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Effective Mass of the Positron in Sodium*
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The band effective mass of the positron in sodium is computed by the standard method of Wigner, Seitz,
and Bardeen. The result is m*=1.06m, where m is the free-particle mass. Combining it with the results of the
many-body calculations of the effective mass of a positron interacting with a Fermi sea of electrons, one can

conclude that the theoretical value is much smaller than the experimentally observed effective mass.

HE experimental determination of the effective
mass of the positron in solids is of some interest
since it opens a new way of studying the many-body
effects in solids. To our knowledge only one such experi-
ment has been carried out so far by Stewart and Shand!
in sodium, and a rather high value of the effective mass
m*= (1.92£0.4)m has been obtained. A somewhat differ-
ent analysis of the data leads Brandt et al.? to conclude
that m*=1.7m. Here m is the free-positron mass. In
view of the large uncertainty in the experimental value,
it is perhaps not unreasonable now to assume that these
values are upper bounds for the effective mass; for
clearly there are other effects contributing to the smear-
ing of the angular-correlation curve at the Fermi mo-
mentum, and selection of the effective-mass contribu-
tion is rather difficult.?

Preliminary calculations of the band effective mass
and the many-body effective mass yielded quite low
values, well outside the experimental uncertainty quoted
by Stewart and Shand.? However, from some calcula-
tions & la Landau’s Fermi-liquid theory, Ferrell arrived
at the conclusion that the many-body effects endow
the positron with an effective mass #*=2m.5 Recently
the many-body aspects have been independently studied
in great detail by Hamann® who believes Ferrell’s
calculations contain an algebraic error, and corroborates
our original conclusion that the many-body effects are
too small to account for the observed effective mass.
We shall here present our calculations on the band
effective mass, which comes out to be 1.06m, and refer
the reader to Ref. 6 for the details of the many-body
calculations.

The method followed is the standard technique of
Bardeen,” which is an extension of the classical Wigner-
Seitz8 method. This was first employed in the positron
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problem by Berko and Plaskett, for copper and alumi-
num, and is expected to be entirely adequate for sodium.
Our calculation simply confirms the earlier estimate of
Dresselhaus® that the band effective mass should be
close to unity.

1. THE BAND EFFECTIVE MASS

The effective mass of the positron will be changed
from the bare value because of two effects: first, the
positron moves in a periodic potential of the solid,
which we call the “band effective mass,” and secondly,
it interacts with electrons and phonons in solids, which
may together be subsumed under the ‘“many-body
effective mass.” So far the contribution due to phonons
has not been calculated in detail, although this is ex-
pected to be small. One can naturally ask which
effective mass is relevant to the experimental situation.
It is intuitively clear—and a formal justification can be
provided—that the many-body effective mass is likely
to show up in the experiment. In the metals the positron
thermalizes very quickly by interacting with the free
conduction electrons, and finally forms a dressed com-
plex with electrons that screen out its long-range
Coulomb field. The annihilation radiation arises out of
this complex. The operational definition of the effective
mass assumes that this positron complex is in thermal
equilibrium with the solid and has the same momentum
distribution as a classical particle of mass m* at the
temperature of the solid. The band effective mass is of
significance only in an indirect way. The above picture
looks upon the positron and the electrons in sodium
essentially as free particles. While for conduction elec-
trons in sodium such a picture is valid, as known from
both theory and experiment, this is not @ prior: justified
for the positron without a detailed examination of its
band structure. If the positron near the bottom of its
ground-state band behaves essentially as a free particle,
that is, has an effective mass close to unity, our assump-
tion about its free character is justified. Conversely, if
the positron band structure were totally different, for
instance, if the band mass came out to be very large
or very small compared with unity, one would have to
be more cautious in using the electron-positron com-
plex idea. The fact that the band effective mass turns

9 S. Berko and J. Plaskett, Phys. Rev. 112, 1877 (1958).
10 . Dresselhaus, J. Phys. Chem. Solids 1, 14 (1956).
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out to be close to unity dispels any doubt on this point;
the effect of the periodic potential is indeed small.

In calculating the band mass of the positron, we
ignore the electron-positron correlation altogether. In
other words, the electronic charge distribution remains
identical to that in the absence of the positron. The
solid as a whole is electrically neutral, and the potential
experienced by the positron in each unit cell is repulsive.
The repulsion is of nuclear origin and is therefore con-
centrated in a very small region in the unit cell. The
electrons screen out the repulsion almost completely
over most of its volume. The potential felt by the posi-
tron may thus be regarded as weak and the positron
wave function differs from the plane wave only very
little.

Since the methods of calculation are quite well known
and the details involve a mass of numbers, only an out-
line will be given. We attempt to compute the wave
function of the positron correct to first order in the
wave vector k, which gives the energy correct to
O(k?), the linear term vanishing by symmetry. The
coefficient of the k? term is related to the effective mass.
The wave function for the positron for the state of
wave vector k can be written as

V(1) = e Luo (r)+ik-ro(r)]. (1.1)
Write now
uo(r)=R/7, (1.2)
and
v(r)=P/r»—R/r. (1.3)

Substituting (1.1) in the Schrédinger equation and
using Bardeen’s argument,” one can show that R
satisfies an s-wave equation

@R/dr*+-2m/W [ Ey—V (r)JR=0, (14)
with the boundary condition
(dR/dr),,=R(rs)/rs, (1.5)
corresponding to the usual condition
(duo(r)/dr),,=0 (1.5

on the Wigner-Seitz sphere of radius 7,. This determines
the ground-state energy Eo. Now P in Eq. (1.3) satisfies
a p-wave Schrodinger equation with the same energy Ey:

i m o (1.6)
———P+4+—E—V(r)]P=0. .6
dr? 7 #?

There is one solution of this equation finite at the
origin; its scale factor is fixed by the boundary condi-
tion that

v(7,)=0, 1.7
or

P(rs)=7R(ry). 1.7

One can now integrate (1.4) and (1.6), in general
numerically, when ¥V (r) is known. The total energy

EFFECTIVE MASS OF POSITRON IN Na

407
correct to order k2 is
E=Ey+ (h*%2/2m)c (1.8)
where « is given by!!
r dP -
a=v[———1J ) (1.9)
P dr re
and
y=gmr:Luo(rs) . (1.10)

7 is the ratio of the square of the s-wave function at the
Wigner-Seitz sphere to its mean value in the sphere.
The reciprocal of « gives the effective mass m*.

For the potential we have used

Zet z
V()= >

7 =1

&

[ 2. (1.11)

lr—r'|

¢i’s are properly normalized electron wave functions.
Z is of course 11 for sodium. The ten inner-core electron
wave functions were taken to be the atomic wave
functions as given by Kennard and Ramberg,? and the
conduction-electron wave function is that given by
Callaway.’® The problem of computing (1.11) is then
reduced essentially to ordinary electrostatics with some
straightforward angular-momentum algebra. The calcu-
lation of the resulting radial integrals is performed
numerically. Consistent with our approximation scheme,
V (r) is a function of the radial distance alone.

The differential equations (1.4) and (1.6) were in-
tegrated numerically by standard methods.”* Figure 1
represents these wave functions. The solution #%, at
energy £,=0.080 a.u. satisfies the boundary condition
(1.5") at the Wigner-Seitz sphere radius 7,=3.94 a.u.
appropriate for sodium. Correspondingly the p-wave
function at Eo=0.080 a.u. is also shown with a reduced
scale. To give an idea of the accuracy of the calculated
value of m* we have also plotted two other wave func-
tions obtained as solutions of (1.2) at neighboring
energies of 0.07 and 0.09 a.u., and the corresponding
p-wave solutions for Eq. (1.6). These two of course do
not satisfy the boundary condition (1.5). Here we
collect the three values of the effective mass:

Energy (a.u.) m*/m
0.070 0.95
0.080 1.06
0.090 1.21.

The correct band effective mass is therefore 1.06 times
the free mass. The variation with energy is sufficiently
small, so that any possible error in the energy determina-
tion by (1.5") does not change the value appreciably.

1 For a derivation of this equation from variational methods
see W. Kohn, Phys. Rev. 87, 472 (1952).

2 F. Kennard and E. Ramberg, Phys. Rev. 46, 1034 (1934).

B J. Callaway, Phys. Rev. 113, 1255 (1961).

4. R. Hartree, The Calculation of Atomic Structures (John
Wiley & Sons, Inc., New York, 1957), Chap. 4.
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Fic. 1. The wave functions #,(r)=R/r and P for various
energies (in atomic units) as indicated. The scale for the P func-
tion is reduced ten times for convenience in plotting. The correct
energy is 0.080 a.u.

The over-all reliability of the result depends ulti-
mately on the potential computed from (1.11) and
thus on the electronic wave functions. As mentioned
earlier, the above calculation takes no account of the
distortion of the electronic charge distribution due to the
Coulomb force of the positron. This is particularly im-
portant for the conduction-electron wave function,
since the free electrons will respond rather easily to the
positronic attraction and will tend to screen it out
effectively. The core electronic wave functions will also
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be distorted, but not as much as those of the conduction
electrons. If one neglects the distortion of the core
electronic wave functions, the problem of accounting
for the redistribution of the conduction-electron charges
belongs legitimately to the calculation of the many-
body effective mass. Thus we do not consider it any
further.

II. DISCUSSIONS

We have just seen that band effective mass of the
positron in sodium is m*=1.06m. The many-body
effective mass turns out to be less than 1.18m, as de-
scribed in Ref. 6. We can conclude that the present
experimental result cannot be explained by these calcu-
lations. The phonon part of the many-body effective
mass is now under investigation, but is not expected to
be large. Before we attempt even more sophisticated
calculations, invoking perhaps strong-coupling theories,
it would be better to know the experimental value with
more certainty. We hope the accuracy of the experi-
mental determination will improve, and more experi-
ments will be done on sodium as well as other suitable
materials.

Note added in proof. S. M. Kim of the University of
North Carolina has now repeated and confirmed the
experimental result. His calculation of the band effective
mass is also in essential agreement with the result re-
ported here [to be published in Proc. Phys. Soc.
(London)7].
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