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This procedure is very useful for metals with low
transition temperatures, for which it is necessary to
extrapolate over a substantial range in P to estimate
IIp. The old method of stating the critical Geld as a
power series in T' cannot be used in this way; and
assuming purely parabolic behavior at low tempera-
tures is equivalent to ignoring the curvature of the
deviation plots.

It is tempting to seek an analytic connection between
the gap behavior (1) and the critical field (3) or (4).
This is excluded by the nonlinear way in which the gap-

function enters the critical-field expression L(3.38) of
BCSj.

The maximum deviation Dp is related to the inter-
action strength by its relation to the critical-Geld deriva-
tive at T= T, : from (3)

(dh/dt) i=,———2/(1+Dps. ) (3)

and (dh/dt)i in turn is related to the interaction
strength. "' This point will be discussed in the following

paper.
' T. P. Sheahen, following paper, Phys. Rev. 149, 370 (1966).
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A semiernpirical extension of the BCS model to intermediate- and strong-coupling superconductors is
used to derive a set of simple rules by which the following thermodynamic quantities can be related to one
another: the absolute-zero energy gap 240,. the critical field Ho, the critical temperature T, ; the jump AC
in specific heat at T„and the slope at T, of the critical-Geld curve, (dh/dt) & The pro.cedure determines an
"effective interaction strength" IipV~ (larger than the value of XpV obtained from T,/Og&) for each super-
conductor. A "temperature-variation" of this NOU~ is the major departure from the original BCS model.
NOU* is obtained for 9 superconductors from their specific-heat jumps, and used to predict values of the
ratios (dh/dt)i, tzo/hT„and yT,z/V Hpz which agree well with experiment. The resulting values for the
"effective cutoff" 0, lie close to Oo/9.

I. INTRODUCTION

S INCE the appearance of the BCS' theory of super-
conductivity, attention has gradually focused more

and more on the problem of determining the behavior
of the energy-gap function 6(e,T). It is well established
that the simple square-well BCS interaction, and the
original BCS gap function (independent of energy up
to a cutoK) are not adequate for an understanding of
the strong-coupling superconductors. Such basic BCS
concepts as quasiparticles, density of states, and the
sum over states have been called into question' in

attempting to understand data on lead and mercury.
Nevertheless, the thermodynamic properties of

superconductors can be treated using a very simple
BCS model, with certain semiempirical corrections.
These corrections do not give a fundamental under-
standing of the superconducting mechanism, but do
serve to tie together a set of reduced quantities for which
BCS give "laws of corresponding states. "The various
laws of corresponding states which relate this set of

*This research was supported in part by the Advanced Research
projects Agency under Contract No. SD-90.
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I J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957}.' G. J. Culler, B. D. Fried, R. W. HuB, and J. R. Schrieger,
Phys. Rev. Letters 8, 399 (1962).

quantities in BCS can be extended to account for
experimental values which deviate from the 8CS
values. This extension can be justiGed by discarding
the assumptions that: (1) the interaction is independent
of temperature, and (2) the cutoff energy is near the
Debye temperature.

In this paper, the ratios' IsC/yT„hp/hT„(dh/dt) i,
and yT,s/V~ps will be related to one another within
the BCS framework by simply choosing unusually large
values of the interaction parameter SpV. Experimental
data for IiC/pT, can be used to find the values of an
"effective-interaction strength" EpV* which can then
be used to predict values of It.p/hT, and the free energy
Land therefore (dh/dt)i and yT,'/V47ps j which agree
well with experiment. Each SpV* value is also used to
find an "effective cutoff temperature" 0„' these cutoffs
turn out to be close to QD/9 for most superconductors.

The values of XpV* obtained in this way are not the
depths of attractive square-mell interactions. Rather,
EpV* becomes a convenient parameter with which to
characterize a superconductor within the BCS frame-

' T.= transition temperature; (dh/dt) & slope of reduc——ed
critical Geld 0=—H, (T)/Ho at T=T„ the electronic-specific-heat
coefBcient is y=~w'Noh'; Ho ——critical field at O'K; U =molar
volume; AC= jump in specific heat at T=T, ; the energy gap at
O'K is 260, but frequently in this paper we refer to 60 as the
"energy gap. "
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II. THE BCS SOLUTION FOR STRONG
INTERACTIONS

The original "BCS equation" LEq. (3.27) of Ref. 1)

&oV

""exp(PE) —1 de

exp(I9E)+1 E

where E'= e'+tk(T)s and p= 1/kT. At O'K, this yields

work; it summarizes all the various contributions to
the interaction which are ordinarily handled by rnachine
computations. In essence, the values of XOV* arise from
integrating over the structure of the gap function,
taking proper account of lifetime effects, anisotropy,
etc. The thermodynamic functions are given by their
BCS values corrected for all these, and the correction
factor is expressed as a stronger "effective interaction. "

In Sec. II the SCS solution is reviewed and extended
to the case of a stronger interaction. The values of
1VpV* are determined in Sec. III and used to predict
other thermodynamic ratios, and the cutoff ternpera-
tures 0,. Section JV presents an argument and some
calculations to support the key assumption of Sec. III.
Section V is a summary.

heat jump is the most sensitive thermodynamic probe
of this "effective interaction strength. "

From (3) it follows trivially that

VMo'
=—(d o/kT, )'(1—exp( —2/cVo Vog) .

vT' (4)

Combining (4) with (5) yields

hC 3
~ ho '~dbms

'
(1—expL —2/tVo Vo]) . (6)

pT, 2w'kkT, I d&),

It is known that in general, for a second-order
transition involving an energy gap' (as in supercon-
ductivity), the free-energy difference must vary as
hF ~84. Making use of this fact, it has been shown
that for weak-coupling superconductors' the reduced
critical Geld is given by

hm h =C,(~,/kT, ) (ss/t),

Also, by thermodynamics, the jump in specific heat is

hC V~o' dh) '

yT. 4sryT. s dt) t

hceo sinh (1/tVo Vo)

where coo and Vo are the phonon-frequency cutoff and
the interaction strength at zero temperature, and Xo
is the density of states at the Fermi surface.

BCS also give an expression for the free-energy
difference, which leads to a value of the critical field at
O'K given by

VMo' =4srSotko'(1 —exp/ —2/Xo Vo7) . (3)

Since this is derived at absolute zero, it is an exact
result of BCS, regardless of how small the cutoff may
be, or how strong the interaction is. The factor
(1—exp( —2/EoVoj) will carry through the subsequent
manipulations and recur in each of the formulas for the
dinMnsionless thermodynamic ratios, but it arises
originally from Eq. (3). As long as the BCS model is
used, (3) will hold. By using measured values of V,
Ho Ao, and 1Vo, one can employ (3) to estimate values
of the interaction parameter 1VpVO since the cutoff Acro

has cancelled out. When this is done, the resulting
values of NOVO are much larger4 than those obtained
conventionally from the experimental ratios T,/On.
For example, lead requires XpV0=1.14 to fit the data
to Eq. (3). But because of the very large experimental
uncertainties in 6o measurements, (3) is not the best
means of obtaining NOVO. By further manipulations,
it is possible to cancel out 60 and show that the specific

In particular, the values of XoVo obtained from (3) exceed the
limiting value of 0.5, above which point the lattice is expected to
become unstable. This problem will be discussed further in Sec.
III.

where the constant Co has a value very close to 1/sr.
Since the reduced energy gap 8—=A(T)/A(0) follows
very closely a universal function of temperature, we
can differentiate with respect to temperature to obtain

dh a, d(3s/t)~—=C,
~

=1.OO4-—
dt r kT, dt fr kT,

(7)

in the weak-coupling limit. Finnemore and Mapother'
have evaluated the BCS free-energy integral using
values of Do/kT, which exceed 1.76, corresponding to
intermediate and strong-coupling superconductors. In
each case the slope of the resulting critical Geld curve
equals the chosen value of /ho/kT, (to within the ac-
curacy of their graphs). This technique of "scaling"

L. D. Landau and E. M. Lifshitz, Stgtisti ca/ 5'hysics,
(Pergamon Press Ltd, London, 1958), pp. 434-436.

'A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski,
3lethods of Quantum Field Theory in Statistical Mechanics
(Prentice-Hall, Inc. , Englewood CliBs, ¹wJersey, 1963), pp.
304—307. They give an expression for the free-energy difference

I m 7g(3) &'
(36.9)

into which they proceed to insert a linear dependence of the
energy gap on temperature. Moreover, their entire treatment is
carried through without retaining terms in expL —2/XoVj; com-
bining their Eq. (36.9) with Eq. (3) of the present paper would
give an erroneous result for h.

7 T. P. Sheahen, preceding article, Phys. Rev. 148, 368 (1966).
In this paper it is stated that experimental points for the
energy gap asa function of temperature lie closer to the curve
sm =costs-ts/2] than to the BCS expression. Taking the derivative
at t =1 leads to (dh/dt)1 ——(~)'t"=—1.7725 instead of 1.7367 as in
the strict BCS case. This also accounts for the numerical factor
(1.48) which will appear in the formula for the speci6c-heat jump.

D. K.. Finnemore and D. E. Mapother, Phys. Rev. 140, A507
(1965).
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hp/kT, does not strictly follow from the BCS treat-
ment: in particular, they did not use a smaller cuto6
Puup in conjunction with their larger energy-gap ratios.
Nevertheless, their model is so closely akin to BCS that
the result (7) can be said to arise from the simple BCS
model, with a very minor modi6cation (large cutoff),
even in the strong-coupling case. Moreover, Toxen'
has observed empirically that (7) holds over the entire
range of interaction strengths. Therefore we insert (7)
into (6) to obtain

hC 3 Ap)4
—

I
(1—exp( —2/EpVpg).

~T 2 kT i

Fundamentally, Eq. (8) is valid only to the extent that
(7) holds; the scatter in experimental values of Ap is
suKciently great that we can only say that (7) is not
violated (within experimental error) by the majority
of superconducting elements. One calculation" (based
on an extremely crude model, involving an energy gap
independent of temperature) suggested that (7) is
merely a numerical coincidence; however, the calcu-
lations of Finnemore and Mapother indicate that (7)
is a result of a simple BCS model with increased values
of ~p/kT, . Accordingly, it is legitimate within the
present context of staying close to the BCS square-well
model to use (dh/dt) r and 6p/kT, interchangeably.

It is necessary at this point to develop a relation

2.25—

2.20—

2.I5—

between hp/kT, and the interaction parameter 1VpV.
In the limit of zero energy gap, the metal becomes
normal, so (1) reduces to

&oV.

" 'exp(e/kT, )—1 de

exp(c/kT, )+1 e

&oVo

(~pNTe) sinh(1/Npvp) exp(&)
(»)

exp(x)+1 x

This uniquely determines a relation between ~p/kT,
and SoUo', this relation is given by the dashed curve in
Fig. 1. In the weak-coupling limit, (2) and (10) combine
to give

~p/kT. =1.764/(1 —exp[ —2/XpVp]). (12)

This appears as the solid curve in Fig. 1, where it is
seen to be an excellent approximation to the strict
BCS result (11) for EpVp(0. 5. Also shown in Fig. 1
(dotted curve) is the expression given by Miihlschlegel"
for 6nite cutouts. At no value of XpVo does Muhl-
schlegel's approximation lie as close to the BCS curve
as the simple choice 6p/kT, =1.764.

III. EFFECTIVE INTERACTION STRENGTH

This integral is evaluated numerically, being cus-
tomarily approximated by the limiting case of a very
large cutoff (or equivalently the case of EpV, (0.5):

kT,/kor, =1.14 exp( —1/XpV, ), (10)

where now co, and V, are the cutoff and interaction
strength at the transition temperature.

In BCS, it was assumed that V,= Vp and m =cop.
In this case, combining (2) with the integral equation
(9) gives

2.10—

2.05—

I.764
-RiNoV)-e At this point we introduce the principal assumption

of this paper: we assume that the energy gap varies as

~ 2.OO—
O

1.95—

2.7

2.5—

I I I I I I I Pb

I.90—

I.85—
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FIG. 1. The relative energy-gap ratio (d o/kT, ) as a function oi

the interaction strength 1VOV. Dashed curve: the solution of (11}
in the strict BCS case. Solid curve: Eq. {12) extended to large
values of ÃOV. Dotted curve: Muhlschlegel's approximation to
the strict BCS case.

~ A. M. Toxen, Phys. Rev. Letters 15, 462 (1965).
J. Grunzweig-Genossar and M. Revzen, Phys. Rev. Letters

1{j,131 (1966).

I I I I I I I I I !
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 IO.O

{dh/dt),

Fzo. 2. The empirical relation between the speci6c-heat jump
and the reduced critical-Geld derivative at k=1. The solid line is
Eq. (14). The points are experimental.

» Q. Muhlschlegel, Z. Physik 155, 313 (19~9)
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TABLE I. Thermodynamic parameters of superconductors.

Element Tc('K) a e~ y(mJ/mole 'Kp) V» (cc/mole) ¹b AC(m J/mole 'K) Ho(G) -Dp (dk/Ch) x d,p/kTc yTcp/p~p&

Cd
Zrl
Ga
Al
Tl
In
Sn
Hg
Ta
V
Pb

Nb(s) «
Nb(e) «

0.52
0.85
1 083e
1.17
2.381
3.405&

3.722o
4 f54o
4.482'
5.03
7.193
9 2Qaa

9 46dd

209c
309d
325c
427g

78.51

109m
201m

72 Qn, q

255u
338w
105q
275bb
238ee

P 688c
O.64d
0 596c
1.35I
1.471

1.691
1.781
1.86q
$7u
9.26w

3.0oq
7 79bb

7.53~

13.0
9.03

11.65
9.87

16.9
15.37
16.06
13.85
10.9
8.5

17.85
10.8
10.8

0.425
0.566
0.408
1.09
0.690
0.863
0.885
1.073
4.18
8.75
1.34
5.80
5.61

0 83c
0.61d
0.892&

2.06g
5.261

1O.OI

10.55I
18.3r
40.5I
72.9w

57.5~
134aa
147~

29.6c
53.4d

$9.2o

f03.0E
175j
282.7o

305.5o

411.0o

78Pu
131pw

802.5»

1994aa
192odd

p 046c
—0.042 d

0.035c
—0.040*
—0.030&

0,021o
—0.026o
+0.017o
—0.032'

0 030w

+0.023»
—O.O12»a

1.'71c

1.70d
1.72e

1.75@

1.79&

1.87o
1 84o

2,05o
1.80~
1.79w

2.13»
1.90aa
1 99dd

1.68-1.75b
1.851'

1.82n
1.73n, 1.80
2.0, 2,3s

1.80v
75x

2.16n
1.87«
1.92v

0.177
0.177
0.173
0,171
0.161
0.157
0.166
0.139
0.161
0.161
0.136
0.154
0.170

V. B. Compton, Rev. Mod. Phys. 35, 1 (1963).

ty, 1963 (unpublished).

a Except where otherwise noted, these values were taken from B.T. Matthias, T. H. Geballe, and
b Calculated from values of y and V~ given.
c

¹ E. Phillips, Phys. Rev. 134, A385 (1964).
d G. Seidel and P. H. Keesom, Phys. Rev. 112, 1083 (1958).
e W. D. Gregory, T. P. Sheahen, and J.F. Cochran (to be published).
& T. P. Sheahen, J. F. Cochran, and W. D. Gregory (to be published).
& N. E. Phillips, Phys. Rev. 114, 676 (1959).
h M. A. Biondi, M. P. Garfunkel, and W. A. Thompson, Phys. Rev. 136, A1471 (1964).
I B.J. C. van der Hoeven, Jr., and P. H. Keesom, Phys. Rev. 135, A631 (1964).
j Computed from the data of E. Maxwell and O. S. Lutes, Phys. Rev. 94, 333 (1954).
I' R. Weil and A. W. Lawson, Phys. Rev. 141, 452 (1966).
I H. R. O'Neal and N. E. Phillips, Phys. Rev. 137, A748 (1965).
m W. A. Bryant and P. H. Keesom, Phys. Rev. 123, 491 (1961).
n I. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961).
o D. K. Finnernore and D. E. Mapother, Phys. Rev. 140, A507 (1965).
& J. F. Cochran, Ann. Phys. (N.Y.) 19, 186 (1962).
q N. E. Phillips, M. H. Lambert, and W. R. Gardner, Rev. Mod. Phys. 36, 131 (1964).
& J.F. Cochran, C. A. Shipman, and J. E. Neighbor, Rev. Sci. Instr. 37, 499 (1966).
s S. Bermon and D. M. Ginsburg, Phys. Rev. 135, A306 (1964).
t R. W. Shaw, D. E. Mapother, and D. C. Hopkins, Phys. Rev. 120, 88 (1960).
u D. White, C. Chou, and H. L. Johnston, Phys. Rev. 109, 797 (1958).
v P. Townsend and J.Sutton, Phys. Rev. 128, 591 (1962).
w W. S. Corak, B, B.Goodman, C. B.Satterthwaite, and A. Wexler, Phys. Rev. 102, 656 (1956).
& J.L. Brewster, M. Levy, and I. Rudnick, Phys. Rev. 132, 1062 (1963).
v C. A. Shipman, J. F. Cochran, and M. Garber, J. Phys. Chem. Solids 24, 1369 (1963).
» D. L. Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev. 112, 1888 (1958).
aa H. A. Leupold and H. A. Boorse, Phys. Rev. 134, A1322 (1964).
bb B.J. C. van der Hoeven, Jr., and P. H. Keesom, Phys. Rev. 134, A1320 (1964).«E. R. Dobbs and J. M. Perez, International Conference on Superconductivity, Colgate Universi
dd Warren de Sorbo, Phys. Rev. 132, 107 (1963).
ee A. T. Hirshfeld, H. A. Leupold, and H. A. Boorse, Phys. Rev. 12'7, 1501 (1962).
«The designation Nb(s) refers to single-crystal niobium; Nb(p) refers to polycrystal niobium.

TABLE II. Calculation of E0V* and p~, .

Element

BCS
This workb

sC/~T,

1.43
1.48

1—exp (—2/Ep vpl Ep v@

1.0 0
(1.o) (o)

0 /od

1.0

Predicted
2mp/kT,

3.53
3.53

Predicted
(dh/dt) i

1.74
1.77

Predicted
yT,p/V Hp'

0.168
0.168

Cd
Zn
(a
Al
Tlo
In
Sn
Hg
Ta
V
Pb

Nb(s)
Nb(p)

1.32
1.30
1.40
1.43

(1.69)
1.73
1.60
2.37
1.59
1.57
2.67
1.87
2.07

1.038
1.044
1.018
1.012
0.957
0.949
0.974
0.855
0.976
0.981
0.822
0.925
0.895

0.65
0.67
0.55
1.04
0.54
0.50
1.16
0.77
0.89

9.6
13.3
20.4
9.5

25.2
32.7
14.9
29.5
25.5

0.122
0.122
0.101
0.132
0.101
0.103
0.142
0.108
0.107

3.40
3.36
3.48
3.48
3.68
3.72
3.62
4.12
3.62
3.60
4.32
3.82
3.96

1.71
1.70
1.75
1.76
1.85
1.87
1.82
2.07
1.81
1.80
2.15
1.92
1.98

0.175
0.176
0.173
0.173
0.161
0.159
0.163
0.143
0.164
0.165
0.136
0.155
0.150

a See Refs. 1 and 11.
b Values listed are for the special case NoW =0.' NoV* for thallium was obtained from Eq. (4), not (13).The value listed for hC/yT& is a prediction.

(12) for all values of the interaction parameter XpVp.
This is equivalent to assuming that (10) holds instead
of (9) even when 1VpVp)0.5. Thus, in Fig. 1 we follow
the solid curve (12) rather than the dashed curve (11).
To denote that this is an extension of the weak-coupling
formula to a region beyond its proper bounds, ere

substitute an "effective interaction strength" XoV* in
place of NOVO.

Inserting (12) into (8) gives at once

hC/yT, =1.48/(1 —exp/ —2/1VpV*j)'. (13)

On the other hand, using (12) to elimmate (1—cxpL—2/
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XpV*]) gives

DC/yT, =0.27 (/s. o/k T,)'= 0.27 (dh/dt) ', (14)

Tanrz III. Estimation of NpV~ and (o') in
weak-coupling superconductors.

Element

Cd
Zn
Ga
Al

On/9 Predicted Observed
('K) NpV* AC/pT.

23 025 132
34 0.26 1.30
36.5 0.274 1.40
48 0.26 1.43

(o')

0.027'
0.031
0.014
0.0085

"J.R. CIem, University of illinois thesis; Phys. Rev. 148, 392
(1966).

where (7) has been used in the last step.
The validity of the prediction (14) is demon-

strated by Fig. 2, which displays reduced speciGc-heat
jumps versus reduced critical-Geld derivatives [Eq.
(14) is the solid line and the points are experimental].
This prediction (14) occurs only if (12) is chosen to
represent the behavior of the energy gap with increasing
strength; any other functional form would leave an
extra factor involving XpV in (14). Of course it is
always possible to reverse the above procedure: If we
had chosen to regard Fig. 2 as an empirical observation,
then the condition (8) requires the choice of (12) to
represent t1p/kT, for all XpV*.

Table I is a collection of relevant data on super-
conductors. In order to determine the "effective inter-
action strength" XpV*, we may use any one of (3), (4),
(12), or (13). Obviously (13) is the most sensitive. In
Table II the values of hC/pT, are listed, and have been
used to Gnd 1VpV*, and to predict values of (dh/dt)r,
t1p/kT„and yT.'/V~/. The agreement with existing
data is expected, because of the relations (5), (7), and
(14). That is, we have only one free parameter (XpV*)
which gives two numbers (/sC/YT, and 6p/kT, ); then
(dh/dt)t is Gxed by the BCS free-energy condition (7)
and yT,s/V~ps follows by thermodynamics (5).

Table II also lists the values of the "effective cutoff
temperature" 0', obtained by summarily plugging these
XpV* values into (10), with ha&, =kO, . These cutoffs are
consistently in the range O~, = 0&/9, which implies in

many cases that the cutoffs are within the width of the
energy gap at 0 K. Further comment on this situation
is deferred to Sec. IV.

In weak-coupling superconductors, the efI'ects of
anisotropy cause the values of the thermodynamic
ratios to drop below their BCS values, which cannot
occur for real values of EOV*. Clem" has calculated
correction factors for anisotropic superconductors: de-
noting the mean-square-anisotropy by (a'), he Gnds

(~./kT. ) - 1—:("), (15a)

(dh/dt), ~ 1—(a') (15b)

(V~o'/vT')" (1+2(a')) ', (15c)

(AC/yT, ) 1—4(a') (15d)

Since (a') is always small ((0.05), this set of relations
maintains the conditions (7) and (14) to within experi-
mental accuracy. The complete set of thermodynamic
relations is therefore

11C 1.48 (1—4(a'))

yT, (1—exp[—2/1Vp V*])s

d, p 1.764(1—-'(a'))

kT, (1—exp[—2/Xp V*])

yT,' 0.1683(1+2(a'))

V~ps (1—exp[ 2/Xp Ve])

—1.7725 (1—(a'))(dh

4 dt, (1—exp[—2/1VpV*])

(16)

(17)

(18)

(19)

First consider the weak-coupling superconductors:
when EpV*(0.3, the denominators in (16)—(19) are
indistinguishable from one; so we use (16) to determine
the anisotropy (a') and then employ this (a') value to
predict (17)—(19). In view of the striking consistency
of the cutoff values (all near 0', = 0'n/9), we can make
a crude estimate of 1VpV* by assumieg 0,= Oz/9, and
then using Eq. (10), which is certainly valid for EpV
(0.3. These values of SOV* are listed in Table III,
together with the estimated anisotropy values for these
superconductors.

The element thallium was handled in a different way
from the others: Thallium has a large lattice speciGc
heat (0'~ small) at T„which makes the speciGc-heat
jump very dificult to measure accurately. Accordingly,
Eq. (4) [instead of (13)]was used to obtain EpV* for
thallium. The value of hC/yT, =1.69 in Table II is a
prediction based on that value of SOV*, assuming
(a') =0. The current best experimental value" is
AC/yT, = 1.50.

As soon as the relations (16)—(19) exceed their BCS
weak-coupling values, we cannot distinguish the effect
of anisotropy from a slightly smaller value of SOV* for
the superconductor. In view of the fact that very few
anisotropies are well known, we have set (a')=0 in

(16)—(19) for all the stronger superconductors, thereby
absorbing the anisotropy correction into the factor
(1—exp[—2/SpV*]), where it acts to decrease ATpV*.

Clearly, the importance of anisotropy diminishes as
coupling strength increases.

There is one more number which is predictable from
the data of Tables II and III: the maximum deviation
Do of the critical Geld curve from a parabola. In the
preceding article' it has been shown that the critical field
curves of most superconductors can be adequately
represented empirically by

h+Dp sin7rh= 1 t'. —(20)

If we evaluate the derivative of this expression at t,= 1,
's B.J. C. van der Hoeven, Jr., and P. H. Keesom, Phys, Rev.

IBS, A631 (1964).
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we find with the help of (19) the result

Ds——0.041—0.36(expL —2/NsV*j —(a')) . (21)

Unfortunately, (21) is not a good means of determining
EOV~, since a reasonable amount of anisotropy will

change Ds by 25% (as calculated by Clem" ) if NsV* is
small. Clearly, if a superconductor fits Eq. (20) well,
then the predicted value of Do will be as accurate as the
predicted value of (dk/dt)t. Without knowledge of the
anisotropy, Do remains in doubt. "

It must be emphasized that the values of EOV~

obtained in this entire procedure do not represent
square-well interaction strengths of ideal BCS super-
conductors. Therefore, the fact that many of the values
of NoV exceed 0.5 (implying lattice instability) is not
of concern here. These EOV* values inherently include
lifetime effects, Coulomb repulsion, etc., all summarized
in a single multiplying factor which occurs consistently
in those quantities which average over the energy gap,
An understanding of the true superconducting mecha-
nism, and the details of the energy-gap function, still
require a more precise study than that available with
the BCS model.

IV. TEMPERATURE DEPENDENCE OF
THE EFFECTIVE INTERACTION

In the preceding section, it was shown that by fol-
lowing through the derivation of the principal BCS
thermodynamic formulas with greater care than usual,
new results were obtained. By blindly plugging into
these improved formulas it was possible to derive a
relation which was found to agree with experiment.
That is, the BCS model still works (for thermodynamic
properties) outside its range of validity. The only
departure from the BCS paper was the assumption that
for all interaction strengths, the relation (12) holds;
i.e., De/kT, varies along the solid curve of Fig. 1. The
purpose of this section is twofold: to justify this relation
within the framework of the BCS theory, and to suggest
in a semiquantitative way that the well-known energy
dependence of the gap function might be treated as a
temperature dependence of the "effective interaction
strength" EOV~.

The maximum value of the gap ratio in the constant-
interaction BCS model (dashed curve of Fig. 1) is 2.0,
when SOV0~ . However, experimental values of the
gap ratio exceed 2.0, so it is necessary to leave the
simple constant-interaction BCS model. Ordinarily
this step involves going to a precise formalism which
includes lifetime effects and an energy-dependent gap
function. In this paper we choose instead to assume a
slight temperature dependence of the interaction
parameter EOV*. This turns out to be an adequate

' D. L. Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev.
112, 1888 (1958) suggested a linear variation of Do with (T,/eo),
whereas (21) indicates a variation as (T,/Oo)'. However, the
same data plotted on log, semilog, or reciprocal paper give vague
straight-line relationships; all of which illustrates the profound
eGect of anisotropy on DO.

means of characterizing the thermodynamic quantities.
Since the thermodynamic ratios involve integrals over
the energy-dependence, it may be possible to interpret
this "temperature dependence" as simply a way of
rolling all the complexities of a rigorous Green's-
functional calculation into one single number, the
effective interaction strength EOV*. Such a procedure
is reminiscent of the way in which the time constant v

in the Boltzmann transport equation is actually just a
shorthand notation for a rather involved scattering
integral.

First of all, let us ask how much of a temperature
dependence of NsV* is necessary to make (12) hold
instead of (11) for the gap ratios of all superconductors.
The suppressed zero of Fig. j. conceals the fact that the
difference between these functions is small. In lead, the
worst case, only a 10%decrease in NsV* between T=0
and T=T, suffices to account for the value of the
experimental gap ratio, Ds/kT, =2.15.

The temperature dependence of the phonon spectrum
is presumably very small, being due to minor changes in
the lattice structure accompanying thermal expansion;
and the electrons have energies =Ep)&kT„so their
dynamics should not change appreciably with tempera-
ture. However, this does not guarantee that there will

be no change in the electron-phonon interaction with
temperature. It is known" that as the coupling strength
increases, lifetime effects become more influential; and
these effects are much more important near T, than at
O'K. Accordingly, it does not seem at all unreasonable
to expect that in a strong coupling superconductor the
effective interaction strength might diminish by as
much as 10% between O'K and T,. Assuming just this
condition is enough to justify Eq. (12), and thence to
make predictions which agree with experiment, as
already shown.

It is not enough merely to contrive the" values of
NsV*(0) and NeV*(T,) in order to get from the dashed
curve to the solid curve of Fig. 1: the behavior at
intermediate temperatures must also be reasonable.
Now at any temperature, NsV*(T) can be found by
carrying out a numerical integration of Eq. (1). This
integral is usually performed by extending A~, to
in6nity, and integrating over the reduced variable
e/kT; here we use a reduced variable a=e/h&o„ in
which case we have for (1)

1 ' (x'+ (I,s)'" rim

tanh (22)
NpV(/) p 2(kT /Scop)$ (s +8 )

where 8 is half the energy gap in suitable units:
8,=6(f)/ha&, . The values of the integral obtained in
this way are taken to be I/NsV(t). The temperature
dependence arises primarily through the temperature
dependence of the energy gap (8).

If the numbers tabulated by MuhlschlegeP' for the

"D. J. Scalapino, Y. %ada, and J. C. Swihart, Phys. Rev.
Letters 14, 102 (1965}.
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FzG. 3. The variation of the effective interaction strength"
arith temperature. The total decrease is negligible for weak- and
intermediate-coupling super conductors; but as the effective
interaction increases, the temperature dependence also grows.

original temperature-independent BCS model are used
for A(t), then (22) will give back again a temperature-
independent EpV. But the experimental'6 values of the
reduced energy gap as a function of temperature lie
slightly above the original BCS curve, so it would be
better to use these actual values. In fact, as has been
observed in the preceding article, ' experimental values
lie close to the curve

O'= PA (T)/6 (0)$'= cos (s.P/2), (23)

and of course CP=b'/(sinh/1/NOVO])' by Eq. (2). This
greatly simplifies the numerical integration of (22), and
will necessarily result in values of NpV(f) which vary
with temperature. For each value of NOV(0) we choose
(kT,/A~0) from Eq. (10), and the result is that NOV(t)
decreases monotonically over the entire range 0(t(1.
The results of integrating (22) with the choice (23) for
the reduced energy gap are shown in Fig. 3. Clearly, as
the interaction strength becomes stronger, the tempera-
ture variation also increases.

It is equally possible to choose (kT,/Rro) from the
strict BCS formula (9) for each value of NDV(0). Doing
so gives an NOV(t) which decreases slowly from 1=0 to
5=0.95 and then rises to the starting value NOV(0)
when t=1. Such anomalous behavior would seem to
indicate that the lifetime effects discussed above had
suddenly become rather unimportant in the narrow
range near t=1.

Thus if we accept the empirical rule (23) as repre-
senting the true energy-gap dependence upon tem-
perature, then a temperature-dependent interaction is
indicated. Moreover, this dependence is forced into an
anomalous form (a shallow minimum near t=0.95) by
requiring the original BCS condition (9);but the choice
(10) for all NOV* gives a monotonic behavior of the
effective interaction strength. Since (9) gives (11) while

"I. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961);
P. Townsend and J. Sutton, ibid. 128, 591 (1962); M. A. Biondi,
M. P. Garfunkel, and W. A. Thompson, ibid. 136, A1471 (1964).

2—
EpV* EpV

"@'exp(PE) —1 dc
(25)

exp(PF)+1 F.

where now 0'& lies reasonably close to O~&. (See Table
IV.) Of course we are still left with one free parameter
by which to Gt data: 0'2. Unfortunately, the BCS paper
does not appear to contain any justi6cation for such
an additive factor of 2. Rather than speculate on this
point, we merely observe here that adding a factor of
+2 to the right side of (1), thus obtaining (25), would
accomplish three things: the SpV values would be
reduced below the instability level (No V= -', ), the
cutoffs 0'2 would be brought close to On, and the
necessity of a temperature-dependent interaction would
be removed. This last point holds for the following
reason: when the cutoff is large = 02, the integral on
the right of (9) is adequately approximated by

"' exp(e/kT, )—1 de 2y, t' Og—= ln +ln~, (26)
exp(e/kT, )+1 e m k T,

with y,=1.781, and 2y,/m=1. 14. The important
thing to notice here is that the factor 1.14 is preserved
by the large cutoff, which means that both (10) and
(12) hold when the cutoff is large. By using (25) in
place of (1) we only change the factor in the expo-

(10) gives (12), and (12) permits values of 60/kT. )2.0,
we see that the choice of an "effective interaction"
monotonically decreasing with temperature is an easy
way to account for both the observed temperature
dependence of the gap function (23) and the fact that
60/kT, can exceed 2.0.

Finally, note that this temperature dependence does
not turn the manipulations of Sec. III into a two-
parameter Gtting formula: once the choice of NOV*(0)
is made, the value of NOV*(T,) is determined by the
combination of (12), (22) and (23). All the Ptting in
Sec, III was done with only one parameter LNOV(0));
the temperature-dependence was introduced later in
order tojustify the choice of Eq. (12) for the energy-

gap ratio.
This interpretation of a temperature-dependent

SpV is by no means unique, nor is it necessarily
correct. Two alternatives present themselves at once:

(1) Table II shows that all of the "effective cutoff
temperatures" 0, are near O~D/9. Since —',= exp( —2.2),
it is a trivial algebraic manipulation to incorporate this
cutoff-reducing factor into the interaction strength.
Conventionally, NOV is determined from Eq. (10), i.e.,

NpV(... ) —= 1/111(1.148'/T, ) . (24)

In Table IV are tabulated the differences between these
numbers and the XpV* values found earlier. The fact
that all these differences lie in the vicinity of 2 is no
more surprising that the fact that all the "effective
cutoffs" lie near On/9; the two observations are inter-
changeable. Still another trivial manipulation permits
us to write in place of Eq. (1)
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1 1
TABLE IV. Calculation of

~

(Ep+aouv ÃOV+

Element

Tl
In
Sn
Hg
Ta
V
Pb

Nb(s)
Nb(p)

T,/On'

0.0304
0.0312
0.0185
0.0577
0.0176
0.0149
0.0685
0.0335
0.0398

ÃoUb

(conventional)

0.276
0.278
0.243
0.335
0.239
0.231
0.355
0.283
0,298

0.65
0.67
0.55
1.04
0.54
0.50
1.1.6
0.77
0.89

1 1

NpV„„ NoU+

2.09
2.11
2.30
2.02
2.29
2.27
1.95
2.23
2.23

02/OD

0.91
0.90
0.74
0.98
0.75
0.76
1.05
0.79
0.79

a From Table I.
b Calculated using Eq. (10) with adjacent T&/ea values.

nentials of (10) and (12) from ÃpV to EpV*, while
leaving the cutoff large. In this way Eq. (12) could be
used without reqUiring a temperature-dependent inter-
action for its justification.

In view of these three favorable results, the choice
of (25) in place of (1) may seem tempting, but the un-
explained factor of +2 is a severe obstacle. It is easier to
justify a temperature-dependent "effective interaction"
as we have done above. It is entirely possible that these
consistent differences between I//l/pV„and 1/EpV
are coincidental.

(2) Machine calculations which assume a tempera-
ture-independent interaction and an energy-dependent
gap function have achieved the same results. For
example, Swihart'" used a "nonseparable" interaction
with Xp V= 1.0 to obtain Ap/kT, =2.08, which lies close
to the solid curve of Fig. 1. This is cited not in order to
revive the nonseparable interaction, but to indicate
that even the simplest improvements to the BCS treat-
rnent can be used to justify the choice of (12). It is
known that the gap function varies with energy, ' and
the Eliashberg" type of interaction has proved very
successful in explaining data on strong-coupling
superconductors.

The advantage of the present temperature-dependent
model is that it returns to the simple BCS treatment, in
which all the complicated machine calculations are side-

stepped by permitting a small decrease in EOV* with
temperature. The experimental justification for this
arises out of the observed deviations of the experi-
mental b(t)-versus-t curves from the temperature-
independent BCS model, and from the surprisingly
accurate correlation rules for Ap/kT„(dh/dt)i, yT, '/

'7 J. C. Swihart, IBM J. Res. Develop. 6, 14 (1962). The
"nonseparable interaction" is an attractive square-well subject
to the condition that electrons o6 the Fermi surface interact with
other excited electrons, as long as they lie within Acoz of each
other. This is contrasted with the BCS model, wherein electrons
must lie within Acoz of the Fermi level, and interact only with
states on the Fermi surface."J.C. Swihart, Phys. Rev. 131, 73 (1963)."G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)
LEnglish transl. :Soviet Phys. —JETP ll, 696 (1960)j.

V~p ', and h-C/yT, which come out of the simple BCS
theory when (12) is used in place of (11).

V. CONCLUSIONS

The thermodynamic quantities in a superconductor
can be understood using the simple BCS model with an
"effective interaction strength" EOV* which represents
the average of the true interaction.

It is shown that AC/yT, ~ (Ap/kT, )s ~ (dh/dt)is, and
this relation is used to predict values of (dh/dt)i and
Ap/kT, from calorimetric data, and to obtain values of
XOV*. These EOV* values are much larger than those
conventionally obtained from the ratios T,/HD. The
resulting values of the cutoffs are near O~n/9. Making
use of this fact, the values of EoV* in weak-coupling
superconductors can be estimated.

One of the basic BCS weak-coupling equations LEq.
(12)j is extended beyond its limit of validity. To justify
this step, the "effective interaction" is assumed to
decrease by less than ip%%uq with increasing temperature;
this is to be expected for a superconductor in which
lifetime effects are important. The temperature depend-
ence of EpV(t) is calculated assuming an energy gap
varying with temperature as 6 (T)=6 (0) (cosLs.ts/2$)"'.

In discussing alternatives to a "temperature-de-
pendent interaction" it is shown that the addition of a
factor of +2 to the BCS gap equation would suffice to
(a) restore the old values of EpV, (b) give cutoffs near
the Debye temperature, and (c) eliminate the need for
any temperature dependence in the effective interaction.
But such a factor of +2 has not been justified.
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