, )—,' j, (19)

for e&)~,. The essential point to notice at this juncture
is that the contribution to P„, (15) from each residue
contains a term involving the energy shift at an energy
with a small positive imaginary component (it is
presumed 7/t&&~T, the terms for large r are insignificant
since the residue even with A=O is small). But from
perturbation theory, ignoring the zero-order correction
which is irrelevant, it is known that

I' F(e u)
A(e) =— -du, (20)

c—S

where I' denotes the principal part and I' is defined by

F(es,u) =rr P ~
Vss. ~'b(es. u), — (21)

k'Qk

with es= e. (The notation is chosen to be analogous to
that used in Green's-function methods. ) Hence"

A(~,+ra) =A(~;) —sF(~;) (22)

(22), after summing over the residues we lnd.

1.'sT moi,)'" (—1)'
~OSC

2ir' A ) i-i P"
cos{(2s'$/hie, )—s/4) exp( —(s l/ce. r))

X (23)
sinh (2m lir2'/hot, )

where
(24)

and

Since ~, as defined, is the lifetime of a state at the
Fermi energy, the additional amplitude factor in F„,'
t cf. Eq. (17)g is identical with Dingle s result if his
relaxation time is equated to twice the lifetime, as we
stated. earlier. The additional numerical factors in the
interpretation of Dingle's parameter suggested by
Sychkov' do not arise. It will be noted also that, through
the appearance of the parameter $, Eq. (24), we auto-
maticaBy inc1ude the change in period of the oscilla-
tions produced by the impurity. This wiH be discussed
in more detail in the next section in connection with
a Fermi surface of arbitrary shape.

Before proceeding to the generalizations, however, it
is expedient to pause and assess the various approxi-
rnations which have been made in deriving (23) in this,
the one case where there seems any chance of carrying
out a detailed investigation. The crux of the matter
lies in our replacement of the shift by its value in zero
6eld and in the use of (18). The first of these points
is investigated in detail in the Appendix, where we
consider the behavior of F(r)) using the wave functions
appropriate to the levels (1), taking into account also
the possibility of changes in the self-consistent poten-
tial which might arise if the impurity is charged. The
end result is that our procedure should be valid as
long as the quantum numbers are large, in accord with
one's prehminary expectation. The second item, the
use of Eq. (18), is adequate as long as A(e) is not
rapid1y varying with energy. Automatically, this ex-
cludes the possibility of discussing virtual bound states
near the Fermi energy. "

III. FERMI SURFACE OF ARBITRARY SHAPE

In this section the analysis is generalized to describe
the sects associated with a Fermi surface of arbitrary
shape, by adapting the methods of I.ifshitz and Kose-
vich' to the formalism present in Sec. II.

Again, it is convenient to recapitulate the method
for the pure metal. In this instance, the level spectrum
is given by the implicit relation"

S(e,k.) = (rr+y) (2s.eB/Ac), (26)

where S(e,k,) is the cross-sectional area of the surface
es=e in lt space in the plane perpendicular to B (B

as long as g&&n, where g; will denote the Fermi energy
in the impure metal. Thus by virtue of (15), (19), and

"Yu. A. Isyumov, Advan. Phys. 14, 569 (1965)."L.Qnsager, Phil. Mag. 45, 1006 (1952).

"Since the denominator in the integrand of (20) never vanishes,
the principaI-part sign is irreIevant. It then reappears if one uses
the operational identity (x+rn) '=(P/s) srrb(s) for small a. —
Also, r(ri) —=P(q, s).
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taken along the s direction), at a given value of k,. In
order to determine Z(s), we shall neglect lattice broad-
ening and assume the same d-fold degeneracy as in the
free-electron model. The indications" are that this is
a good approximation in those cases where the dHvA
eGect is expected to be observable in any event. Thus
one obtains

where 4r= (2s.pB/kc). We have assumed that the states
are electron-like in order to be specific. Applying the
Poisson summation formula to (27), and retaining only
the oscillatory components, yields

I ()=(«/-) Z -'-'
Z~l

r)S(s',k,)
dk,

s(. ,I,)go

Xexp L2milS (s', k, )/4r j. (28)

Whence, upon evaluating the integral over k, by the
method of steepest descent, we find

Ld exp( 27ril7 i—n/4)— .
I ()=

s'+4r 4=1 gl
(4)S(s',ks)/8 s') exp(2~i lS (s', ko)/rrg

dl S"(.',k,) I

where the primes on 5 denote differentiation with
respect to k„and ks is the value of k, for which S(s',k,)
is a maximum. The denominator in the integrand of
(29) is presumed to be a slowly varying function of
s' (it is a constant in the free-electron case). For large
e, it may be assumed constant for the purposes of
integration. Hence (29) becomes

I.d~n
I (.)=

27r2j

~ exp[2milg(S(c)ks)/4r} —yg —is/4j
(30)

=i P"~ (S"(s,ks) (

which, as evidenced by Eq. (31) below, leads to the
result of Lifshitz and Kosevich for the pure metal. '

The eGect of impurities may be analyzed as before.
Since the entire approach here is semiclassical, ' in the
present context one is completely justified in using (18)
with 44 (s) that value computed in zero Geld. Thus, by
completely equivalent steps to those following Kq. (18),

oo

Z(.) = («/2~) P d' dk, 5(S(,',k,)
o 8(~', a )&o

4)S(s',k,)—(~+v)~}, , (27)
86 ~=S(~,,k,)—(2~~*~(~,)/ks) (33)

to lowest order in h. It will be observed that the de-
crease in amplitude associated with the presence of
impurities has precisely the same form as in the free-
electron model. ' Specifically, the parameter v is the
lifetime of a state on the extremal cross section of the
Fermi surface.

We will examine now the change in period of the
oscillations produced by the impurity (solute). If res
is the Fermi energy in the pure metal, and each im-
purity has a relative valence ~, then

~'(n') ~(~s) =—&~i (34)

where S is the number of atoms in the crystal and
f is the atomic fraction of impurities. Hence, by virtue
of (18),

ns ~(~s)—=~0/~(no), (35)

where r4(s) is the density of states per atom per unit
energy range in the pure metal. In conjunction with
(33), the relation (35) determines the fractional de-
crease in period, E say. The parameter ko, being the
point of extremal area may be taken equal in the pure
and impure metal to lowest order in A. Thus, we find

2irm*i t'
E~

k'r4 (rip) S(rl s,ks)

a result 6rst given by Heine as a consequence of the
rigid band model. However, it should be noted that
the present derivation is somewhat more general, for
we have shown that (36) is still valid even if the shift
6 is a variable function of energy. This is a further
reAection of the fact that the dHvA eGect is sensitive
only to the properties of the system at the Fermi level.
At the same time it must be recalled that (36) has
been obtained under the assumption that the level
shift depends upon energy alone. The experimental
fact," that the addition of Ag to Au Dor which we
presume 4 =0, and hence R=O from (36)] produces,
nevertheless, a change in period, indicates that the
original premiss is too restrictive. And since we have
not yet taken full cognizance of the peculiar char-
acteristic of the dHvA eGect, namely, its sensitivity
only to the extremal area, it is not difhcult to see how

we obtain from (30) and (15) the result

2L"'14T (eB/27rkc)'~s
~OSC

'=
~ lS"«;,ko) I

cosh(lkc/eB) g 2m—ly .&/4—j exp( —~i/40, r)Xg- , (31)P" sinh (2m'l14T/Are. )

where co, is now defined in terms of the cyclotron mass
m*

7

m*= (k'/2s. )$8S(s,ks/Bsj, „,,

'4 A. D. Hrailsford, Proc. Phys. Soc. (London) A70, 275 (1957). "P.E. King-Snnth, PhiL Mag. 12, 1125 (1965).
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one must extend the treatment to emphasize this
feature. For, as the simplest generalization, ' suppose
d, is a function of both e and k,. Equation (18) applies
now only to each elementary slice of area S(e,k,) and
thickness bk. separately. Thus (35) is replaced by the
relation

rl' rio —~ i't /—I(rlo)

where 6 is given by

(37)

6(k,)m*(k,)dk, m*(k,)dk„(38)

IV. THE RELAXATION TIME

It has become standard procedure" in the discussion
of the effect of impurities upon the amplitude of the
DHVA effect to express the result in terms of an ap-
parent increment x in temperature. The concept is valid
only if ~T&Aor„but in any case it provides a useful
means of parametrizing experimental results.

In our treatment x is derived from (31). We find
that

x= h/rrxrr& =h/2~sr. (40)

In order to avoid confusion we have explicitly intro-
duced the Dingle parameter 7.~, it is equal to twice the

'6 D. Shoenberg, Phil. Trans. Roy. Soc. London A255, 85
(1962}.

the range of integration extending over the diameter
of the Fermi surface parallel to the 6eld direction.
Consequently, the appropriate generalization of (36) is

m~ F, 1
+Z—6(alp, kp) . (39)

ms F rl, rs(rls)

The notation is that introduced by Shoenberg. " The
quantity Ii is the frequency of the oscillations in 8,F,
is the value calculated for a free-electron gas of the same
density Lsee (17)j with Fermi energy il„and ms is the
free-electron mass. For the neck orbit" in Au, (F~/Fe)
=0.0313, and" (m*/ms) =0.29, with the field along
(111).The addition of 1%Ag is found" to decrease the
neck size by 1%.Hence the result can be rationalized
on the basis of (39) if (Z—h~) is negative and of mag-
nitude 10 'rl, ( 4X10 ' eV) at this concentration. Here
h~ is the shift of a state at the neck. Since it seems
reasonable to suppose Z A&, the belly shift Lcf. (38)j,
we conclude from (39) that the effect of impurities on
the belly frequencies should be comparatively small
Lspecifically (Rri/E~) & (ms*F~/m~*F&)]. In fact this
is nothing new. It merely substantiates the experi-
mental empirical rule" that the smaller the section of
the Fermi surface under investigation, the greater is
its sensitivity to perturbations of the pure metal.

We shall not carry the discussion of the change in
period beyond this point. The "rigid-band" model
result (36) has been discussed at length by Heine. The
reader is referred to his original work for further
details.

lifetime. Experimental results have been discussed in
the past in terms of r&, most extensively in the recent
work of King-Smith. " He determined an "eGective
resistivity temperature, "

xp from the measured re-
sistivity p through the relation

where
x„-h/rrxr p,

r,=ms*/nesp,

(41)

(42)

(m&* being the belly cyclotron mass) and then examined
the variation of xp $/7 and x~ for a series of Au- and
Ag-based alloys. The experimental results are con-
veniently discussed in terms of the ratios (x,/x&), etc.,
where

(x,/x~) = (rn/r, ) = (2r/r, ), (43)

P (8) (1—cos8)" sin8d8, (r =0, 1), (45)

and P(8) is the probability of scattering through an
angle 8, it is not dificult to derive the relation

where
(r/r, ) =C (1+qss/2k''),

X+1i
CP.)=P,-1) —;P,+1) l.

X—1i

(46)

(47)

and kg is the Fermi radius. The function C is illustrated
in Fig. 1. As (qs/2k') —+~, r-+ r„ the result for
scattering by a delta-function potential. Schematically,
Fig. 1 represents the effect of a variable range on the
parameter (r/r, ) Specifically, .it relates to a scattering
potential derived for a charged impurity in the Thomas-
Fermi approximation, 's when qs is found to be v3 times
the ratio of the plasma frequency to the Fermi velocity.
Thus, with the plasma frequency oi~ 1.6(rl,/h), we
obtain (r/r p) 0.7.

After these preliminaries, it is possible to systematize
the experimental results. "The major difference in any
conclusions following our work, compared with the
discussion of King-Smith, lies in the fact that we
anticipate (x,/xii)&2 for the isotropic model. This is
twice the value obtained if ~~ itself is interpreted as
the lifetime. In all of the 15 different samples listed
in Ref. (15) our criterion is satis6ed, whereas (x,/xn) & 1
in at least 5 instances. In fact (x,/x~) exceeds the

'7N. F. Mott and H. Jones, Theory of Metals aug Alloys
(Clarendon Press, Oxford, England, 1936), p. 262.» See Ref. 17' p 87.

and v is here the value appropriate to the belly orbit.
The result to be anticipated for the ratio (43) de-

pends of course upon the details of the states at the
Fermi energy and upon the nature of the scattering
potential. We shall not attempt any but the simplest
anlysis; that for free electrons scattered by a potential
of the type U(r) r ' exp( —qsr), where qs

' is a range
parameter. Thus, since"

(r/r, )= (Ii/Is),
where
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de6ned by

r, (u)=~ P ( V». ('S(e,.—u)

0.5
TP

where ) denotes the set of quantum numbers necessary
to describe a state. The relation of F to the level shift
is given by Eq. (20). If the scattering potential is
written as the series

V(r) =g V(q) exp(iq r), (A2)

0
I

Fn. 1. The variation of the ratio of the lifetime of a state on
the surface of the Fermi sphere to the electrical resistivity relaxa-
tion time as a function of the screening parameter qo. The scatter-
ing potential is assumed to have the formU(r) ct-r ' exp( —qor).

Thomas-Fermi value of 1.4 (see above) in only one
specimen, a Ag 0.57% Cu alloy. It may be necessary
to invoke an eGective potential giving greater weight
to large angle scattering to explain this result, " but
clearly further data are necessary in order to establish
the necessity of this hypothesis. Apart from this one
item of detail, no other significant difference arises
between the present treatment and the original work
of King-Smith, to which the reader is referred for
further discussion.

V. SUMMARY

The effect of the addition of impurities (solute atoms)
upon the dHvA effect associated with a solvent with
a Fermi surface of arbitrary shape has been investi-
gated. The Dingle factor has been derived without
recourse to phenomenology and the signi6cance of his
relaxation time has been elucidated. The change in
period of the dHvA effect upon addition of small
amounts of solute has been derived; the rigid-band-
model result has been shown to have wider validity
than its original derivation suggests. A tentative ex-
planation has been presented of the change in period
which occurs when the solute and solvent have the
same valence. Finally, the relaxation of the lifetime to
the electrical conductivity relaxation time has been
discussed and correlated with a previous analysis of
the dHvA effect in dilute alloys.

the form of I' is, with plane waves as basis states,

I'l, (u) =lr P ~ V(q) ~'8(el,y,—u) . (A3)

I'), (u) =
4x'

q dq dq*l V(q) I'

{4elee—(W—e,—e )'}l/2
(A4)

for uilit normalization volume. Here lp'= (u—e„+ ),
e= (~'k).'/2r/l) and ee= (&'qr2/2m), where k& and q& are
the magnitudes of components of the wave vectors in
the basal plane of the coordinate system.

In the presence of a magnetic field, with the Landau
gauge A= (O,Bx,O), the zero-order eigenfunctions are'

A(r) —= q. (x—xe) expi(k„y+k, z), (A5)

where xe= (kck„/eB), and the &p„(x) are harmonic-
oscillator wave functions (which, incidentally, are
normalized to unity in infinite volume). The matrix
element

Xexpif(k„—k„')y+ (k,—k,')z+q rjdr (A6)

vanishes unless k„'=k„+q„, k.'=k.+q, . The integra-
tion over x may be performed by changing the origin
and noting that

LThe restriction on X in (A1) makes a negligible differ-
ence to the sum; henceforth it is omitted. j We shall
assume for simplicity that V(r) is spherically sym-
metric so that V(q) depends only upon q. For purposes
of later comparison, (A3) will be expressed as an
integral over variables appropriate to a cylindrical co-
ordinate system. Kith the cylinder axis as the s direc-
tion, one obtains

APPENDIK p„(x x,)= exp ( x,d/d—x) qr„. (x) . — (A7)

In this Appendix we discuss some of the mathe-
matical aspects of the eGects of impurities in the other-
wise free-electron model. Specifically, we wish to discuss
the validity of replacing the impurity-induced level
shift by its value in zero magnetic 6eld. Throughout
jt will be assumed that the impurities are distributed
at random and that interference eRects arising from
scattering oR diGerent centers may be ignored. It is
sufhcient then to consider only one center at a. time.

Our primary interest will be in the quantity I'), (u),

The resulting operators in the exponentials in (A6) can
be expressed in terms of annihilation and creation
operators. "A Taylor-series expansion of the exponents
then yields, after a little algebra, the result

iM ~

(u'& u), (Ag)

19 P. A. M. Dirac, QNamtem Mechanics (Clarendon Press,
Oxford& England, 194'1), p. 136.
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Where /li = (e,/ko. ) and the funCtiOn I.„"iS an aSSOCiated

Laguerre polynomia12o

( +m)(—z)"
~."(s)= Zl

=own —r ) r!
(A9)

For n'(n, n and n' are interchanged in (AS).
In the presence of a field, the I'i(N) is therefore

I', ,( ) = P I v(q) I' P IM „„(q)I'B
q n =O

X{W—hie, (n'+-'2) } (A10)

with the previous definition of TV. We shall not evaluate
this expression for general values of the parameters.
instead, we consider two extreme cases in which the
equivalence of (A10) and (A2) is reasonably easy to
demonstrate. The erst is embodied in the assumption
that U(r) is of short range, specifically a delta func-
tion. ' With V(q) = Vs, a constant, the integration over

q& becomes simply the normalization integral for the
Laguerre functions. Then (A10) may be written

I'~ 2, (n)~ (m Vs/2A2) dqz de'(W —e') (A11)

after approximating the summation over m' by the
corresponding integration. This is precisely equal to
(A2) for the potential considered. The opposite extreme
of a long-range potential is covered by the following

analysis. For large e, we use the approximate relation"

(n+m)!J [+vs]
Zl/2zze —1/2zl m (S)~

n I (v/4)zz/2
(A12)

where v= (4n+2m+2), and J (2:) is the Bessel func-
tion of the first kind of order m. Combining (A12) and

(AS), one finds that

I ~"-(q) I'= [~-(v'»)3', (A13)

with m= In' nI, and v=—2(n+n'+1) Again, for .large

e, the order and the argument of the Bessel function

may both be large. When the argument is the larger,
there exists the following asymptotic expansion":

[J (Q/Mv))2 2r '{/1v—m'}'/'. (A14)

{We have taken the mean value of the oscillations in

[J (s)j' at large s.}Hence, upon replacing the summa-
tion over n' by an integration and then using (A13)

"A. Erdelyi, Higher Transcendenta1 Furictiorls (McGraw-Hill
Book Company, Inc. , New York, 1953), Vol. II, p. 153 ff.

2' G. ¹ Watson, Theory of Besse/ FgnctiorIs {University Press,
Cambridge, England, 1952), p. 244.

and (A14) we find"

1 qidqidq, I
V(q)I'

{4e,(e,+e,) (—W—e,—e,)2}»2
I',2, (N)

kr

f( - ..)-f( -, .)X, (A16)
&n', kz+qz ~n, qz

where f(e)=1 for e(r/, and zero otherwise. In the
Thomas-Fermi approximation, the last member of
(A16) is approximated by its value in the limit q

—+ 0.
Then, by virtue of (AS), only the term n'=n con-
tributes to the sum and (A16) becomes

/
2esm(e. ) -Bf(e)-.(q)=1—

I I P du, . (A17)
k rrhq2 & Be

This yields the result e(q) 1+ (qs/q)2, where qs
=43~v/1/v, cov being the plasma frequency in zero
field and ep is the Fermi ve1ocity. This expression is
the same as the zero-field value of e(q). Thus, one is
allowed to treat the potentials in (A3) and (A10) as
the same in the manner we had assumed implicitly.

~The contribution from the regions where the order of the
Bessel function is large compared with its argument is small
{see Ref. 21, p. 243). It has been omitted for simplicity.~ J. Bardeen, Phys. Rev. 52z 688 (1937l.

(A15)

where here ei ——Acr. (n+22). A comparison of (A15) with
(A4) reveals that, for the same value of e& and k„ the
two expressions for F are equivalent if e&)&eq. Thus, for
a potential of long range in real space for which
IV(q)I' weights strongly the region of small q, the
equivalence of (A2) and (A10) is again established.
Unfortunately, the approximations inherent in the
asymptotic expansions appear to preclude a demon-
stration of the detailed correspondence of (A2) and
(A10) (at large quantum numbers) for an arbitrary
V(r), by this method. The alternative procedure,
namely, direct evaluation of (A10), we are unable to
carry out. However, we submit that the two examples
we have discussed are strongly indicative of the gen-
eral validity of neglecting the magnetic 6eld in cal-
culating the impurity-induced level shift. Of course,
one might have invoked the correspondence principle
at the outset and thereby avoided, seemingly, all the
preceding analysis. But really this is simply a way of
begging the question one is trying to answer.

A final comment is necessary if V(r) is electrostatic
in origin. Since an external potential is screened by the
readjustment of the conduction electron density, if the
(ionized) isolated impurity gives rise to a potential
V, (r), thequantity V(q) isgiven by V(q) = {V, (q)/e(q)},
where e(q) is the dielectric constant. Following Bar-
deen, " it is easy to show that with the eigenfunctions
(A5), e(q) is given by

(2esmco, )
e(q) =1—

I I 2 &&*Ijf- -(q) I'
k 2rhq2 ~~.~'


