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Theory of Toeplitz Determinants and the Spin Correlations of the
Two-Dimensional Ising Model. I
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We study in detail the asymptotic behavior, for large separations, of the correlation between two spins in
the case of the two-dimensional Ising model without magnetic 6eld. In the limit of infinite separation, this
correlation is equal to the square of the spontaneous magnetization per spin. This paper is devoted to answer-
ing the question how, for 6xed temperature, the correlation approaches this limiting value. The investigation
is restricted to the situation where the two spins under consideration lie on the same row of the two-dimen-
sional lattice. There are three distinct cases where the fixed temperature is above, below, or equal to the
critical temperature or the Curie temperature. In the first two cases, the limiting value is approached ex-
ponentially as a function of the separation, while at the critical temperature the correlation behaves asymp-
totically as the inverse fourth root of the separation. In this paper, we evaluate exactly the 6rst four terms
of the asymptotic expansion in the 6rst case, the first three terms in the second case, and the coeKcients of the
terms proportional to the —1/4 and the —9/4 powers of the separation in the third case. All these results
are obtained by 6rst expressing the correlation as a Toeplitz determinant, and the method used is capable
of giving in principle the entire asymptotic expansion for large classes of such determinants, when the size
of the determinant approaches in6nity. The explicit results for the two-dimensional Ising model also serve
as an example where the prescription of summing the leading terms, or the most divergent terms, fails.

1. INTRODUCTION

' T is the purpose of this paper to study the long-range
". order in the two-dimensional Ising lattice without
magnetic Geld. More precisely, we investigate the ques-
tion how the two-spin correlation function approaches,
for large separations, the limiting value, which is the
square of the spontaneous magnetization.

Over two decades ago, Onsager' gave a most remark-
able treatment of the Ising model. His approach was
later greatly simplified by Kaufman. ' Shortly thereafter,
Yang' calculated exactly the spontaneous magnetiza-
tion. This calculation was in turn simpliGed by Mon-
troll, Potts, and Ward, 4 who expressed the correlation
function

Ssj = (~o,o~o,w)

between a spin at the site (0,0) and one at (0,$) in
the form of a Toeplitz determinant, and then used a
theorem of Szego' to find the spontaneous magnetization

M =QS~.

The theorem of Szego gives only the limiting value
of S~ as S—+~. Here we pose the problem of finding
the asymptotic behavior for S~, the leading term being
3P. The basic idea is very roughly as follows. Consider
an E)&X Toeplitz determinant D~, the elements of

~ Alfred P. Sloan Foundation Fellow. Work also supported in
part by the National Science Foundation.' L. Onsager, Phys. Rev. 65, 117 (1944),

~ B. Ka,ufman, Phys. Rev. 76, 1232 (1949); S. Kaufman and
L. Onsager, ibid. 76, 1244 (1949).' C. ¹ Yang, Phys. Rev. 85, 808 (1952).

4 E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963).

'G. Szego, Commun. Seminair. Math. Univ. Lund, Suppl.
dedie 6, Marcel Riesz, 228 (1952).

which are d;;. I.et x, satisfy the linear equations

X—2

P d, ,X, =b.;o. (1 3)

Then, on the one hand,

DÃ 1/Dh &o j- (1.4)

while on the other hand, when E is large, (1.3) may be
solved approximately by iterating a Weiner-Hopf sum
equation. ' ' Therefore, we can Gnd the asymptotic be-
havior of D»/D&, and hence, by combining with
Szego's theorem, ' that of D~ itself.

It must be emphasized that the main idea here is to
make use of the similarity between a Toeplitz deter-
minant and the corresponding Wiener-Hopf sum equa-
tion. This similarity may be utilized to gain detailed
information about the asymptotic behaviors of Toeplitz
determinants under a variety of circumstances. In this
paper, we shall restrict our attention to the application
to S~ of the two-dimensional Ising model when E is
large but T is Pxed. In order of increasing complexity,
we shall treat three cases: T&T„T&T„and T=T,.
We shall see in these cases that the procedure, although
simple in principle, can be technically very complicated.

The results are summarized in Sec. 8, subsections A
and B.

We follow the notation employed by Montroll, Potts,
and Ward, 'who used ~E»——~ATE» and ~E2——~kTE2
as the energy of interaction between horizontal and
vertical pairs of neighboring spins, respectively.
Moreover,

s»= tanhK», s2= tanhK2,

'N. Wiener and E. Hopf, Sitzber. Deut. Akad. Wiss, Berlin,
1931.

~ A very good discussion of the equation of Wiener and Hopf
is to be found in M. G. Krein, Am. Math. Soc. Transl. 22, 163
(1962).
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Then the critical temperature T, is given by

(1 6)
Let EN be the E)&X Toeplitz determinant formed

from b„, i.e., RN is given by the right-hand side of
(1.8) with all the a's replaced by b's. Szego's theorem
can be immediately applied to RN to give

S$ S2 (1.7) jim (—1)~R~= L(1—nP) (1—n2
—') (1—ng/np)'g'" (2 4)

Cp

Cp

Cp

+-N+1

a ~+p, (1.8)

and the correlation function S~ of (1.1) can be expressed
as a Toeplitz determinant4 For large E, the difference between RN and this limit-

ing value is exponentially small in E.
Consider the linear equations

where
~N—1 ~Ã—2 ~N—3

~ ~ ~
~ ~ ~
~ ~ ~ Qb„z =gp (2.5)

with

a„= (2n.) ' ~(g)e
—~nag (1.9)

for 0&u&N'. Because of (2.3), S~ is given by

S~——(—1)"R~+gx~. (2.6)

(1—n e")(1—n e—*') '"
7

(1 age—")(1 n2e—')
O'1 ~1~2 ) O'2 ~2 j ~l ~

g/

(1.10)
To determine SN asymptotically, it is therefore suK-
cient to find xN for large lV. For this purpose, we de-
velop 6rst the Wiener-Hopf procedure in a form
suitable for iterations.

As a generalization of (2.5), consider the equation
In (1.10), the square root is taken such that &p(n.))0.
We note the following qualitative differences in the
three cases:

N

Pc z=y
tnt

(2.7)

(a) when T)T„we have nq&1(np and

in' (2x-) —in'(0) = —2~i;

(b) when T(T„we have a~&np&1 and

1n p(2n-) —ln pp (0)=0;
and

(c) when T= T„we have e~(np 1and——

for 0&v&X. We assume that P„=„"~e„~converges

(1 12) so that

(2.8)

(1.13)
is continuous on the unit circle. We further assume that
lnC($) is continuous and periodic on the unit circle. ~

We define

y (0)= —pp(2n-) = i— (1.14) (2.9)

u„= P c~+„~x, for n)0

Note that the quantity in'(2') —in'(0) on the left-
hand sides of (1.12) and (1.13) is just the index of the
corresponding Wiener-Hopf equation~ and plays an
important role in its theory. tnt (2.10)

2. SPIN CORRELATIONS ABOVE THE
CRITICAL TEMPERATURE and also

=0 for e(0,

We treat 6rst the case T&T,. From the theory of
Wiener-Hopf sum equation, it is convenient to work
with a kernel whose index is zero, that is, a kernel with
the property that its logarithm is continuous and
periodic. Because of (1.12), we introduce

=0 for m&0.

We further define

N

v =Pe x, for n)0
(2.11)

p ~(g) = ~(g)e" (2.1) (2.12)

Therefore

b = (2n.) ' (g)e ~n pdg (2.2)
(2.13)

b„=a (2 3)
'R. B. Potts and J. C. Ward, Progr. Theoret. Phys. (Kyoto)

13, 38 (1955).
~(k) =Z u-5",

n~l
(2 14)
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V(~)=2 ..r". (2.15)

U($) term neglected:

Ol

It then follows from (2.7) that for
I g I

=1,

&($)&(k)= I'(k)+ U(k) 5"+V(r')
(2.25)

(2 16) Equation (2.25) is then substituted into (2.19b) to give

Under the present assumptions, C($) has a unique fac-
torization, up to a multiplicative constant, in the form

~(~')~"-Q(~)l ~(~-')Q(~)-'~"j' (226)

I C(&)j-'=&(~)Q(~') The desired x)2 is found by setting /=0 in (2.26):

for $ =1, such that P($) and Q($) are both analytic
for t (1, and continuous and nonzero for I/I(1.
Equation (2.16) can thus be rewritten in the form

x„=.'(2 ~) gdi'P P(i ')Q (1)' (2.27)

LP(t)j-'I(()—LQ(&-') F (g)]+—LQ(g') U(P) & ]+
=Q(e-') V(~-')+LQ(~') &(~)j

+I:Q(P')U(k)Pj- (2 18)

again for I(I =1, where the subscript + (—) means
that we should expand the quantity in the brackets into
a I.aurent series and keep only those terms where $ is
raised to a non-negative (negative) power. We then
apply the standard Wiener-Hopf argument by noticing
that the left-hand side of (2.18) is analytic inside the
unit circle, while the right-hand side is analytic outside
the unit circle and furthermore approaches zero at
inanity. Therefore

x(~) =~(~)(LQ(V) I'(~)j.
+IQ(~')U(~)Pj, &, (2» )

and

v(~-') =-LQ(r')3-'(I Q(~') I'(~)j-
+I:Q(k ')U(k)k j-) (22oa)

Similarly,

x(r')P=Q(~) &P'(r') &(V)~ j.
+I ~(& ')V(k)P]+} (219b)

where the integration is around the unit circle. In (2.27),
the symbol =: means that, for S—&~ but T Axed, the
right-hand side and the left-hand side have the same
asymptotic expansion. More explicitly, by (2.22) and
(2.23),

*+=(2 )) 'fdiP '((&— i)0— 1')0— '1)

X (1—n2
—'p—'))—')2 (2.28a)

or

(22r)
—1 (ge 8iN8

I (1 nlei8) (1 n2
—18i8)

I

1

(2.28b)

The error involved in (2.28) is exponentially small in X
even when coinpared with x))(. In (2.28b), the minus
sign on the right hand side is due to the fact that, from
(2.1), the square root under the integral of (2.28a) is
taken to be negative at the point $= —1. Finally, the
substitution of (2.4) and (2.28) into (2.6) gives

8))(=. —(22ri) 'I (1—n ) (1—n ') (1—nl/n2) ]'(4

1—oty i—Ay i—A2

X(1— 'r') j '" (2 29)U(r') = —L~(r') j-'{P(~-') V(r') ~"3-
+D'(k ') V(k) P3-} (2 2ob)

Equation (2.29) is the desired answer; it only remains
to evaluate its right-hand side asymptotically for large
Ã. This is straightforward but tedious. We deform the
contour of integration around the branch cut from o.~

to e2 ' to get the result
(1—nil) (1—n2 '5)

)-(1- V')(1- -'r')C(~) = (2.21) 81)l, ll n2 "L(1—nl ) (1—n2
—') (1—nl/n2)'j

These are the equations that we shall use.
We now specialize to the problem of the Ising model

with T& T,. In this case,

and
&(5)= L(1—n t)(1—n2 'k)3 "'

Q(k) = L(1—nit) (1—n2 '5)j"'.

(2.22)

(2.23)

dpi[1 L(1 nln2 $1) (1 nln2$1 )

X (1—n2 2)i) (pl
—1 1)j—i'2 (2.30)

Moreover, a comparison of (2.5) with (2.7) shows that

I'(~) =1 (2.24)

We find V($) approximately by using (2.20a) with the

From this point on, we can proceed in many slightly
diBerent ways. For example, the simplest thing to do
is to expand the integrand of (2.30) about the point
$1

——1 and then integrate term by term. We shaH follow
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a procedure which is only slightly diferent. Let to get

xl ——(1—nl/n2) (1+nl/n2) =cosh2E l, (2.31) SN='2r —«2n,—N (1—n 2)»4(1—n —2)—l/4(1 —n n )
—l/2Q I

x2 ——(1—nln2)
—'(1+n2n2) = coth2E2, (2.32)

and
x3= (n22 1)

—1(n22+ 1) (2.33)
XP LF (X+m+-', )1-l~-l/2F (~+ -,')F (~+-',)

en=0

In (2.31) and (2.32), we have used (1.11), (1.5), and
(1.6). These three x's are related by

tn

X2— Q A„&L(m—n)!F(/3+-', )$ '. (2.41)
n=o

X1X2+X1X3 X2X3

We use these three x's in (2.30); for example,

(1—nln2 'p) '"= (1+xi)'/2(1+/i) '"
X(1+xi (1—$l)/(1+ (2)7

—'/'. (2.35)
The result is

~—ln —N(1 n 2)l/4(1 n —2)—I/4(1 n n )
—1/2

(2.42)

(2.34) This is the desired answer.
For completeness we write down the erst few terms:

S -2r-'"n "(—1 n—')'"(1—n -')-'"(1—n n )
—"

XS!LF(1V+-,')] '(1+-,'(S+-,') '(1+-,'Al&)

+ (45/64) L(1V+-,') (1V+-,')g-'(-', +-,'A &+ (4/15)A, )
+ (1575/512)L($+-23) (fV+ 3)(iV+ '-)] '-
X (0+3A 2&+ (4/15)A2&+ (8/105)A3&)+ },

x2'i or, more explicitly, as E—+~,

where

1rr2

A&(s) = L(1+xls) (1—x22)(1+x3s)g—'/'. (2.37)

XA&L(1 pl)/(1+t )] (2 36) SN~ (7rÃ)
—' 'n2—"(1—nl')' '(1—n2

—')—' '(1—nln2)

X/1+4K 'Al&+ —,30$ '(A2& ——,')
+ (15/64)1V '(A 3&

—(7/6)A l&)+ ), (2.43)

If we expand A &(s) into a power series

A&(s) =P A„&s",
n=o

then the first few coefficients are

where A», A2&, and A» are given by (2.39). These
are the first four terms of the long-range correlation
along the lattice sites above the critical temperature.

(2.38)

3. SPIN CORRELATIONS BELOW' THE
CRITICAL TEMPERATURE

and.

Ao) ——1)
A l&———-', (xl—x2+x3),
A2& 3 (xl +x2 +x3 ) 4 (x2x3 x3xl+xlx2) yl

A 3&————,', (xl3—x2'+x33)

+ 20 (Xl X2 X1X2 X2 X3+X2X3 X3 Xl X3X1 )
(2.39)

If we substitute (2.38) into (2.36) in order to integrate
term by term, we can replace the lower limit of integra-
tion 0.&0,2 by 0 without changing the asymptotic series:

ln N(1 n 2)1/4(1 n —2)——l/4(—1 n n )
—1/2g /

m=o
/3 n—mXm ~n0. (3.1)

for 0&23&/V. The solution of (3.1) is related to the
correlation function SN by

x0 xON SN/SN+1 ~ (3.2)

In order to determine S~ from xoN, we need the known
result of spontaneous magnetization'

In this section, we consider the somewhat more com-
plicated case T&T,. In view of (1.13), the logarithm
of 32(tl) is continuous and periodic in the present case.
Accordingly, instead of (2.5), we study more directly
here the equations

X+A 2 "F(23+-2,)LF(X+23+23)j '
n=o

XF(23+2, I+ ', ; JV+22+ 32; -,')—. (2.40)-so that
(1 n 2)1/4(1 n 2)l/4(1 n n )

—1/2 (3.3)

S = (1— ')"'(1— ')'"(1— ) "' lI *o- (3.4)
n=NIn (2.40), the sum over 23 is to be interpreted in the

sense of asymptotic series, and we have used there
To calculate xo approximately for large X, we use theEuler's integral representation of the hypergeometric

formalism developed in the last section, or more spe-function Ii.' It is then trivial to rearrange the series
g ll E (2 19) d (2 20) g (1 1p)

Bateman Manuscript Project, Sigher Transcendental I'ursc-
tioes, edited by A. Erdelyi (McGraw-Hill Book Company, Inc.,
New York, 1953), Vol. I, Chap. 2.

c(p) = (3.5)
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for T&T„so that For a function F($) given on the unit circle, let

and

~(~)=L(1- .~)/(1- .~)3'I', (3.6)
L«(k) j+ 'L«=(() j+ (—2 () 'y««(k)/~ (3»)

Q(8= E(1--.~)/(1-- ~)7" 3.7
where the path of integration is around the unit circle.

Note that, both in this case and in the case treated in
the last section,

&(~)Q(&)=1. (3 8)

The procedure to be followed is (1) calculate V($)
approximately from (2.20a) with the U($) term neg-
lected; (2) get U($) from (2.20b) with the V(P) of
step 1; and finally (3) compute X(0) from (2.19a) with
the U($) of step 2. We therefore see that the case
T&T, is more complicated than T& T, in two respects:
6rst, one more step is needed here to get xo, and,
secondly, from (3.4) an infinite product of the xo's is
required to obtain 5&.

Equations (2.24) and (2.25) still hold here. By (2.20b)

provided that the path of integration is indented out-
ward near $'=$. With this notation, (3.9) can be
rewritten as

U(&)- —L&($)j '[~(k)Q(V) 'r"3+' (3 12)

The substitution of (3.12) into (2.19a) then gives

&& L~($)Q (V')-'V"j+', (3.13)
U($ ')~ —P'($ ')j 'P'($ ')Q($) 'Pj . (3.9) or more explicitly

3 ]4

Again, the error involved in (3.14) is exponentially small in 1V compared with the double integral, or roughly of
the order of n2'~. The double integral is of course roughly of the order a/~. We Anally substitute (3.14) into (3.4)
to obtain, for large X,

( —~P) '"( —(«2') '"(1—i);i(«2)"'S)((=: + E (*o-—)
n=N

y d — 2 N g —~~ ~~2 ].—~~ ~ ~~ & ~2 ~~ 1 e2 ~~ 3.15

In both (3.14) and (3.15), the path of integration for the variable g' is to be indented outward near $'= $. Equa-
tion (3.15) is the desired answer, but it remains to evaluate the right-hand side more explicitly for large

Since the author is unable to Gnd any elegant way of carrying out this evaluation, we shall proceed by brute
force. We deform the contour of integration in the variable $ around the branch cut from ni to («2, that in the
variable g' around the cut from n~

—' to («), ', and change the variables

and
~'= ( &.)-',

~ = (1-~ )/(1+~.), ~.= (1-b)/(1+b)

(3.16)

(3.17)

In terms of these variables and the x's of (2.31)—(2.33), we get

Sz=. (1—n ')')'(1 —n ')'~'(1 —(«&n2)-'(' 1+16m'aP +'(1 . nP) '—
ag/a2 1/ a2

&& (1+pi) '~'(1 —$i) '(2(1+$2)—'~ (1—$2)'('(1—x3Y/i xgY)2+7)if]2) A((gi)$A((g2)) g (3 18)
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vrhere

We need the series expansions
A&(r/) = (1—r/x1)1/2(] '+'//x2)1/s(1 gxa)-1/2 (3.19)

A&(g)=P A &r/",
nM

(3.20)

and

LA&(~)3 '= Z A-&n",

ui e=o
(3.22)

After substituting (3.20)—(3.22) into (3.18), we replace the lower limits of integration n&/n2 by zero to obtain

S~=' (1—ng')'/'(1 —n2')'/'(1 —ngn2) "'

X{1+2m 'E 'nP"(~2 '—n2) ' Q Q Q Q E~-" ~&A &A &C„,d~„s'+,+g}, (3.23)
m=0 nM @=0 q=0

where'

(8+/~)1/2+n dP gN(1+))-n —3/2

(3.24)

Equation (3.23) gives the desired asymptotic behavior
of S~ as X—+~ for T&T,.

The 6rst few terms are explicitly

S~~ (1—ny )'/ (1—n2')'/ (1—nyn2) '/'{ 1+(27rlP) '
Xa» (~,—~—a,)—'L1+ (2&)—'(—A,&+4x,)+3(2&)—~

X (—Am&+A g&' —2xaA g&+6xp —13/6)+ . j},
(3.25)

where, by (3.20) and (3.19),

then

3E„„=—',s-g „&'&= (2m —2n+1)—', (4.5)

S~ g/'& =det(2s. 'M) = (2s ')~+' detM. (4.6)

To evaluate detV, we use the following theorem, which
can be easily proved algebraically': if

Let M be the (N+1)X (%+1) matrix whose elements
are, for m, m=0, ~, E,

and
A $&——

g (—xg+x2+x3), (3.26)
then

~mn= (//na+ &n) (4.7)

A 2&———s (xP+2xgx2+ xm'+ 2xgxs
—2xmx8 —3x32) . (3.27)

detM = L rr (p —p.) (v —~.)]
Ogm&n& N

4. SPECIAL CASE eg=0, e2 ——I

Because of (1.14), the case T=T, is much more
complicated, and the relevance of the Wiener-Hopf
procedure more obscure. In this section, we treat the
special case n&

——0. Physically, this is the limit where,
at T= T„

mM nM

Since

/M =2m+1 and v = —2e,

we get from (4.8)

(4.9)

such that
E~ —+ 0 and E2 ~~,

Eq=exp( —2E'2).

(4.1)

(4.2) where

det3E=2'~&~+'&[G($+1) 14(G(21@+2)) ', (4.10)

Throughout this and the next three sections, we take
T= T„or, by (1.7) and (1.11), u&=1. We shall denote
this special case by the superscript 0; hence, by (1.9)
and (1.10),

G(+) = 1&-'2&-23~-' (Q—1) . (4.11)

garnes" has given the asymptotic expansion of G(E)

~(0) (g) —j~—il/2

~ "'=2m
—'(2m+1)-'

(43)

(4 4)

N. I. Achieser, Theory of Approximation (Frederick Ungar
Publishing Company, New York, 1956), p. 19.

~'E. W. Barnes, Quart. J. Math. 31, 264 (1900). See in par-
ticular p. 285. Note that our G(1V) is the G(E+j) of Barnes.
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for large X,

lnG(N)=: —,', —lnA+ —,'N ln2m+ (-,'N' —i', ) lnN —3N'

+P(—1)'L2s(2s+2)$ '8 iN " —(4.12)

where the 8's are the Bernoulli's numbers, and A is
Glaisher's constant, "

as N ~~. For ni ——0, (5.4) is more simply

S~~'&~(1—n ')'"(1+(2~N') 'nP" (ng
'—n2) ') (5 5)

Therefore, (5.3) also holds as N —+~ for fixed T(T,.
Note that SN"' is obtained from SN by setting Q1 ——0
without changing Q2.

It is therefore not unreasonable to expect (5.3) to
hoM also as Ã —+~ for T=T,. More explicitly, at
T= T.

1.282427130. (4.13) S~- (1+ni)"'(1—ni)-'"S/i/ "&, (5 6)

The substitution of (4.12) and (4.10) into (4.6) then
gives, approximately for large E,

S~i i e"42""A 'N '/ (1 e4N —2+ ). (4.14)

Equation (4.14) is the desired result for this special case.
In the next section, we obtain the leading term of SN

in the more general case where Q1 is not necessarily zero.
This is carried out by comparing with the special case
Q1——0. In order to get further terms of SN, more detailed
information about this special case is needed, and this
is derived in Sec. 6.

Cp C 1 C

C1 Cp C

DN = C2 C1 Co

CN 1 CN—2 CN—3

~ ~ ~
~ ~ ~
~ ~ ~

C N+1
C N+2

c 5+3 1 (5.8)

Co

as N-+~. With (4.14), we get

~el/421/12A —3(]+n )1/4(1 n )
—1/4N —i/4 (5 7)

approximately for large E. It is the purpose of this
section to obtain (5.6) by a, direct calculation.

Consider two E)&S Toeplitz determinants

S. SPIN CORRELATIONS AT THE
CRITICAL TEMPERATURE

The case T)T, has been treated in Sec. 2. Consider
the leading term on the right-hand side of (2.43),
which is

Co

C2

CN—I

Cp

C

C 1

Cp

CN—3

~ ~ ~
~ ~ ~
~ ~ ~

C—N+1
C N+2
C N+. 3

Cp

(5 9)

S/i - (~N)
—'"n2—~(1—ni')'/'(1 —n2

—')—'"
X (1—nin, )

—'/' (5.1)

where

c„=(2~) ' P(9)e—'"'d8 (5.10)

as N ~~. In particular, if ni=0, (5.1) reduces to

S "' (mN) '"n ~(1—n ') '"
Therefore, as X—+~ for 6xed T)T„

S~- (1 n i')'/'—(1 n in2) —' 'S/~ &'—& .

(5.2) c„=(2~)—' P (8)e
—'"'d8. (5.11)

We ask the question how D~ and D& are related for
large N if

On the other hand, we may start with the leading
terms of (3.25) for T(T„ where ~n~ (1.

(5.12)

S~- (1—ni')'/'(1 —n, ')'/'(1 —n,n,)
—'/'

X(1+(2~N ) 'n2' (n2 ' —n2) '), (5.4) and
C„=C~—QC~+1, (5.13)

Cp —QC]

C1 QC2

C2 —QC3

C ]—QCp

Cp
—QC1

C1—QC2

C2 QC

C 1—QCp

Cp —QC1
~ ~ ~
~ ~ ~
~ ~ ~

C N-/r 1—QC N+2

C N+2 QC N+3
C N+3 —QC N+4

CN 1 QCN CN 2 QCN —1 CN 3—QCN Cp —QC]

Accordingly, D& can be expressed as an (N+1)X (N+1) Suppose we define x,, xi, x2, , x~ by the linear
determinant in the form equations

1 . Q

C1 Co

C3 C2 C1 Cp
~ ~
0 ~ 0
~ ~ ~

C—N+3

Q2 Q ~ 1 ~

C 1 C

Cp C 1 ' ' C N+2 (5.15)

N
nm& (5.16)

CoCN 2 CN 3CN CN—1

'~ J. Q'. L. Glaisher, Messenger of Math. 24, 1 (1894). m=o
C~ Xm= 0 (5.17)
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for 1&n&E. Then, by (5.8) and (5.15), we have

&o=Dx/D~. (5.18)

For very large E, the system of equations (5.16) and
(5.17) are approximately

The substitution into (5.26) gives

lim D~/D~ ——expL —P g„n")
N-+oo n=l

= exp P n(g„g „g—„g „). (5.31)
n=l

and

m=O

Q Sm= 1)

c x=0

(5.19)

(5.20)

This is the desired answer.
Next we consider the same problem except that the

condition (5.12) is replaced by

(5.32)

for m&1. Define yo by

m=0
&—m&m= Po) (5.21)

In this case, we can apply (5.31) to the complex conju-
gate functions to obtain

lim D~'~/D~*= exp P n(g „*g„* g—„*g„*). (5.33)
C(f) by (2.8), X($) by (2.12), and I'(g) and Q($) by
(2.17), then by (2.19a)

X(n) =1. (5.23)

(5.22)

provided that the Wiener-Hopf sum equation under
consideration has a unique solution. In order to deter-
mine yo, we note that (5.19) is just

n=l

Therefore (5.31) also holds in this case.
If (5.31) is used repeatedly a finite number of times,

then we get the following result. Let DN and DN be
two E&(X Toeplitz determinants with their elements
the Fourier coefFicients of f(8) and g(8), as shown in
(5.8)—(5.11), let the coeKcients c„have the property
that the corresponding Wiener-Hopf sum equation has
a unique solution, let g(8)/P(8) be a trigonometric
polynomial normalized so that

Accordingly

and thus

It then follows from (5.18) and (5.25) that

lim D~/D~ =p(~)/p(p) .
N~m

(5.24)

(5.26)

nj n2

P(8) =$(8)Lg (1—i"'e "))Lg (1— i"ie'o)), (5.34)
n 1

with all the n's and cx's less than 1 in magnitude; then
(5.31) holds.

Let S~"' be DN, and S~ be DN, then

g
=-'e-' m~0,

It remains to write (5.26) in a more familiar form. Let =0 (5.35)

g.= (27r)- d8 e '"'in/(8), (5.27) g„=~n—'(1—ni")
0,

=-', n—'(1—ni—"),

n&0,
m=0,
n&0. (5.36)

g„= (2s.) ' d8 e—'"' in/ (8) .

Then, by (5.12),

(5 28) Therefore, by (5.31),

limSN/S~ioi=exp P n{—Lon '(1—ni"))'+Lon ')'}

gn=g for e&0, = (1+ni)"'(1—ni) "'. (5.37)

(5.29)and

P (t) = const Xexp/ —P g (").

Thus we have obtained the leading term of the
g =g +n "/n for n&0. asymptotic expansion of SN for large E at the critical

On the other hand it follows from (2 8) and (2 17) that temperature. In Sec. 7, we shall show how to obtain
the asymptotic series in principle; because of algebraic
complications, we shall carry out the computation only

(5.3P) for the next term. For this purpose, some further
properties of the special case atl ——0 are needed.
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then, by (4.8),
L=-'x3f ',2 (6.1)

x[II(/ q
—/-)J-'[ II (/- —/')J '

With (4.9), (6.2) can be simplified to

L„q=-2,2r(2q —2p+1) '2 ' (2N —2p+1)!(2p)!
X (2N —2q)!(2q+1)![(N—p)!p!(N —q)!q!$ '

= 212r(2q
—2p+1) '2 2~(2N —2p+1)!!(2p —1)!!

X (2N —2q —1)!!(2q+1)!![(N—p)!p!(N—q)!q!j-'
= 2~-1(2q—2p+ 1)-'r (N —p+ o)r (p+-', )

Xr(N —q+-, )r (q+-;)[(N—P)!P!(N —q)!q!3-,
(6.3)

where

(2p —1)!!=13 5 7 ~ (2p —1), (6.4)

for example. As given by (6.1), L~q is de6ned only for
0&p&N and 0(q(N. Thus (6.3) may be used to
extend the domain of deinition for L„, to all integers

p and q. It is, however, immediately seen from (6.3)
that with this extension,

Lee=0 (6.5)

unless 0&p(N and 0(q&N. It is also interesting to
note that

L~—e,&—n —Lnc ~

and that, for large N and fixed p and q,

(6.6)

L2,2~12(2q —2p+1) '2 2 q+'(2p —1)!!(2q+1)!!
X[P'q'3 ', (67)

with an error of the order of N '. In view of (6.6), it
is convenient to de6ne the matrix operation * such
that, for an (N+1)X(N+1) matrix OR,

6. SPECIAL CASE ej = 0& @2=1

Ke consider the inverse of the matrix M. More
precisely, let

if 0&p&N and 0&n&N. We are therefore interested
in the case where 0&p&N while either n&N or n(0.
This in particular means pWn. Accordingly, for these
ranges of values for p and n, by partial fraction

r (N —p+-;)r (p+,')
K~„=x 2

(N—p) 'p!(p—)

X [pK&"(p) —nK"'(n) J, (6.12)
where

K&o~ (z) = Q (m —z+-,')—'r (m+-', )

Xr (N—m+1) [(N—m)!m!$ '. (6.13)

This sum for K&o~ (z) can be carried out to yield"

K"'()= (—1)"r()r(l—)
X[r(—N+z) r (N —z+-22)) '. (6.14)

Therefore, for 0&p& N and n& N,

r (N —p+-', )r (py-', )n!r (n—N ——',)
K „=q'r(P n)-'—

(N —P)!P!(n —N —1)!r(n+-,')
(6.15)

while, for 0&p&N and n(0,
r(N —p+2)r(p+2)(N —n) r(2 —n)

K = ir
—'(P —n)

—'—
(N —p)!p!(—n —1)!I'(N—n+-', )

(6.16)

Equations (6.11), (6.15), and (6.16) give K~„ in all
cases.

YVe now turn our attention once more to the general
case where n~ is not necessarily zero.

'7. SPIN CORRELATIONS AT THE
CRITICAL TEMPERATURE

At the end of Sec. 4, we have obtained the first two
terms in the asymptotic expansion of S~ at the critical
temperature when o.~=0. In this section we shall derive
a result more accurate than (5.6), namely,

S~//S//&o) (1+ai)u4(1—ai)—u4

X[1+-'N 'ni(1 —ni) '+0(N 2)] . (7.].)

(OR )yq —ORN —y, io'—q ~ (6 g) Thus the generalization of (4.14) is, as N ~oo,
Thus,

M*=M and L+=L.

Finally, we proceed to compute the quantities

K„„=22r 'Q L~3E

By (6.5), K~„=O unless 0&p&N; by (6.1),

(6 9)

(6.10)

(6.11)

zl/421/12+ —3N-1/4(1+a )1/4(1 a )—1/4

X(1+sN 2[ai(1—ai) '—oj+o(N ')) (72)

Even though these results are rather simple, the actual
calculation, to be presented below, is quite long.

The following two observations form the basis of the
calculational procedure.

"See Eq. 2.4 (5) on p. 79 of Ref, 9,
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(1) Define

d-= (2~) ' dt) e '"' ((t))/ (")(~)

the (i))r+1)X (X+1)matrix Ct '. Similarly, by (7.8),

/&N+1 ' =100 (7.10)

We propose to obtain (7.1) by calculating the quantity

(0)

= (2n.)
—'

so that

de e '"'(1 n—le")'('(1 n—le '—) " (7.3) (R= = (Ol )00/100 ~

~%+1 ~N+I

Let 8 be the (%+1)X (X+1) matrix

(7.11)

~m,-n= ~ ~~-y dy-n)(0)A (7 4)
so that

(7.12)

6, '=8 'L.
where (l„and (2„(0) are given by (1.9) and (4.4), re-
spectively. For large ~N ~, d„ is expone22tially small If v is the co!upon matrix whose elements are
in [22[.

(2) It is seen from (6.3) that, for large E and fixed

p and q between 0 and X,

(7.13)

(7.14)

and

then by (7.13) (R can be expressed by
(7.5

(R= (8—'y)0, (7.15)

L)(,, lo 0
——O(1).

A. Formulation of the Problem

where the right-hand side denotes the zeroth element of
the column matrix 8 'y.

%'e partition the matrix B as follows:

Let (2', be the (X+1)X(X+1) matrix whose ele-
ments are, for 0&vs& X and 0&e&X,

-8(») 8(»)-
8=

8 (21) 8{22)
(7.16)

so that

5~+~——det8.

By (4.5) and (6.1),

Q, (0)=2m 'M=L '.

(7.6)

(7.7)

(7 8)

where the sizes of the four matrices 8("), 8("), 8(")
and 8(") are, respectively, E&X&x, &iX&2, &2X&~,
and ¹X¹,with El+%2=X+1. We chose t))!'1 and
X~ to be roughly ~X, the precise value being unim-
portant. A possible choice is, for example,

El=
¹

=-'2 (X+1)
for X odd, andFurthermore, it is clear from (1.8) that

Eg —Eg—1——,Ã
Sgr/Sgrgl= (e—')00, (7 9)

for even. The inverse of 8 can be expressed in terms of
vrhere the right-hand side denotes the 00th element of these 8('» by

(g (11) g (12)g (22)—lg (21))-1

g (22)—lg (21) (g (11) g (12)P (22)—lg (21))-1

gj (11)—1/3 (12) (Q (22) j3(21)g (11)—lg (12))—1-

(g(22) g(21)fl(ll) —lg(12))—1
(7.17)

It is convenient to renumber the indices by introducing Similarly, we use two column matrices 7(') and y(')
four matrices 8('~): dined by

for 0&m&&g, P&n&gg.,
Pn Vn)(&)— for 0&m&Kg,

(7.19)
~mn =Bee,N—e) for 0&m& Xg, 0&e&E2,

for 0&2)2&¹,0&I&¹, (7.18)

and

B~~"')=8~~,~ „, for 0&m&gg) 0&e&E2.

for 0&m(E2.
Then, by (7.15) and (7.17), (R can be expressed by

(R—f (g (11) jy (12)g (22)—lg (21))—
lay

(1)

jP (11)—lg (12) (gj (22) g (21)g (11)—lg (12))—ly (2))0

(7.20)



390 TA I TSU N WU

As seen from (6.3) for example, our expressions con- where
tain a rather large number of gamma functions. It is
convenient to remove some of these by changing the
B's slightly. Let

(N —n) ti'(N+ 2)
(I)

I'(N —n+-,')N! (7.23)

(N —m)!I' (N —n+-', )
(11)

r(N m—y ,')(N-n)—!

N(1V—m)!I'(N —n+ 22)
(12) (12)

r (N —m+-;) (N —n)!

and

=——;~-i!2r(n—;)1n!,

(N —n)!r (N+-', )(2)—
I' (1V—n+-', )N'!

= ——'2r '!2N(N —n —2) 'I'(n+2)/n!. (7.24)

and

1V (N —m) !I' (N —n+-', )
Bmtl 7

I'(N m+2)—(N —n)!

Equation (7.22) is to be used for further development
in this section. It only remains to write down the
numerous B ""explicitly. By (7.12) and (7.4),

(N —m)!r(N —n+-;)B„"= (22)

I'(N —m+-', ) (N —n)!
(7.21) B-=Z Lmttt22 —y dy—

(7.25)
By (7.5) and (7.18), for large N but 6xed m and n,
all four B „"&' are of the order of magnitude 1. The E„„d„
substitution of (7.21) into (7.20) yields g7

—00

@=((8i!—1V Bo Bt 2 B i ) iy N2B! —iB h Jt" is defned b (6 10) Using (6 11) (6 15)
&((B""—N 'B""B'"!'B'"&) 'y&'& jo (7.22) and (6.16) we find

1(m+l)i (l-p)
B „&""=d„'+2r ' Q (m —P)

—' d„„'
m! (—p —1)!

I'(m+-', )p!I'(p —N —-', )I'(1V—n+-,')
+~-' p (m —p)-' d„„, (7.26)

&=~+i m! (p—N —1)!I'(p+-',) (N —n)!

r (m+-,')I (—p ——,')
B '""=—2r ' Q N(N m P) '——

p~o0 m!(—p —1)!

N (N m) ti' (N n—+2)—
dmin —Ã

I'(N —m+-', ) (N n)!—
00 ~(-+-;)p.~(p-N+-, )~(N- +-,)

(1V—m —p)
—' (7.27)

p=Ngl t(p-N —1) ti (p+-:)(N-n)!

1(m+-,')I (-:—p)
B „&2"&=2r—' p N(N m p) '——

m! (—p—1)!

N(N —m)!I'(N n+ ',)—-
dN —m—~r (N —m+ -,') OV —n)!

00 I (m+-,')p!r(p —N ——,')I (N —n+ -', )
+2r 'N Q (1V—m —P) ' d„„, (7.28)

y=N+1 m! (p N 1) ti'(p+-', )—(N ——n)!

1(my-;)I (—p —-', )
!22)—d II ~-1 Q (m p)

—i dyn
@~00 m! (—p—1)!

7 (m+ 2)p!I'(p —1V+2)I'(N —n+ 2)
(m —p)

—' d,~ . (7.29)
=!2+i m! (p —N —1)!I'(p+-',) (N —n)!

In (7.26)—(7.29), we have used the notation B. Asymptotic Expansion of (R

and

(N —p) !I'(N —n+ —',)'d--
I'(N —p+-', ) (N —n)!

(N —p)!r(N —n+ -', )
dp-"= d—~n.

I'(N p+, ) (N n) t

(7.30)

So far, no approximation has been made and (7.22)
is exact. Since (7.26)—(7.29) are rather complicated, we
restrict our attention to asymptotic expansions for
large N. As d„ is exponentially small for large ~n~,
(7.26)—(7.29) are much simpler asymptotically. We
need to keep only the first two terms in the cases of
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(7.26) and (7.29), and only the first term in (7.27) Since, for p(0,
and (7.28):

8 ("'=d +lr' Z (m p) '[m( p 1) j'
&&r(m+ -', )r(-',—p)d„.', (7.31)

—«

8 „("&=: —m. ' Q 1&1'(X—m —p) '[m!(—p—1)!j "

&&r(my-', )I'(—-', —p)d, „", (7.32)

8 „(21)=:lr ' Q X(1V—m —P) '[m!(—P—1)!j '

= (m —p+2) ' Z [(m—&+2) '+(q—p)-'j
q=0

XI'(g+-')/0!

we must have

(7.41)

&&r (m+-', )r (-,'—p)d„„', (7.33) S ('& = 22r
—' Q (2m —2P+1)—'d „„'

8 ("&=:d„„"—lr ' P (m —P) '[m!(—P—1)!j '

Xr(m+-', )r(—-', —p)d, .". (7.34)

[Strictly speaking, (7.32) is not valid if m is close to
1Vl and 22 close to E2, while (7.33) is not valid if m is
close to X2 and e close to E«. However, these elements
of the matrices do not contribute to the asymptotic
expansion of (R.]

I et d„„' and d„„"be respectively the asymptotic
series for d~„' and d~„" for large 1V and fixed p and 22.

Thus d~„' and d„„"are defined, term by term, for all p
and all m. Similarly, let 8 „('&), i =1, 2 and j=1, 2, be
the asymptotic series for 8 „('&), again for large E and
6xed m and e. Thus 8 ('&' is dered, term by term
for all m&0 and all e&0. We can accordingly form the
infinite matrices B('&), term by term in powers of E '.
The row and column indices for 8('&') each run from
zero to infinity. In the same fashion, we dehne infinite
column matrices f('& from the y") of (7.23) and (7.24),
again as asymptotic series in E '. With the help of
these infinite matrices and (7.22), we get asymptotically

{(j3(11) + 2@3(12)g (22)—lg (2—1))
—1 (1) Q 2JI(11)—lg (12)—

(jg(22) 1&)T 2j3 (21)g(11) 1jj(12}) 1~(2)} (7 35)

[It is worthwhile to keep in mind that infinite matrices
may not be associative. )

Let A be the infinite Inatrix whose elements are

+22r ' Q (2m —2P+1)—'d „'

=22r ' P (2m —2P+1) 'd (7.42)

where

(R (R1+(R2+ (Rp, (7.46)

Similarly

("=—22r ' p (2m —2p —1)—'d „' (743)

(742) and (7.43) are to be understood in the
sense of term-by-term equality for each power of S '.

A very similar calculation yields

(Ay(')). =(& p. (7.44)

Unlike P.42) and (7.43), (7.44) does not involve X
and hence is exact. With this result (7.35) can be
written alternatively in the form

{(] g—2+ (11)
lpga

(12)j—j(22)—lg (21))—1(g (1)—1}
1&1'

—2{+(11) lg(12) (1 g—2jP!(22) lg (21)j!3(11) lg (12))
—1

)(' j3(22)—17(2)} (7 45)

We have kept the entire asymptotic series so far.
From here on, we shall keep only enough terms to get
(7.1). For this more limited purpose, we write

A. „=(2 „(P)=22r '(2m —2n+1) ' (7.36)

(7 37) all(lgj(«) —gg (»)

for m&0 and e&0, and let AT be the transpose of A.
We also de6ne

R1= ((8(')—') (&(&, (7.47)

1!&r
—2{+3(11)—1+(12)j3(22)—1jj(21)(g(1)—1} (7 48)

and (Rp — g—2{$3(11)-1j3(12)g(22)—1 -(2)} (7.49)

(g (2) g Tg (22) (7.38)

erefore the required matrices B(»)—' and 8"')—' are

and

g (««)-«g («)—«g f (7.39)

g(22)—« ~(2)—«g T (7.40)

We proceed to calculate the elements of (8(«) and $(2).

We need to calculate each of these three (R's to the
accuracy E ' for large E.

It is useful to note, in connection with (7.42) and
(7.43), that it follows from (7.30)

d~-'=d~-l. &+V' '(p ~)+o(& ')j—
(7.50)

d.."=d,+.[1 ~E- (p ~)+OP —)j, -
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vrhere and
N=N+O(1) . (7.51)

(7.64)Z &mn&np=&mp
nmWe therefore de6ne an infinite matrix S by, for m&0

and n&0,

Sm„=21r—' p (2m —2p+1) '

Xdp-~[1+ 21N '(p —I)j.

Both of these equations can be solved by the method
of Wiener and Hopf and the results are, using the
notation of Sec. 2 with (7.60) and (7.61),

(7.52) 2 ~.»"=8-'(1-»)"'(1— »)"'(1— '»)-'
Thus, to order X ',

e~»-e and 65,&»-e~. and
X[»"(»-1)-"(»- .)"(»- ')- 3+ (7.65)

This approximation (7.53) may be used in (7.48) and
(7.49) for the purposes of obtaining (R~ and (R3, but is
not accurate enough for (Rl as given by (7.47).

E ~ -» =8-'(1-»)-"'(1— »)"'(1— '»)-'

X [»-(»—1)"'(»—al)'"(» —nl')-'3+. (7.66)
C. Ayyroximate Calculation of S '

Let
s= m-'.

Since, by (7.52), S „depends only on nz —n, we may
compute S again by the method of Wiener and Hopf. '
Define C(») for

~ »~
= 1 such that &(»)=E p.»",

nm

Equations (7.65) and (7.66) are of course merely dif-

(7 54) ferent versions of the same formula. A more symmetrical
way to write this result is as follows: I et

then

(f3 .= (2~)- gg e 4(m e—3(3C—(~ (3) (7.55)

Q(»)=Z ~.»",
nm

(7.67)

C(») = '» "'I
E1—n, /»

»—2nl+ 1/»
X (7.56)

4N(1- »)(1- /»)-
Let

'= -'a —I(1+-'N—') '(1+nz'(1+ —'N ')

{[1+n2(1+1N—I))2 4a12(1+IN—I)2)U2) (7 57)

for )»)(1, then

min(m, n)

p-~
41m

(7.6S)

In particular, it follows from (7.62) that

soo ——8 '=1+—Isn12(1 —n12) 'N '
+—'nl'(1 —nl')-'¹+0(N-'). (7.69)

then

vrhere

Suppose that we define I' and Q on the basis of (2.17)
using this C(») of (7.58), then one possible choice is

~(») = (1-»)'"(1--.»)'"(1--.'»)-',
we have from (7.30), for N ~m,
d ~'= (f (N+ —' —I)'~'(N+ a—p)

—'»

X[1+—,'2¹(B—p)+0 (N-') j
=d (N —I)'"(N—p)

—'"[1+O (N—4)g,
Q(») = 8 '(1—»)

' '(1—nl»)'"(1 —al'») '. (7.61)

When N —&m3, the constant 8 is easily found to be

1n2(1 n2)—IN—2

,',nl'(1 —nP) 'N '+——O(N~). (7.62)

(7.71)

provided that
N=N+ '+ 'N '——(7.72)

On the other hand, note that the term N ' is missing
on the right-hand side of (7.69). Thus it is sufficient,
for the purpose of obtaining (7.1), to use

Ily ('7.54) the elements of the IIlajl'lx iS satisfy

D. Ayyroximate Calculation of 6I.~

C(») =«» '(1 al») ( al/») In order to obtain (RI of (7.47) to the accuracy E ',
X8[(1—nl'»)/(1 nl'/») jL(» nl')/(» n) j» (7 58) we need a formula for d„„' more accurate than (7.50).

Since, for s —+~,
8=nl(1+-,'N ')/nl'. (7.59) I (.+-,)/r(. y1)

= (s+-.')I"[1+—,', (s+-;)-'+O(~4)j, (7.70)

(7.63)
(7.73)
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By (7.71), (7.42), and (7.52), we have, to the required convenient to rewrite (7.78) in the form

accuracy,

vrhere

8&'& S+0', (7 "4) (Ri Soo—siN—' p p q~(d~!t1+ 'N -'(p m)—j)

S '=2m. " p (2m —2p+1) 'd~„(p —I)
Let

X((P—m)L(3P+m)+N '(P+m)'j}S o (7.84)

XpN 'p(3p+ii)+-', N '(Sp'+2pip+I') j. (7.75) g, (p) Zi/p(1 ~)
—i/2(p n )3/2(g n /) —i,

Therefore, the required (R& is
(7.85)

(Ri~Spp —((SS )S)po. (7.76)

Since Spp is given by (7.69), we concentrate on the
second term here.

Let d (1+~N-'p) p, (7.86)

V', =2m —' p Sp.(2e—2p+1)-'
n=o

for all integers p, then

(7 77) and

8 (t) = (1-t)'"(1- k)"'(1— '5)-'

N. i-Soo—ipN ' p p vp, '(p m)—
p

XD3P+m)+ ipN '(SP'+2Pm+m'))Smo. (7.78)

Since, by (7.66), the generating function for Sp„ is

= Z &S o$".
m 0

Then (7.84) is equivalent to

54 d —sg-'(2 )) '/de

(7.87)

Z S. ~-=~-'(1-~)-'"(1- ~)"'(1-n.'~)-' (7 79)
nm

1& )([&1/ni'.
Accordingly

v'„—+ 0

exponentially as p-+ + ot), and

(7.81)

(7.82)

r,=(2 )e)—'$dd d 't " (& d) "''—
X(P-,) (P-,')-, (7.83)

where+ denotes a contour integral in the counter-
clockwise direction along a circular path of radius
between ni' and 1. Note that the integrand in (7.83)
is positive for ni'&)&1.

With (7.65) and (7.83), the evaluation of gati by
(7.78) is straightforward but tedious. By (7.50), it is

V'„ is generated by

2 &.~ =~-'e" (S—1)-"'

X (1—nip)"'(1 —ni'$) '. (7.80)

The point of greatest importance here is that, while

the right-hand side (7.79) has a branch cut from 1 to
infinity, the right-hand side of (7.80) is analytic im

the region

and

dH 'O; 'O;"' fPdi(d lnp;/dj)',

(7.90)

for i = 1,'2. By (7.62) and (7.73), the result for @i is

64= 1—pN 'ni(1 —ni) '+—,'pN~ni(1+2ni) (1—ni) —'
+O(N~)

=1—kN-'ni(1 —ni)-'+~eN~ni(4 —ni) (1—ni)-'
+ O(N 4) . (7.91)-

E. Approximate Calculation of R3

Let
p„=—ipor '/'N(N —ii+ p) 'I'(ii+ p)/n!, (7.92)

X (4bi"'gogo+ g, g,'"g,)g, (7.88)

where each prime means $d/d$. In obtaining (7.88),
we have made use of the fact that gp($) is analytic
inside the unit circle The various functions have been
chosen in such a way that

B.(~) B.(~) Bp(~) =1. (7.89)

Because of (7.89), the evaluation of the right-hand side
of (7.88) is not difficult with the help of the formulas

ddi 'O; 'O;" /id'(dIno/dd)'



394 TAI TSUN WU 149

and by, also approximately,

-=2 -'" 2 L(—p-1))j-"I(-p—l)

X$1+-'E '(1—() '] (7.100)

2 p-5"- —s(1—& ')(1—5) "'
X$1+% '(p+-,')jd„", (7.93)

then by (2.32), to the required accuracy, for fixed
m&0 and m&0,

(2.94)~mn pmTn(12)~

(7.95)(R3~ —iY 2(R3'(R3",

Let p be the infinite column matrix with elements p„,
and T be the infinite row matrix with elements T„,
then by (7.49)

which is analytic in the unit circle. A straightforward
calculation from (7.96), (7.99), and (7.100) then gives

d4' —-,'(« —«V ')(2 i) 'fd(($ —1) '(1—,«)"'

X(1—ni'$) 'L1+~Ã '$((—1) 'j, (7.101)

where

[R
/ (g (ll)—

lp)
where g+ denotes a contour integration in the counter-

(7.96) clockwise direction along a circular path lying in the
region (7.81), and hence

(7.9'7) (R3'- —-', (1—ui)' '(1——',S—') (2.102)

Because of (7.96), for the purpose of computmg (R» as &~~ with an error of the order & '.
we need by (7.39), (7.53), and (7.54) We proceed to calculate [R~". By (7.97), (7.40), and

(7.53),
(R,"-(r8'2') q(». (2.103)(g(ii)—i) —P (g, ())—i) (i „[0) P g~g, „(» (7 98)

m=0

Tn n

It follows from (7.50) and (7.93) that the r are gener-

Accordingly by (7.66) g3 (")—') O„are generated ap ated aPProximately by
proximately by

(P (i 1)—i) (««~ pi/2 (P 1)
—1/2

n=~
X (1—~it)'"(1—~i'E) ' (7 99)

-28(1—8) '"(1—~i() '"( —~i'()( —~i/t) "'
x (1—,'/P)L1 —~x- (1—P)- $. (7.104)

We note that the right-hand side of (7.99) is analytic
in the region (7.81).On the other hand, p are generated Hence, by (7.66), (7.60), and (7.67), for

~ i i
(1,

00 00 n

2 (.8').f.-( i)-' «(1—~)-'(1— /&)-"'(1— '/&)L1 —:&-'(1—~)-'1 2 r. 2 p-r"-"
n=0 n=O m=0

= ( «) 'gd((1 () '—(1— /E) —"'(1— '/E)[1 —-', A' '(1—() '](1—(() '(1—() '(1—«d)"'(1—,'/) —'

=2(1-i-)-/ L(1--.) / (1--.i) / (1--.'f.)- -1j+P- ~-(1-r)- j. (2.105)

On the other hand, by (7.24), y„") are generated yields

approximately by [R3 (')X 'ni(1 —a.i)
—'"

f 1+-',lV 'ui (1—ui) '}, (7.108)

Z &.( ig--- ——.'(1—~-')e"(r—1)-"'
n~0

XL1+l&—'$k —1)-'j, (7 1o6)

for l]i)]. The substitution of (7.105) and (7 106)

gives, after some algebraic simpli6. cation very similar

to that encountered previously,

[Rg"-,'~i(1 ~1) '{1+s& '(1+2~i) (1 ~i) '} (7 102)

And the substitution of (7.102) and ('7.107) into (7.95)

again for 1V ~~ with an error of the order 31—4.

F. Ayyroximate Calculation of R2

Entirely similar to (7.93), let

"' ~ &(—p —1) j 'I'(l —p)

(7.110)

XL1+Z- (p ——,'))d„.', (2.109)

then, by (7.33) and (7.24), we get to the required accu-
racy, for fixed m&0 and e&0,

(»)~mn ~Pm Tn ~
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The substitution of (7.110) into (7.48) gives, because
of (7.49),

e,,——64(re&')-') p (7.111)

where ~, like r, is an infinite row matrix whose elements
are the r of (7.109) for e)0.

The computation of (7$&'& ')p is again based on the
method of generating functions and contains no new
feature. The result is

(re"' ') p 1—(1—ni)
—'"+X—'ni(1 —ui) '". (7.112)

When (7.112) is used together with (7.108) in (7.111),
we get

6t,+ e,,—R,((1—u, )-'i —cV-'~, (1—n,)-'i'j
plV 'ui(1 —ni) '(1+slV 'ni(1 —ni) ').

(7.113)

or
1V»[xp/,

A~»]1—T/T, [-i.

(8.1)

(8 2)

Therefore the present consideration gives little in-
formation about the correlation function for T near T,.
More precisely, we may ask what is the asymptotic
behavior of S~ as E-+op for fixed (1—T/T, )X. This
question can also be answered by the present method.

(8). We discuss briefly the special case Ei——Ep, or
E=Ei Ep. In th——is case, by (1.11),

a pair of Wiener-Hopf sum equations, at least for
fixed TQT .

(b) The asymptotic expansions (2.43) and (3.25)
hold E —+~ at fixed temperatures T~T,. Because of
the explicit form, we see that they hold if

All square roots have disappeared.

G. Final Result
where

ni=ss*, np=s*/s,

z= tanhEC, and s*=e-'~.

(8 3)

(84)
It only remains to substitute (7.91) and (7.113) into

(7.46) to find that, as X—+~,

N. = 1+-4'1V 'o.i(1—ni) '+O(1V ') . (7.114)

Consider first T= T,. In this case

s =V2 —1, and ai ——3—2v2.

Therefore, by (7.1) and (7.2),

(8.5)

It is difficult not to be impressed by the remarkable
amount of cancellation. We now recall the definition
of (R as given by (7.11) and we find that

Sip/SN(" = const[1+ pi%
—'n, (1—ni) '+O(cV ')j (7.115)

for E—&~. This multiplicative constant is then found
to be

(7.116)

on the basis of (5.37). The required result (7.1) is just
(7.115) with (7.116).

8. CONCLUSION AND DISCUSSIONS

(A). In this paper, we have studied in great detail
the asymptotic behavior of the two-spin correlation
(0ppo'p~) for the two-dimensional Ising model at fixed
temperatures. The explicit results are given by (2.43)
for T)T„(3.25) for T(T„and (7.2) for T= T,. In
principle, we can obtain as many terms of the asymp-
totic expansion as we desire, but the computational
labor may be prohibitive.

The method of computation is much more general
than that indicated by the explicit results. The exten-
sion of the results in the following two directions are
clearly desirable.

(a) We may ask what is the asymptotic behavior of
the more general correlation (oppo 44m) at fixed tempera-
tures, when either M or jV is large. Although there is
no way to express this correlation in terms of a Toeplitz
determinant, the procedure of Sec. 2 and Sec. 3 are
directly applicable. More precisely, the asymptotic
behavior of (o-ppo. j4&) can also be obtained by studying

or
S~/SN"' =2"'[1+—'& '+Op" ') j, (8.6)

=pi&424&44A —4+—44[1+ i +—p+O(Q —
4) J (8 7)

—,
' (1+F2) . (8.8)

Our asymptotic result (8.6) for large X is about 10%
smaller than this approximate result of Kaufman and
Onsager.

Consider next T&T,. It is convenient to use the
variables

and

8=-', (s '—s) = csch2K)0,

44=8 '+8—1)1.
(8.9)

(8.10)

Then, by (2.31)—(2.33),

xp —xi ——(4o'—1)"',
Sixp =4o+ 1,

and

xp ——4o (4o'—1)—'".
Accordingly, by (2.39), we have

A i&= —', (co'—1)"'[1—4o (4o' —1)—']
A p &——ip[34oP+ 24o+4+ 3 (4os—1)—i]
and

(8.11)

A 4&=—'(4o' —1)'i'[54o'+ 94o+ 6—1044 (4o'—1)-'
—5(u(4oP —1) ']. (8.12)

An approximate result for S~/Sii'P' has been given
previously by Kaufman and Onsager. ' Their result is
simply
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The substitution of (8.12) into (2.43) gives finally

S)v (xN) i/'(-s/s*)"

)( (1 ssses)i/4(1 ssse —s)—i/4(1 sos) i/—s

X{1+ N-i(&os —1)»sL1+&o(&os—1)—q
+128 'N' —'L9(os+ 6&o—8+9(&o'—1)

—'j
+(5/1024)N '(&o'—1)'/'$15&o'+ 27&o—10

—2&o (&os—1)—'—15&o (&o'—1)—'j}. (8.13)

A similar result can be written down for T&T,.
(C.). We discuss further the case T= T,. One inter-

esting question is: What is the next term on the right
hand side of (7.1)? For this purpose, we have carried
out, in Appendix A, a series expansion of SN for small
nI but fixed E. We note that the E—' terms on the
right hand sides of (A9) and (7.1) agree up to ni s. On
the basis of (A9) we make the following conjectures.

Corjiecture (a). The asymptotic expansion of S)v/S)v(')
at T= T, is of the following form:

S)v/S)v(') = (1+ni)'/4(1 —ni) '/4 Q f N s", (8.14)
nM

where

This condition is not satisfied in Sec. 5. The necessary
generalization is rather straightforward, and is con-
sidered in Appendix B.

(b) We have obtained in Sec. 5 some relation be-
tween two Toeplitz determinants if they are generated
by two functions of which the quotient is a trigono-
metric polynomial, as shown in (5.34). Since (o(g)/(o(') (8)
is not a trigonometric polynomial, a limiting process is
involved. It should be emphasized that we have not
studied this limiting process, which is certainly not
trivial. As an example, we mention that, if

then
P&(-) =N/(N+~),

p~( +i)/p ( )

(8.20)

(8.21)

uniformly as E-+~, but, for all 5,
pN( ) —O~y (8.22)

Since the d„of (7.3) goes to zero exponentially as
n —& ~~, it is believed that such difficulties do not
actually occur.

(E). If the limiting process just mentioned can in-
deed be carried out, then we get the following modified
form of Szego's theorem. '

Conjecture (s): Let
and

=-',ni(1 —ni)-'.
(8.15)

and
(o(')(8) =ie '~" for 0&g&2)r,

In other words, all odd powers of 1/N do not appear.
Conj ecture (b): In the above notation,

fa= —,',ni(1 —ni) '+(81/128)nis(1 —ni) '. (8.16)

In other words, for large Ã at T= T„
S)v/S)v(') = (1+ni)'/'(1 —ni) '/'{1+sN 'ni(1 —ni) '

+128 'N~ni(1 —ni) 'L4+81ni(1 —ni) sj
+0(N ')}. (8.17)

In particular, if EI=E2, then

ln(o(" (8)dg =0. (8.24)

Let SN be the S)&N Toeplitz determinant formed with
the Fourier coefFicients of y(g), and S)v(') with those of
q (»(8), then

~(g) = ~(') (8) ~(') (8), (8.23)

where (o &"'(8)satisfies a Lipschitz condition and ln(p(') (g)
is continuous, periodic, and

S)v/S)v ' ——2' sL1+s', N—'
+97N~/2048+0(N ')$. (8.18)

lim S)v/S)v &'&

N-+oo

We note that, -"if conjecture (a) is correct, then the
0(Nt —') in (7.1) and (8.6) may be replaced by 0(N '),
and theO(N ') in (8.17) and (8.18) replaced byO(N ').

(D). There are numerous reasons why it is not
trivial to render the calculation in the present paper
rigorous. For example, we may ask what is the relation
between (5.17) and (5.20). The author is unable to
answer this question in general.

The considerations in Sec. 5 have other dBFiculties
besides the one just mentioned. We list two others.

(a) The procedure of Wiener and Hopf, as given by
Krein, ~ is mathematically rigorous under the assumption

(8.19)

= exp p —4e 'L(1+2r/k„) (1—2uk „)—1), (8.25)
n~I

in@�(i)

(g) —P tt cine (8.26)

'4 T. D, «e an& C. N, Yang, Phys. Rev. 87, 4t0 (1952).&

(The asymptotic behavior of S)v(s) is given by (4.14).j
If this conjecture is true, it can undoubtedly be

generalized to a large class of possible q &'&'s.

(F). Lee and Yang'4 have studied the "spontaneous
magnetization" of the Ising model in an imaginary
magnetic field of a particular value. In this case, the
two-spin correlation (o-Mo-o)v) can be expressed in terms
of a block Yoeplitz determinant, i.e., a determinant of
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the form (1.8) except that each a„ is itself a j&&j
matrix. If we apply our procedure to this case, we must
consider coupled Wiener-Hopf sum equation of the form

cp—~Sr' Gl~p )
m=p

(8.27)

where each c„ is a j)&j matrix, and a and each x
is a jX1 column matrix. In general, an equation of the
form (8.27) cannot be exactly solved. However, if the
matrix

(8.28)

is of the form
C(&) =C"'(k)C"'(k) (8.29)

O.pp= 1 and ap„= —1. (8.30)

If this expectation value is called (p piv)„ then

).=(-'(1+ oo)l(1- o-) )/(l(1+ oo)-'(1—o-)).
(8.31)

where C "i(&) is a single function (not a matrix), and
C&'i($) is a matrix whose elements are polynomials in (,
then (8.27) can be solved by the procedure of Wiener
and Hopf. ' ' In the case considered by Lee and Yang, "
j=2 and (8.29) is indeed satisfmd. Thus the methods of
this paper are applicable. We should add that, since
Szego's theorem cannot be used for block Toeplitz
matrices, the considerations of Sec. 5 here are needed
to evaluate the asymptotic series for these matrices.

(G). When T=O, only two configurations of the two-
dimensional Ising lattice are of importance. These are
the configurations where 0- „=~1, independent of m
and e. When 0(T(T„we picture these spins as
predominantly +1 (or —1) with "islands" of spins
taking on the opposite value. What is the rough "size"
of these islands?

Since this is a rather vague question, the answer
cannot be precise. Consider the expectation value of
O.pN under the conditions that

(H). We conclude this paper with an attempt to
relate the present results on the Ising model to the
so-called procedure of summing the most divergent
terms. This procedure has been discussed in detail by
Lee, Huang, and Yang" in connection with the boson
system of hard spheres, and is used to about the same
time by Gell-Mann and Brueckner" to calculate the
correlation energy of a dense electron gas. In both of
these problems of statistical mechanics, the procedure is
quite successful and yields the correct answers.

More recently, procedures of this variety have been
applied to problems of quantum-field theory. By far
the two most outstanding examples are the work of
Lee'" and collaborators on the radiative correction to
processes involving intermediate bosons and that of
Feinberg and Pais" on higher-order weak interactions.
Both lines of investigation depend very much on the
assumption that the sum of the most divergent terms
gives approximately the correct answer when the cou-
pling constant, electromagnetic and weak respectively,
is small. For this reason, there has been a great deal of
effort to check whether this assumption is valid in
solvable cases."Unfortunately, in almost all of these
solvable cases, the problem reduces to the Born series
or the series of ladder diagrams. " It therefore seems
desirable to look for examples of a different nature, and
for this purpose the attention may be turned to sta-
tistical mechanics again.

For T)T„ the series expansion of S~ in powers of
X ' may be found from (2.36). Except the factor ns ~,
the series is a power series in lV ', with each coefficient
a polynomial in x3, which is large for T near T,. Suppose
that, for each e, we keep in the coeKcient of E " only
the terms with the highest power of x3. Can we get any
information about the case T=T, by summing this
series and take the limit T —+ T, with fixed 37? The
S ' here plays the role of the coupling constant.

Since we need to keep only terms with the highest
power of xp, we can approximate the A&(s) of (2.37) by

A& (s) L(1+xisp) (1—xssp) (1+x,s))-'",
Since

we get, by (1.1),

(8.32)

(8.33)

where

That is,

A&(z) (1+xss)—'". (8.34)
If the first term on the right-hand side of (3.25) is used,
the result is that, for large E,
(~psr), (2+iV') 'as'"(as ' r—rs) '—

XL(1—rr s)—»4(1—rr ')—'I4(1—rr rr )'t' —1]—'

Thus a very rough measure of the "size" is —(lnus) '.
This "size" approaches infinity as T —+ T,.

It seems very dificult to make these vague state-
ments any more precise. In particular, it may be re-
membered that there are islands inside islands ad
iefiestum.

"T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).

16M. Qell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

'7T. D. Lee, Phys. Rev. 128, 899 (1962); J. Bernstein and
T. D. Lee, Phys. Rev. Letters 11, 512 (1963);T. D. Lee and A.
Sirlin, Rev. Mod. Phys. 36, 666 (1964); and T. D. Lee, Phys.
Rev. Letters 12, 569 (1964)."G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963); 133,
3477 (1964).

» See, for example, N. N. Khuri and A, Pais, Rev. Mod. Phys.
36, 590 (1964).

2o This is almost like trying to learn properties of infinite series
by studying only the geometric series,
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52/-pr —'(1+ai)'/'(1 —a,)—'/'(1 —a2
—')—'/'+2~ 1,

1 CE]A2~ 1 Q )

We substitute (8.34) into (2.36), and use the ap- The result is then
proximations

1+b-2,
@2~2 (1—a,—2)

—1

X dpi' (1—t,)
—»'[1+ (1—a —')—1(1—g,)]—»2

We expand the last factor by the binomial theorem and
(8.35) then integrate term by term to get

1 1

(1y )
—1/4(1 a )1/4 (1 a —2)—1/4 Q ~(1 a —2)—n dg ( //(1 ( ) n—1/2

22 i

Since, for fixed e and large E,

1
2= (1—a,—2)—1/4 p (1—a,—')—~JI/!I'(r4+-2)/I'(tp+r4+-22) . (8,36)

n=o

E!/r(X+ 2+2—') =X " '/2[1+0(/ —')], (8.37)

we must, by the prescription of summing the most divergent terms in the limit a2~ 1.+, rep!ace the factor
X!/I'(%+22+2) in (8.36) by X " '".Therefore

2rS~(1+a ) "'(1—a )'/' (1—a,—')—'«&—»2 p I (r/+. 1)[~(1 —2)]—n

n=o
(8.38)

The sum on the right-hand side of (8.38) is a, formal power series in the variable [S(1—a,—')]—'. In this variable
the radius of convergence R is

E.=o. (8.39)

Thus the series is quite similar to that encountered by Feinberg and Pais. 's There is, strictly speaking, no unique
way of assigning a meaning to (8.38).

In view of the way (8.38) is obtained. , the following way of summing the divergent series is perhaps reasonable
Replacing the gamma function by its integral representation

J~ (22+1)— dt e—ttn —I/2

and reversing the order of summing over r4 and integrating over t, we get from (8.38)

~ 00 1

(1+ )
—1/4(1 a )1/4 (1 a —2)—»4~—1/2 dt e

—/t —1/2 P tnP7(1 a —2)]—n

0 n=o g,

= (1—a ') 1/4E—'/' dt e
—'t—'/'[1+1V '(1—a2 ') 't) '» (840)

= (1—a2 ) / Ep(2%(1—a2 2)) exp2E(1 —a2 )

where Eo is the modified Bessel function. The limit of
the right hand side of (8.40), as a2~ 1+, is zero for
all X. Therefore, the procedure of s24mm2r4g the most

dhvergerIt terms gives, irI, this case, a wrong crisper.
We make the following four remarks.

(a) It is a most interesting question whether it is

justified to blame the wrong answer on (8.39). This

point is not understood by the author.

(b) As already noted in Sec. 5, we do get from (8.40)
the correct depend. ence of S~ ori n1. In other words,

(5.6) follows from either (8.36) or the fact that the
right hand side of (8.36), and hence (8.38) and (8.40),
is independent of a1.

(c) Suppose that we know the form of (8.38) but
not the actual coefficients, that is, suppose that we know

5~(1+a )
—1/4(1 —a ) /4~ (1 a —2)—1/4Q—1/2

Xfunction of pl(1 —a,—')] 1. (8.41)

Let us also make the assumption that, for g fixed but
a, —-1 1+, the right-hand side of (8,41) is finite. Then,



SPIN CORRELATIONS OF TWO —DIMENSIONAL ISING MODEL

we hope that, as nz~ 1+,
function of LN(1 —nz ')$—'

const. Pl(1—o.z ')ji('. (8.42)

The substitution of (8.42) into (8.41) then gives

5)() const (1+ni)'"(1—(zi) '"E '". (8.43)

This is fortuitously consistent with (5.7). What is
wrong is that the explicit result (8.40) shows that this
constant in (8.43) is actually zero.

(d) The correct answer for T= 2', is given by (5.7),
while the sum of the most divergent terms is zero. That
the sum is zero is perhaps worth noting in connection
with the argument of Bernstein and Lee.'

We list below the three known major pitfalls when
the procedure of summing the most divergent terms is
applied to problems of quantum-Geld theory.

(i) There is no reason to believe that the sum of an
arbitrary, small subset of diagrams should give an
answer relevant to the physical problem described by a
nonrenormalizable field theory. In this connection, con-
siderations applicable to ladder diagrams only must be
regarded as devoid of phd'sical content. "

(ii) It does not seem possible to justify neglecting a
larger coupling constant while keeping higher order
terms in a smaller coupling constant. Since the electro-
magnetic coupling constant is much larger than the
weak coupling constant unless the mass of the inter-
mediate boson of weak interactions is enormous, much
of the work where electromagnetic effects are neglected
is open to criticism. "

(iii) The sum of the most divergent terms may not

be a good approximation to the sum of all terms, even
if the coupling constant is small. This makes it rather
dificult to extract useful information without explicit
calculation.

APPENDIX A

We have seen that, at the critical temperature, the
spin correlation along the lattice sites is given by the
5))( of (1.8) with (1.9) and

y(g) = ze
—(spaz(1 it,~i())uz(1 ~,(,—~())-in (A1)

In this Appendix, we try to expand this SN into a
power series in o,l, with S fixed. We note that

de inLy(|))/p(') (8)j=0. (A2)

Because of the rather large number of terms involved,
we shall keep only terms up to and including n12. Thus

~(0) zg iHI2p—o(12(, 2i()+2t—Qlg ie+ (1
— &~ 2)

((1(li~ s(zlz(, 2(&j (A3)

Accordingly, with the (z„(o) of (4.4), we can write (z„
in the form

(z
—(zi (z„z(o)+ (ti(z„+i(o)+ (1 —(zt )(z„(o)

z&1(zn—i s&1 (zn—2 +0(Q1 ) ~ (A4')

And to this order SN consists of the following terms
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"For exampie, Y. Pwu and T. T. Wu, Phys. Rev. 133, B778 (1964). As far as physics is concerned, this work is completely
incorrect on account of both (i} and (ii}.
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This is the required answer.

The f&rst term on the right-hand side of (AS) is just S&"&.The fourth term, which is simply ——,'nPSz&'&, appears
for the following reason. By (A3), there are 1V terms, each of which is equal to ~npS&'o&. There are—, in addition,
(1V—1) terms of the form

go (0) a j+1(0) . (o)g j g j.(0) a g
(0) g-N+1 (0)

gl (0) g ~+2 g j(o) .(o) a (0) (0) a—N+2 (0)

u ~+@&, (A6)
~ ~ ~
~ ~ ~
~ ~ ~ 0

aN —1(0) . . . . (0) . (o) . (0) . (0) . . . (0}g—j+N g—j+N—2 g—j+N-1 g—j+N—3 ap

where 0(j&1V—2. Since (A6) is equal to 4nPSz&'&, we get the fourth term on the right-hand side of (AS). It is a
conseqmemce of (A2) that the coeKcient of this fourth term is ildepemdent of 1V.

The rest of the calculation involves the explicit evaluation of these eleven terms of (AS) by the method of Sec. 4.
This is straightforward but tedious:

Sw~Sm&0&(1+~~nx1V(21V+1) ~—~~n&( —1V)(21V—1) ~—~gaP

—-',nP(1V+1) (1V—1) (21V—1)—'(21V+1) '+-'n '-'1V (1V+1)(21V+1) '(21V+3) '
—enP( —2)1V(1V+1)(21V—1) ~(21V+1) ~+3aP(~)1V(1V—1)(21V—1) ~(21V+1) ~

—sn P (—-', )1V(1V—1)(21V—1)—'(21V—3)—'+-'nP (—-')1V(1V—1)(21V—1)—'(21V+1)—'
+-',nP(-')1V(1V—1)(21V—1)—'(21V—3) ')

=S~'0'(1+2n&1V'/(41P —1)+enPL1 —
8 (41V'—1) '+81(4¹—9) '/8 J) . (A7)
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It is of some interest to rewrite (A7) in the following form, in view of (5.6):

S~ S~&P& (1+-'+i+-'nP)
l
1+-',i& i(4E' —1) '+nP(41P+9/8) (41&&&'—1)—'(4N' —9)—'j

=S&i&P&(1+-',i»i+-pnP){1+-',n (41&&T'—1) '+i&.Pl (41P—1) '+81(41V'—1) '(41V' —9) '/8j}. (A8)

In particular, if we further let E be larger, we get

S~~SN&P& (1+-,'i&.i+ pi&.P) {1+-p'ni(1+2ni) (X '+4K—')+ (8—1/128)nP1V—'}. (A9)

APPENDIX B

In this Appendix, we consider the Wiener-Hopf sum

equation of Sec. 5. Let

P C~-mXm=y~
m=o

Welookfor solutions thatsatisfyP p" lx l & pp. Thus
both X($) and F(g) are analytic for

l &l &1 and con-
tinuous for

l $l &1. Because of (83), lim„„ns„exists
and Z(t) is analytic for

l $l &1, and continuous for

l pl &1 but &41, the singularity at /=1 being loga-
rithmic. It then follows from (81) and (36) that, for

hold for all e&0. Let
where

G(k)&(k) = I'(~)+Z(k), (87)

~(e) —Q ~ einB

where

ld„l & oo

~imp —~ia(p-w& ~(g)

for 0&|t&2m., be such that y(e) &0 and

(82)
G(~")= ~(e). (88)

By (85), (87) can be rewritten in the form, again for

(83) &(t) (1 5) expL G (k)j
= I'(5) (1—P') PG-(5)+Z($) (1—

k ')
XexpG (g), (89)

(84)

—» Z d-k"=G (k)+G-(6), (35)

where G~(t) is analytic for
l $l &1 and continuous for

l $l &1, while G ($) is analytic for
l $l &1 and con-

tinuous for
l pl &1. By the procedure of Wiener and

Hopf, let

sn P &n mxm
mM

for n& —1, and define

&(t)=2 x-5",
n=o

(86)

alld

I'(t) = E y-&",
nM

Z(P)= P s„g".
n=—e&o

"See, for example, Chap. VI of Ref. 10.

For the purposes of Sec. 5, n=~. Without loss of gen-

erality, we can choose n such that in'(8)+piie is con-
tinuous and periodic. We also assume that P„p"ly„l
converge s.

By the Wiener-Levy theorem(' we can find G+(t)
and G ($) such that, for

l $l =1,

&(5)(1—5) expl —G+(&)3
-LI"(~)(1-r')-.-pG (~)3,
= l:I'(~)(1-~')-. -pG (~)3 +Z(~) (1-~')-.

XexpG ($) (310)

provided that 0.(1.The right- and left-hand sides of
(310) are thus analytical continuations of each other
and they together define a function that is analytic
everywhere except possibly at $= 1 and approaches zero
at infinity. Moreover, since, for $ near 1, this function
is bounded by —l1—$l lnl1 —$l multiplied by a
constant, there is actually no singularity at /=1 for
a&1. Therefore,

&(5)(1—t) expl: —G (k)j
—Ll'(~)(1—q-)-- e~G (g)j,=O, (311)

&($)=(1 5) exp—G (k)5
XLI (t)(1—t ')-" pG (t)j . (»2)

Consequently, for 0&a.&1, the Wiener-Hopf equa-
tion (81) has a unique solution given by (812). This
is the case relevant to Sec. 5. For i&i&0, (31) does not
have a solution that satisfies g„p l x„l & ~ unless

(~/~k)"l:I'(()(1-P') «pG-(k)3 I p- =o (813)

for all integers n such that 0&n& n; if (813—) is satis-
fied, the solution is unique. For o.&1, the solution of
(31) is not unique.


