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A theory is presented for nuclear quadrupole resonance (NQR) by means of nuclear induction and is
extended to absorption methods. Based on the Bloch-type equations of Bloom, Robinson, and Volkoff, the
theory is derived for the case I =1, y=0. For the induction method to work, a small magnetic field must re-
move the degeneracy of the m =1 levels; in practice this is done by an audio-frequency modulation field.
Phase-sensitive detection methods are then used to minimize noise. The theory predicts the effect of modula-
tion field, static magnetic field, and rf field on the slow-passage induction signal. Theory and experiment
agree that magnetic fields (modulating or static) broaden the line, but for low enough fields, the true NQR
derivative line is observed. Sufficiently large static fields introduce complex structure into the line shape. The
effect of rf is given by a modified form of the Bloembergen-Purcell-Pound saturation curves. Experiments
on polycrystal hexamethylenetetramine yield good agreement with all aspects of the theory. The extension
of the theory to single-coil (absorption) NQR methods predicts that sinusoidal magnetic modulation and
phase-sensitive detection will produce zero signal in a single-coil experiment. In addition it yields the proper
line shapes for Zeeman modulation and frequency modulation methods and predicts the effects of modulation
amplitude and magnetic fields in both cases. A brief qualitative discussion of cases other than I=1,7=0
indicates that the induction method can be used for half-integral spins with any », but that it is applicable
to integral spins only when % is small. In other words the induction method can be used for any case to which
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the Zeeman-modulated absorption method is applicable.

I. INTRODUCTION

ALTHOUGH nuclear quadrupole resonance (NQR)
experiments using a two-coil nuclear induction
spectrometer were first performed ten years ago by
Haering and Volkoff' and continued by Robinson,?
it has been only recently that interest in this experi-
mental method has become more widespread.>~5 The
availability of commercial instruments of this type
promises to make the induction spectrometer a valuable
supplement to the already commonly used single-coil
absorption devices of both the frequency-modulated
and Zeeman-modulated varieties.

In principle the induction method is unsuitable for
NQR.6-8 However, the presence of a magnetic field can
permit the method to work.5:%:10 A qualitative discus-
sion of the method of NQR using the two-coil induction

(1;51({55 R. Haering and G. M. Volkoff, Can. J. Phys. 34, 577

2L. B. Robinson, Can. J. Phys. 35, 1344 (1957); 36, 1295 (1958).

3 H. Hartmann, M. Fleissner, and H. Sillescu, Naturwiss. 50,
591 (1963); Theoret. Chem. Acta 2, 63 (1964); H. Hartmann and
H. Sillescu, zbid. 2, 371 (1964).

4L. O. Anderson and W. G. Proctor, Varian AG. AID Applica-
tion Bulletin No. 3.1.16.7.65, 1965 (unpublished) ; W. Proctor and
K. Lee Varian Technical Information Bulletin, 1965 (unpub-
lished), p. 6.

5 G. W. Smith, Bull. Am. Phys. Soc. 11, 221 (1966).

§T. P. Das and E. L. Hahn, Nuclear Quadrupole Resonance
Spectroscopy (Academic Press Inc., New York, 1956), p. 83.

7D. J. E. Ingram, Spectroscopy at Radio and Microwave Fre-
gquencies (Philosophical Library, New York, 1956), p. 253.

8 R. Livingston, in Methods of Experimental Physics, edited by
D.S(\;gilliams (Academic Press Inc., New York, 1962), Vol. 3,
p. 507.

9 Ref. 6, p. 741
a 1‘;%\)4 Bloom, E. L. Hahn, and B. Herzog, Phys. Rev. 97, 1699
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spectrometer is given in Ref. 4. Pulse-type induction
experiments are discussed in Refs. 9 and 10.

As is well known,®810 the reason for the failure of
the induction method in the absence of a magnetic field
lies in the twofold degeneracy of the m;>0 levels. In
terms of the classical precession picture (for cylindrical
symmetry, n=0), magnetizations aligned at angles 6
and -+ with respect to the field-gradient direction
have precession frequencies equal in magnitude but
opposite in sense.!'!? As a consequence, voltages in-
duced in a nuclear induction pickup coil by the two
components exactly cancel. In this sense, then, the in-
duction method is unsuitable for NQR. However, if a
small magnetic field (either static or varying) is applied,
the precession frequencies of the two components are
no longer equal in magnitude. Consequently, the two
components no longer cancel and a nonzero signal can
result when the total magnetization at a given preces-
sion frequency is sampled by the nuclear-induction
pickup coil. In principle, a signal could be observed if
only a static magnetic field were present. However,
noise considerations preclude such a technique. The
experimental method which has been used!:?:¢ involves
the application of an audio-frequency, sinusoidally
varying magnetic field, which shifts the precession
frequencies of the two components relative to each other
(splits the quadrupole energy levels in the quantum
sense) and also allows the use of phase-sensitive detec-
tion and amplification. As Robinson? points out, the
nuclear-induction method gives greater signal-to-noise
ratios than more conventional NQR techniques.

U H. G. Dehmelt, Am. J. Phys. 22, 110 (1954).
12H. Kopfermann, Nuclear Moments (Academic Press Inc.,
New York, 1958), p. 327.
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Most previous NQR work has dealt with line posi-
tion measurement and relaxation effects, with less
attention given to line shapes. This is perhaps partly
due to the fact that some experimental methods in-
troduce line-shape distortions (e.g., super-regenerative
devices, Zeeman modulation techniques). Fourier
analysis of free induction decays!® can, of course, yield
information on line shapes. Negita!? has given a theory
of Zeeman-modulated signal shapes for Lorentzian and
Gaussian lines, and Morino and Toyama'4 have con-
sidered the Zeeman effect for NQR of spin £ nuclei in a
powder. In the present work we shall present a semi-
classical theory of the method of NQR by induction.
We shall see that, at least in certain cases, the in-
duction method yields no line-shape distortion, neglect-
ing any possible effects of spin quenching.!s The effect
of spin quenching should be no larger for the induction
method than for any other method using magnetic
modulation. If H, is the applied magnetic field and H,
the local dipolar field, the condition favorable to quench-
ing is u(H.+Hr) SneqQ, so that in the present case we
do not expect the magnetic field to produce sizable
quenching of the spin-1-spin-1 interaction. Quenching of
the spin-i-spin-1 interaction should be zero for »=0;
and for hexamethylenetetramine, the test sample used
in this work, 3-1 is the dominant line-broadening
mechanism. At any rate, we are primarily interested, in
the present paper, in the effect of experimental parame-
ters on a line broadened by unspecified interactions.
Quenching can, of course, be important to the present
interpretation if the degree of quenching is modulated
by the magnetic field used in the experiment. However,
like Negita,'* we shall assume that the magnetic field
does not influence the various natural line-broadening
interactions. Inasmuch as theory and experiment give
reasonable agreement, this seems to be a fair assumption.

The theory will be derived under three other major
assumptions: (1) nuclear spin 7=1; (2) an electric
field gradient cylindrically symmetric about the z
axis (n=0); and (3) relaxation processes parallel and
transverse to the z axis, each describable by single
relaxation times 7'y and 7. The effect of these assump-
tions will be discussed in some detail and a qualitative
extension to />1, >0 made. The assumption of a
single 7'y automatically builds into the theory a Lorent-
zian line shape which produces an effect on the agree-
ment between theory and experiment. However, the
inclusion of a single relaxation time T is the simplest
way in which to take account of line-broadening effects,
and the assumption of Lorentzian lines is not so restric-
tive as to prevent at least qualitative (and often quantita-
tive) agreement between theory and experiment. It
was deemed too difficult to build in the more realistic

13 H. Negita, J. Chem. Phys. 44, 1734 (1966).
14Y. Morino and M. Toyama, J. Chem. Phys. 35, 1289 (1961).
19;56(}. W. Leppelmeier and E. L Hahn, Phys. Rev. 141, 724.
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Gaussian line shape; furthermore, it became apparent
that the slight improvement in agreement with experi-
ment would hardly be worth the extra effort.

We shall obtain expressions for the NQR induction
line shapes, the dependence of the slow-passage absorp-
tion mode signal upon static and modulation magnetic
field, and the effect of rf field upon both the absorption
and dispersion modes. The theory will be extended to
single-coil (absorption-type) experiments. But first
let us review briefly in Sec. II a slightly modified version
of the work of Bloom, Robinson, and Volkoff,!® who
have derived modified Bloch equations and have given
a slow-passage solution.'” A special case of their solu-
tion will be the point of departure in our derivation.

II. NQR BLOCH EQUATIONS AND THEIR
SLOW-PASSAGE SOLUTION

A. Derivation

Inasmuch as BRV were interested in covering the
range of cases from pure NQR to NMR with quadru-
polar perturbations, they considered the most general
case: that for which the nuclear-spin wave functions are
not necessarily characteristic of any particular spin
component (say 7.). Hence, none of the matrix elements
(1]1.]2), {1|1,]2), and (1|I.]|2) between levels 1 and 2
are identically zero. We shall be interested in the case
of pure NQR in only a weak magnetic perturbation;
therefore, let us define the Z axis as the axis of quantiza-
tion of the quadrupolar system. Hence, (1|7,|2)=D0.
In addition, we shall be particularly interested in the
case for axial symmetry (y=0) of a spin-1 system, which
corresponds to the N resonance in hexamethylenetet-
ramine.’® The axially symmetric case for other spins
is easily obtained by an extension. We shall also discuss
the nonaxial cases (75%0).

Let us, with BRV, consider the two level system
illustrated in Fig. 1. For =1 this corresponds to con-
sidering the m=0 plus one of the degenerate m=d-1
levels. In the classical picture this is equivalent to
considering one of the two oppositely precessing com-
ponents of magnetization at a time. For an unperturbed
system, the ith level has wave function ¥, and energy
E;. The unperturbed Hamiltonian is 3Co, and the wave
function is characteristic of I,.1° (thus 3Col;=Eas,
and Iy;=ma;). 3Co may be the Hamiltonian for either

Frc. 1. Energy levels and
wave functions.

16 M. Bloom. L. B. Robinson, and G. M. Volkoff, Can. J. Phys.
36, 1286 (1958), hereinafter referred to as BRV.

17 M. Bloom, E. L. Hahn, and B. Herzog (Ref. 10), had pre-
viously given explicit Bloch-like NQR equations.

18 G. D. Watkins and R. V. Pound, Phys. Rev. 85, 1062 (1952).

19 As pointed out above, BRV do not make this latter assump-
tion since they are interested in the more general case.
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a pure quadrupole interaction or quadrupole interaction
plus magnetic perturbation.

If the system is perturbed by the interaction of an rf
magnetic field H,; with the nuclear moments (Hamil-
tonian 3C;(f)=~#I-H,, transitions between levels 1
and 2 are stimulated, and the equilibrium population
of the levels is disturbed. The new situation can be
described by a wave function ¥=ay1+bps, where all
the time dependence is contained in the coefficients a
and b. Substitution in the time-dependent Schrodinger
equation,

il = (3Co+3Co)¥,

yields equations for d and b in terms of a, b, Ey, E,, and
matrix elements P=(1|I,|2) and iS={1|1,|2). (The
matrix element 7=(1|1,|2)=0 under our assumption
that I.y;=ma);). We define the average spin components
as I,=Q*|I,|¢) and I,={*|I,|¢) and the popula-
tion difference between the levels as n=a*e—b*b. The
time derivatives of these three quantities, together
with the equations in ¢ and b, yield Bloch-like equa-
tions? for I,, I,, and 7. The assumption that the clas-
sical magnetizations are proportional to the average
spin components (M ,=v#l,, My=~#1,, and M ,=~v#I,
=+#n/2) plus the inclusion of single transverse and
longitudinal relaxation times yields Bloch equations!?-¢
which are applicable to NQR as well as to NMR. For a
single precessing component, these are

. P M.
M,=—wM,—4yPSH M ,—— (1a)

S T,

. S v
M,=4yPSH M ,——wM ,—— , (1b)

P 2

. S P M—M,
M,='yl:—Hny——HxM,,:l+-—— , (1o
P S T,

where wo=(E1— Es)/#, H, and H, are the X and V
components of the rf field, 7'y and T’ are the relaxation

( MAGNETIC FIELD)
zi

Y ' (PICK-UP COIL)

X' (TRANSMITTER COiL)

Y

F16. 2. Spin and laboratory (lab) coordinate systems.
<20 F. Bloch, Phys. Rev. 70, 460 (1946).
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times, v is the gyromagnetic ratio, and M, is the equi-
librium value of M.

It is important to recall that the XY Z axes are tied to
the nuclear-spin system, with the Z axis defined by the
direction of the principle internal electric field gradient.
Hence, the Z axis is the quantization axis. Equations (1)
reflect this since they represent magnetization precessing
about Z. Furthermore, because of our definition of the
Z axis, H,, the Z component of the rf magnetic field,
does not appear in the equations. We see that, because
of the factor wo in Egs. (1a) and (1b), |M,| and
|M,|>>|M.|. Consequently any nuclear induction
signal will be due mainly to M, and M,

B. Slow-Passage Solution

In order to solve the Bloch equations, we must define
a laboratory coordinate system. In Fig. 2 the laboratory
(lab) axes are labeled X'Y’Z’ and the spin axes XV Z.
An rf magnetic field H,¢ of intensity 2H, coswt is applied
along the X’ axis, and any applied static or audio
frequency magnetic field along the Z’ axis. The nuclear-
induction pickup coil is coaxial with ¥’. The angles for
X' are defined as in BRV. X" and Y"" mark the inter-
section of the X'Z and Y’Z planes with the XV plane.

A number of methods for solution of the Bloch equa-
tions are open to us. One is outlined by BRV, and solu-
tions for I,, I,, and # are given. Their method of solu-
tion, being for a more general case than ours, is of
necessity more difficult algebraically.

We shall resolve the rf field into two oppositely rotat-
ing components in the XV plane, the Z component
being unimportant, as seen above. Then we shall
consider the interaction of each rf component with
that magnetization component precessing with the
same sense. The total magnetization in the XV plane
will then be the sum of the magnetizations of the two
precessing components. This total magnetization can
be resolved along the X and ¥V axes as M, *®! and
M tot2l, The magnetization, M., along the pickup coil
will be found from M jtotal) M total and the proper direc-
tion cosines, cos(X,Y”) and cos(Y,Y”).

The first steps in the solution are exactly analogous
to those in the Bloch “slow-passage” NMR case,?®
but we shall sketch them briefly in order to establish
a basis and introduce notation for what is to follow: i.e.
the derivation of NQR induction line shapes and their
dependence on experimental parameters.

We resolve H, into counterclockwise and clockwise
rotating components (in the XV plane):

H = H, sinf, coswt;
H,»=— H; sinf sinwt,

ccw (looking along Z):

H ,»= H1 sinf; coswt;
H, = H, sinf, sinwt.

cw (looking along Z):

In order to work with the Bloch equations, we further
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resolve H,s along X and V':

cew: H,=a coswi+ £ sinwt; Hy=§¢ coswi—a sinwt, (2a)
cw: H,=a coswi— £ sinwt; H,=§{ coswi~+a sinwé, (2b)

where

a=H;sinf; cosp;1 and §=H;sinb; sing;. (2c)

1. Counterclockwise Component (1 <> 0)

Let us consider first the 1> 0 transition. We see'
that this transition is associated with the ccw case. In
the presence of a small magnetic field H along Z’ the
precession frequency for this component goes?' from
wo to wo—Q cosf, where Q=vH. (Note: the sign of H
is not crucial in what follows. It is only essential that
the 1 <> 0 and —1 «» 0 frequencies be shifted in opposite
senses.) Furthermore, for =1, the ccw component cor-
responds to?? P=vV2/2 and S=v2/2.

Following the Bloch slow-passage procedure, we let

M y= — (u sinwi+v coswt) , (3)

where % =9=M,=0. Thus in the slow-passage picture
the time dependence of the magnetization is dominated
by the sinusoidal terms. This fact eliminates the neces-
sity of differentiating our result for M, in the final
result since time differentiation merely multiplies the
magnetization by « and shifts its phase. The use of
paddles in the induction experimental method allows
us to measure either the in-phase or out-of-phase com-
ponent of magnetization.

Substitution of Egs. (2a) and (3) into (1) with
P=S=v2/2, yields (for 2=0)

u 2yM T o[ (aT 2Aw— £)coswi—+(a+ £T 2 Aw)sinwt |

M ,=u coswi—v sinwt ,

z K )
4
2yM o To[ (@ ET 2Aw) coswi—+ (§— aT2Aw)sinwt | ®
v= )
K

where Aw=w¢—w and

K= 1+Aw2T22+ 272H12T1T2 sin261 .

2. Clockwise Component (— 1 <> 0)

For this component a small magnetic field along Z’
produces a frequency shift from wy to wo+ cosé.
Also, for I=1, P=V2/2 and S=—V2/2. We take

M ,=u coswt—v sinwt; M ,=u sinwi+v coswt. (5)

The expressions for the # and » modes of the cw com-
ponent (with @=0) will not necessarily be identical to
those for the ccw component since the lab axes are not
necessarily coincident with the spin axes.

21 Reference 6, p. 8ff.

2 E. U. Condon, in Handbook of Physics, edited by E. U.
Condon and H. Odishaw (McGraw-Hill Book Company, Inc.,
New York, 1958), pp. 2-44.
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The Bloch equations yield
Iy 2y M o Ty (aTsAw+ &) coswi+(a— T 2Aw)sinw? |
o K '(6)

2y M To[ (T 2A0— a)coswi-+ (§+aT 2Aw)sinwt |

My=
K

These same expressions could have been obtained
from Egs. (16) of BRV or from solutions of the Bloch
equations along the X"’V axes (see Fig. 2).

III. THE INDUCED VOLTAGE IN THE
PICKUP COIL

We can now use Egs. (4) and (6) to derive expressions
for the component M, of precessing magnetization
along the pickup coil axis (¥”) .The induced voltage is
the proportional to dM, /dt, but, as we have already
seen, the differentiation process merely introduces a
phase shift and a factor of w. Thus, it will suffice to
solve for M.

The basic equations are

M =M o cos(X, V") +M o cos(V,Y"), (7)

where

Mtal=M,(1 <> 0)+M.(—1+0),
and

M etel=M (1 0)+M,(—1<0),

Let us consider first the case for a single crystal of
equivalent nuclei in the absence of saturation effects.
Our definition of equivalent nuclei, in addition to the
usual factors, shall include the requirement that the
directions of the electric field gradient be the same at
each nuclear site, in order that the lab axes make the
same angles with each nucleus’ spin axes. (Hence, in a
single crystal of hexamethylenetetramine, although all
the N atoms are chemically and structurally equiva-
lent, their nuclei are not equivalent, as far as we are
concerned, because of the tetrahedral arrangement of
the field-gradient directions in a single molecule.??)

A. Single Crystal, Z’||Z, Equivalent Nuclei

The signal for a single crystal is maximum if Z and Z,
coincide. In this case, for small magnetic field, the
central precession frequencies become shifted from
wo to wy:
w_=we— 2,

wy=wo+0Q.

CCwW: (8)

CwW:

Also, since §1=w/2, we have that a=H;cose; and
§=H,sineg;. If we let C=2yH M (T>, Eqgs. (4) and (6)

23 S. Alexander and A. Tzalmona, Phys. Rev. 138, A845 (1965).
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become

ccw(1 > 0)

My=—————{[(Aw—Q)T5 cosp1—siney |
1+(Aw—9)2T22{ P

X coswi-+[cos 14 (Aw—Q) Ty sing; | sinwt} ,

N gy (e DT senertcose]

X coswi—4-[sing;— (Aw—Q) T's cos ¢y Jsinwt} ;

cw(—10)

M {[(Aw+Q)T > cosp1+sines |

T (At 0)?Ty
X coswi+[ cosp1— (Aw+Q) Ty singy Jsinwt} ,

{[(Aw+Q)T2sing1—coser]

y

T (Aet9) T2
X coswi+[sing1+ (Aw+Q) T cos ¢y Jsinwt} .

Using these relations we derive M, from Egs. (7),
where cos(X,Y’)=—sing; and cos(¥,Y’)=cose; for
the present alignment. The nuclear induction probe
paddles allow us to tune either to the sinwi or cosw?
term of M,. Thus the detected voltage from the
receiver is proportional to the coefficient either of the
coswt term or of the sinwt term. Let us consider first
the coswt term, which, along Y’, corresponds to the
absorption mode.

1. Absorption or V Mode (coswt Term)

After a few algebraic operations, Eqs. (7) yield for
the coefficient of the coswt term

4CT229A00
My,cos= s (9)
[1+ (Aw+2)2To? [ 14 (Aw—0)°T3]

which in the limit of small Q becomes

4CT%0Aw

My, oS
(14 Aw?T5?)?

(10)

This expression is the derivative of a Lorentzian absorp-
tion mode?* signal, 1/(14+Aw?T5?). The linewidth be-
tween derivative extrema is dw=2/(V3T5). This result
is not too surprising since the Bloch picture automati-
cally builds in a Lorentzian line shape, and since the
differencing process yields a derivative. For small Q
the signal amplitude is proportional to the applied
magnetic field.

24 Capital V is used to avoid confusion with the » mode of Sec. II.
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2. Dispersion or U Mode (sinwt Term)

In a similar way the expression for the dispersion
mode? is

ZCTzﬂ(l'—szT22+92T22)

M sin= , (1)
[14(Aw+Q)2T2 [ 14 (Aw—Q)2T5%]
which in the limit of small € becomes
. 2CT0(1—Aw®T9?)
My,sm= (12)

(14 Aw?T5?)?

This equation is the derivative of a Lorentzian dis-
persion mode signal, AwTy/(1+Aw?T5?). Again the
signal is proportional to © for small fields.

B. Polycrystalline Sample

In order to find M, for a polycrystalline sample, it is
necessary to describe the relationship between the
laboratory and spin coordinates by means of Euler
angles. This means that we shall also need equations
relating 6; and ¢; to the Euler angles. Figure 3 shows
the Euler angles? ¢, 6, and ¢ and, in parentheses, the
unit vectors %, j, £ for the spin (X¥Z) axes and I, 7,
A for the lab (X’V’Z’) axes. Using the relation (see
Fig. 2)

1= cosb1£+sinf; cosri+sinf; sines 7,
A
z(k)

7' ([

Y (m)

xt (1
/ A
v

A
X(i)

F1c. 3. Euler angles relating spin and laboratory (lab) coordinates.

% Capital U is used to avoid confusion with the # mode of Sec.

II.
26 Reference 22, p. 2-5.
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and the table of Condon,? we get

(13a)
(13b)

1-3=sin6; cosp1=cos¢p cosy—sine siny cosd R
1+ 7=sinf sinp;=sine cosy+-cose siny cosf

1- k= cosby=sind siny,
or (13¢)
sin%0;=1—sin20 sin%}.

Note that Egs. (13a) and (13b) convert Egs. (2c)
for @ and ¢ directly to expressions involving Euler
angles. In addition Eq. (13c) converts the saturation
term 2v2H*T1 T, sin%); of Eq. (4) to Euler angles. Also
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important is the fact that the Euler angle 6 of Fig. 3
equals the polar angle 6 for Z’ in Fig. 2.

Use of the Condon table? also gives us expressions
for the direction cosines:

A

cos(X,Y")=1-3= —cos¢ siny—sing cosy cos,

(14
cos(Y,Y")=1%- j= —sine siny+cos¢ cosy cosh. )
We recall that Egs. (8) for a polycrystal are
wy=wo== cosf. (15)

Further, with C=2vyH M T2 and s=1+42v2H*T1T:
Xsin%; =14 2vy2H*T1T>(1—sin? sin%), Egs. (4) and
(6) become

)

b

ccw:
B CL{(Aw—9 cos8) T; sinby cosp1—sinf; sing;} coswi+{sind; cosepi+(Aw—Q cosh) Ty sinb; sings} sinwt]
o s+ (Aw—Q cosh)2T 2
CL{(Aw— cos) Tz sinb; sinp;—sing; cose1} coswi-+{sind; singp;— (Aw— 2 cosd) Tz sinfy cosey} sinet ] '
v s+ (Aw—Q c0s0)2T 52
cw:

CL{(Aw+Q cosf) T'; sinby cosp +sinf; sing;} coswi+{sind; cospi—sinby sinei(Aw+-Q cosf) T} sinwt]

z

b

s+ (Aw+Q cos§)2Ty?

CL{(Aw+Q cosb) T; sinf; sin g1 —sinf; cose1} coswi+{(Aw+Q cosf) T, sinf; cose+sinb; sing:} sinwt]

=

s+ (Aw+Q cosh)2T,?

These equations, plus Egs. (7), (13), and (14), allow
us to calculate M,. The absorption and dispersion
signals for a randomly oriented crystallite can be found
from the coefficients of coswt and sinwt in the equation
for M. The signal for a polycrystalline sample is then
obtained by averaging over all angles. We consider the
coswt term first.

1. Absorption or V Mode (coswt Term)

After several algebraic steps the coefficient of coswt
in the expression for M, becomes

2CAwTs[— A siny cosy sin?0+27 20 cos?0]

[s+ (Aw+Q cosb) 2Ty ][5+ (Aw—Q cos)2T52]
(16)

My,cos___

where 4 =s-+ (Aw?—Q2 cos?0) T

Note that there is no dependence on the Euler angle
¢ in Eq. (16). This is important because it simplifies
the averaging process for a polycrystal. Since the Euler
angle 6 equals the polar angle 6 and since the Z’ axis is
normal to the plane containing ¢, we can treat ¢ as an
azimuthal angle and average M, over angle using

_ 1 T p27
M,y=— f / M sinfdyds. (17)
4 Jo Jo

Let us consider saturation effects and magnetic field
effects separately. Therefore, for the present we assume
2vH, T T2<<1 or s=1 and investigate magnetic field
effects only. Saturation effects will be considered in a
separate section of this paper.

a. s=1, Q small. The case of small magnetic field is
important since it is expected to yield an experimental
line which is a derivative of the true NQR signal. For
Q small and s=1, Eq. (16) becomes

2CAwT o[ — A siny cosy sin?0+42T2Q cos?6 |
[14 Aw?T,? ]2 '

My,cos=
(16a)

When this is averaged over y using Eq. (17), the term
in siny cosy goes to zero. Thus the polycrystalline signal

becomes
4C T 22SZAw

3(14-Aw2T2)?

,€OS —

(18)

This expression is % the corresponding expression for a
single crystal with optimum orientation (Eq. 10). This
result is reasonable, for if @ were aligned along X or ¥V
the signal would be zero. Hence the average signal, in a
simple picture, is (04+0-+41)/3 times the signal for @
along Z. Equation (18) also contains the important
result that for small Q, the polycrystalline signal shape is
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exactly the same as that of a single crystal. Because of
the tetrahedral distribution of field-gradient directions
in a single crystal of hexamethylenetetramine, the in-
tensity of the single-crystal induction signal for this
compound is probably approximated by the poly-
crystal result.

In Egs. (16) and (16a) for a single crystal with
not equal to O or 7 (i.e. Z not parallel to Z’), the term in
siny cosy predicts a contribution to the signal even for
2=0. The existence of this term is a consequence of the
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nature of the derivation and has no physical meaning
for Q=0 due to the neglect of the random orientation of
the local dipolar fields.

b. s=1, Q wunrestricted. Consideration of this case
describes how a magnetic field distorts the signal
shape. Inasmuch as experiments usually deal with the
absorption mode, we shall investigate in the rest of
this section the field effect for this mode only.

Once again the siny cosy term of Eq. (16) averages to
zero. We then have

cos26 sinfdé

M yos=2CAQT 52 f . 19)
o [14(Aw—Q cos)2T2 [ 14 (Aw+Q cosh)?T 2]
This integral is soluble in closed form. Letting
ﬂzAng and €= QTg, (20)
we have
_ 2C8 e x2dx
My,cos.______
e J_[1+B+2)][1+(B—=)%] (21)
- [l B ttani (64— tani(5— 9} |
=—{In-——— an~ e—tan~1(B—e)} |.
2€ 14 (B+¢)? _|

For e small, the numerical solution of Eq. (21) as a function of 8 is the Lorentzian curve of Eq. (18). If ¢, the mag-
netic field parameter, is constant, Eq. (21) represents a constant signal amplitude. If e contains a term which
varies with time ¢ as ey coSwmt (wn<Kwo), M, is a function of time with sizable contributions at the harmonics of
the modulation frequency w,. In actual practice, a constant magnetic field alone is not used because of signal-to-
noise problems. Instead, a modulating field is used and only the signal component at the fundamental modulation
frequency detected. We shall postpone further discussion of this aspect of the problem and the related calcula-
tions until Sec. IV.

The linewidth dw between slope extrema (rad/sec) is an important experimental parameter. To determine édw,
we shall need the solutions to the expression diZ, *s/d3=0. Equation (21) yields

dM > C —2¢(1+€24-6?)
= —I: +tan—1(8+¢)— tan—1(B— e)jl . (22)
ap eL[1+(8— e[ 1+ (8+e)7]
Both Egs. (21) and (22) will be further applied in the discussion of modulation effects.
2. Dispersion or U Mode (sinwt Term)
The dispersion mode, as obtained from the coefficient of the sinwt term, is
Ve 2CLQT2{s— (Aw?—Q2 c0s20) T9%} cos?0— {s+ (Aw?+Q2 c0s?0) T»?} sin?d siny cosy] 23)
v [s+ (Aw+ c0s8)2T 22 ][ s+ (Aw— Q2 c0s6)?T 2]
Once again the ¢ dependence has disappeared, and the y-dependent terms average to zero.
¢. s=1, @ small. For s=1 and Q small, Eq. (23) becomes
 2C[QT2(1—Aw?T5?) cos?— (14-Aw?T?) sin®f sing cosy]
My,sm: , (24)

(1+Aw?Ty2)2



149

which averages to give

| 2CT(1— Aw*T#)
Y 3 ae TR

(25)

As for the absorption mode, the polycrystalline signal
is 3 the optimum signal-crystal signal, when @ is small.

IV. THEORETICAL ABSORPTION MODE SIGNAL
FOR PHASE-SENSITIVE DETECTION
TECHNIQUE. MAGNETIC FIELD
EFFECTS

Let us now include the details of the experimental
method in order to calculate the absorption-mode line
shape and linewidth for modulations of an arbitrary
amplitude. We assume the rf field to be nonsaturating
(s=1). As we shall see, increased modulation amplitude
produces broadening of the NQR induction signal.
Modulation effects for NMR have been previously
discussed.?™%

For the sake of generality, we shall consider our
magnetic field to consist of both a static and a sinusoidal
component. A phase-sensitive detector and lock-in
amplifier unit rejects all portions of the detected signal
from the induction pickup coil which are not of the same
frequency and phase as the modulating magnetic field.
In this and the following sections it will be convenient
to consider the polycrystal sample first since our ex-
periment dealt with a polycrystalline sample.

A. Polycrystalline Sample

In mathematical terms the total V-mode induction
signal is described by Eq. (21) where the magnetic
field contains collinear static and modulation terms

(26)

where €,=Q,To=7h T2 and e,=QnT2=~vhnT2, and the
collinear static and modulating components of the
magnetic field are %, and %,. If the detected signal due

€= €5 €m COSWME,

8C rm
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to the magnetization is expressed as a Fourier series

0
My= 73 a,cosnwat,
n=0

@27)

the recorded signal is proportional to the coefficient
41.% Then by the usual analysis,

1 T/ Wy,
aL1=— /
TJ—7w/om

where fr=wnl. Use of Eq. (21) and the fact that
M, cosb,, is an even function of 6,, yields

14 (B— €s— €, C0OS0,,)?
ar1=— lln[ ]
7)o (et emcosfn)?l L1+ (B4 e+ €m cOs0,)?
+28[tan~(B+ es+ €n, COSO,m)

My (coswnt) (wnmdl)

1 7 _
== / M, cos6,d0,, (28)
m™J—7

c [T coslp,

—tan~(B—e;— € cosﬁm)]] d0m. (29)

Similarly, to find the linewidth, it is necessary to solve
the equation

day 1d pm

— =Q=——

I c050,d0,,
dp mdB ) _«

1 pmdM,
=— / 08020, ,
TJ)_r dB

where di ,/dB is given in Eq. (22).

Equations (29) and (30) have been solved numerically
using a FORTRAN II computer program and an IBM 7094
computer. The results of the computations will be dis-
cussed and compared with experiment in Sec. VII.

(30)

B. Single Crystal

For an optimally oriented single crystal, Egs. (9)
and (28) give

B(es~+ €m c080,) c080,,,d0,,

7 Jo [14 8+ et€n c050,) 2T 1-+ (B— €= €m CO80)?]

(1)

One expects that, for ¢, and e, small, Eq. (31) will equal 3 times Eq. (29), and, indeed, the numerical calculations
do yield this result. Single-crystal line widths were obtained from extremum values of a1 in Eq. (31).

C. Second Moment

Since the present theory has built into it a Lorentzian line shape, for which the second moment, .S, is infinite,
we present no theoretical dependence of .S on the magnetic field. However, the experimental second moment will

be discussed later.

27 Q. E. Myers and E. J. Putzer, J. Appl. Phys. 30, 1987 (1959); 37, 458 (1966).
28 H. Wahlquist, J. Chem. Phys. 35, 1708 (1961); G. V. H. Wilson, J. Appl. Phys. 34, 3276 (1963).

29 G. W. Smith, J. Appl. Phys. 35, 1217 (1964).
30 E. R. Andrew, Phys. Rev 91, 425 (1953).
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V. RF FIELD EFFECTS—SATURATION THEORY

We shall now consider the effects of an rf field H; which is large enough to produce saturation. In addition, we
shall restrict @ to small values so that no signal distortion due to modulation occurs, Hence, we use Egs. (16) and
(23) with @=0 as starting points for discussion of the absorption and dispersion mode effects. Our considerations
correspond roughly to case I of Bloembergen, Purcell, and Pound?! for NMR (w,.71<1). However, since cases I
and II of BPP are qualitatively similar, this treatment will suffice.

A. Absorption Mode, Polycrystal
For QT»<1 and ¢=2v2H2T T, Eq. (16) becomes
2CAwT o[ — (1—0— 0 sin?d sin%y+ Aw?T»?) siny cosy sin20-+277Q cos?d ]

My,cos= . (32)
(14 0—o0 sin?0 sin?y~+ Aw?Tp?)?

The first term on the right, being an odd function of ¢, integrates to zero in a polycrystalline average. Thus

_ CAwT22Q 2™ 7 cos?6 sinfdfdy
o= / / : (33)
K

. . 2
— o sin?%f sin%))?

where k=14-04Aw?T2 This can be put into form approximating the familiar NMR result by factoring out «*
in the denominator:

’COS_

CAwT 2Q c0s20 sinfdfdy
[f
[1—

(14 o+ Aw?T52)? (o/k) sin20 sin%y T2

Since o/k<1, the factor [1—o(sin% sin%/)/k ]2 can be expressed by means of a series expansion. Integration of
the first five terms of the resulting expression gives

_ ACT 22 A0 20 9/0\? 4 /0\® 5 so\*
PO i AR T LT | -
3(1+o+Aw?T,?)? Sk 35\« 21\« 33\«
In order to evaluate this expression at the extrema of the recorded (derivative) signal, we must know the de-
pendence of the extremum position upon o. Evaluation of this dependence from Eq. (35) would be tedious. How-
ever, for o not too large, the first term in the series dominates. Under this assumption, we get Aw7Ty=2=4((14¢)/3)*/2

when dif,*s/d8=0. At this same point k=24(1+¢)/3 and o/k=230/[4(14-0)]. Thus, to a fair approximation,
the dependence of signal strength at maximum slope upon rf becomes

o g \? o \*
0. ( >+O 145< ) +0.080< ) —i—0.047< ) :I . (36)
140 140 140 140

The (14-0¢)~3/2 dependence demonstrates the relationship to case I of BPP and is what one expects for the deriva-
tive maximum of a Bloch-like 2-mode signal. Equation (36) is probably good to better than 10%. The next term in
the brackets is 0.0299 [¢/(14-0) .

_ V3vM o T2*QH,
(My' cos) max = —-—[

2(140)%2

B. Dispersion Mode, Polycrystal

Similarly, for the dispersion signal, only the first term on the right of Eq. (23) contributes to the polycrystal
signal. For QT,=0 we have

sm__

CQT, 27 (140— o sin?f sin%)— Aw?T?) cos?f sinddydl
/ / (140— o sin%0 sin%y+ Aw?T5%)? '
Letting A\=140— Aw?T? and k= 140+ Aw?T 5%, we have

Mﬂ,sin=

CQT (14 0— Aw?T5?) /" f” [1—(o/X) sin? sin%} | cos?0 sinfdydf
2r(14-o+Aw?Ta2)? [1—(o/x) sin?0 sin%y J? '
3 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys.Rev. 73, 679 (1948).
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However, as is well known, the derivative of the dispersion signal is a maximum at Aw=0. Thus

_ CcQrT, T 2w cos20 sinfdydf
(My'sm)maxz‘—-—/ / ; ; . (37)
2r(14+a) Jo Jo [1—(o/x) sin? sin%) ]
Following a series expansion, Eq. (37) becomes
_ 2CT-Q 1o 3 /0\%2 1 /0\3 o\ 4
o R
3(1+o0) Sk 35\« 21\«/ 33\« 38)
4'yHlMoT22$Z|“ G d \? a \? o \*
= 1+0.2< >—|—0.0857( ) +0.0476(—> +0.0303<—————> +-- :l
3(1+e) L 1+o 140 1+o 1+o

The dominant (1+40)~! dependence is exactly what one
expects for the derivative maximum of a Bloch #-mode
signal.

Equations (36) and (38) predict that, for o=0, the
peak-to-peak absorption mode signal should be 1.3
times the peak amplitude of the dispersion signal. In
the spectra of Fig. 4, this ratio is about 1.4.

C. Single Crystal

For a single crystal, the dependence of the absorption
mode signal on rf can be obtained directly from Eq.
(32). Eq. (23) is easily modified to give the rf dependence
of the dispersion mode.

In the particularly favorable instance when Z||Z/,
6=0 and Eq. (32) reduces to the familiar Bloch-like

form
8’YM koT23QH 1

My, €S—

140+ Aw?T5?)?

VI. EXPERIMENTAL APPARATUS
AND METHODS

Our nuclear-induction equipment was a slightly
modified Varian wide-line spectrometer (VF-16). The
V4210A rf unit was altered to allow a narrow range of
frequency scan by means of an external variable capaci-
tor and clock-motor arrangement. N resonances in
hexamethylenetetramine were observed at about
3.308 MHz using a Varian V4230B 2-4 MHz nuclear
induction probe with the V4210A. A sinusoidal magnetic
field in the probe sweep coils was generated by a Varian
V4250A sweep unit, and static magnetic fields could be
supplied, as needed, by a 20.6-cm-diam Helmbholtz
pair coaxial with the probe sweep coils. The signal from
the V4210A was fed to a V4270A phase-sensitive detec-
tor and amplifier and then to a Varian G-14 recorder.
Auxiliary equipment included a Hewlett-Packard
Model 524B counter for measuring the radio frequency,
and power supplies, and amplifiers as needed.

The transmitter coil, pickup coil, and field sweep
coils of the probe are mutually orthogonal, and thus
conform to the X', ¥’, and Z’ axes as defined above.

The samples were polycrystalline hexamethylenete-

tramine in both the as-received and purified® states.
Quite large signals could be observed from the loosely
packed powder.

In order to minimize stray magnetic field effects, the
Z' axis (magnetic field axis) of the probe was aligned in
the direction of minimum ambient field. In this direc-
tion, the local field was less than 0.03 Oe.

The apparatus, by means of the probe paddles, could
be tuned to observe either the absorption (V) or dis-
persion (U) modes. As seen above, the signals are
actually derivatives of these modes. In Fig. 4 recorder
tracings of the derivative ¥ and U modes are displayed.
It can be seen that an anomalous, and for the present
unexplained, signal structure is present.?® This structure
is present for both purified and unpurified samples.
For high enough magnetic modulation, the signal-to-
noise ratio increases and the anomalous signal structure

Fic. 4. Experimen-
tal NQR induction-
absorption (V) and
(negative) dispersion
(U) mode tracings
for polycrystal hexa-
methylenetetramine.
Signals were taken
with nondistorting
modulation.  Note
the signal asymme-
try discussed in text.
Frequency increases
from right to left.
NQR induction
method automatic-
ally gives derivative-
type signals as ex-
plained in text.

(a),

(b)

32 The author is grateful to Dr. T. J. Mao for purification of the
sample.

8 It has been suggested that the anomaly may be due to spin
quenching (see Ref. 15). However, since the main source of line
broadening is due to protons, one might expect quenching effects
to be small in hexamethylenetetramine for which n=0.
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is smoothed out and disappears. Scott® has seen similar
structure in solid Ny in which the anomaly was observ-
able using both frequency modulation and Zeeman
modulation. Scott® has suggested that the slight asym-
metry in the Zeeman modulated signal of hexamethyl-
enetetramine as seen by Watkins and Pound!® may
be evidence for such an anomaly in this substance.
Anomalies in solid NDj3 and hexamethylenetetramine
have been reported by O’Konski and Flautt.? In the
present work the anomalous line shape undoubtedly
affects the comparison with theory. This is not too dis-
turbing since the present theory has built into it the
highly idealized Lorentzian line shape anyway. We shall
see that the dependence of many measured quantities
(such as linewidth) on experimental parameters (such
as modulation amplitude) is relatively insensitive to line
shape.

Three experimental aspects were studied. (1) Since
the ¥V mode is most frequently the signal of interest, the
effect of magnetic modulation field, %, coswnl, on
V-mode line shape, width, and intensity was deter-
mined. These measurements were performed at low
rf levels in the absence of a static magnetic field (ex-
cept for ambient fields). (2) The effect on the V-mode
signal of a static magnetic field %, along Z’ was also
determined. These studies were made with a fixed low
modulation field and low rf level. Again the line shape,
width, and intensity were measured. (3) The effect of
rf level on both the U- and V-mode signals was deter-
mined for a fixed low magnetic modulation and small
ambient static fields.

VII. COMPARISON OF THEORY
AND EXPERIMENT

In this section emphasis is placed on the theoretical
results for polycrystalline samples since suitable single
crystals were not available. However, theoretical re-
sults for optimally oriented single crystals of equivalent
nuclei are presented in tabular form.

‘Wj\[ %“’ WM’“\ ¥ TN
A AN

34T, A. Scott, J. Chem. Phys. 36, 1459 (1962).
3T, A. Scott (private communication).

GEORGE W.

SMITH 149

A. Modulation Effects

In our study of modulation effects, we follow the
notation of Ref. 29 and express the modulation intensity
hn(=% the peak-to-peak swing) as a dimensionless
quantity by normalizing to the true line width, 6H
(gauss), between points of slope extrema. In terms of the
true line width, &, in frequency units (as found from
experiment using low modulations) the relation
needed is 8H=2wdv/y=20w/y, and our dimensionless
modulation parameter becomes v/ éw.

Since the theoretical line is Lorentzian, its true width
is given by Tedw=2/V3. Consequently, we have, in
terms of the theory, yhn/8w=€xV3/2=0.866¢m.

1. Line Shape

Because of the anomalous signal structure men-
tioned above, determination of the true line shape is
difficult. However, the ratio of the inner to the outer
slope extrema of the V-mode derivative signal was
roughly 2. For a Gaussian line this ratio is 2.2, for a
Lorentzian, 4.0.%

V-mode experimental tracings for various modula-
tion fields are shown in Fig. 5, where they are compared
with theoretical polycrystal signals. The theoretical
curves were calculated from Eq. (29) with e,=0, using
an IBM 7094 computer and a FORTRAN II program. The
behavior of the experimental and theoretical curves is
qualitatively similar.

2. Linewidth

The theoretical dependence of the calculated meas-
ured linewidth, 8wmeas= 2T meas="YOH mess, o0 modula-
tion amplitude was found by solving Eq. (30) numeri-
cally on an IBM 7094. For convenience in comparing
theory and experiment, the scheme of Ref. 29 was
followed, in that the measured line width was nor-
malized to the true line width, éw. The experimental
true line width at room temperature 6v=0.526 kHz,
corresponds to 0H=dw/y=1.71 G. Matzkanin et al.3”

F1e. 5. Effect,of modulation
amplitude on polycrystal NQR-
induction V-mode line shapes. (a)
Experiment. (b) Theory. From
right the modulation
parameter vk,/éw is about 0.72,
1.4, 44, and 6.2 for both. The
amplitude discrepancy is a line-
shape effect discussed in the text.
Note that for wide lines the fre-
quency scan is nonlinear.

3 C. T. O’Konski and T. J. Flautt, J. Chem. Phys. 27, 815 (1957).
37 G. A. Matzkanin, T. N. O’Neal, T. A. Scott, and P. J. Haigh, J. Chem. Phys. 44, 4171 (1566).
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_ Fic. 6. Effect of modulation amplitude on polycrystal NQR-
induction V-mode linewidth. (a) Swmeas/8w versus vkm/dw. (b)

SWmeas/Yhm Versus yhn/dw. Points are experimental results; solid
curves are theory.

find »=0.690 kHz from 4.2 to 299°K. The source of
the discrepancy between our result and theirs is not
clear. It is difficult to ascribe the difference to spin
quenching since for hexamethylenetetramine (n=0)
the dominant line broading mechanism is taken to be
H-N coupling, which should not be quenched for 7=0.
A possible source of the larger value of 6v given by
Ref. 37 would be over modulation or saturation broaden-
ing or perhaps broadening due to ambient magnetic
fields, which can be sizable, as we shall see.

In Fig. 6(a) are plotted the theoretical and experi-
mental results for wmeas/ 8w as a function of the modula-
tion parameter vk.,/8w. The behavior is reminiscent of
that for magnetic resonance,? but differs from it
quantitatively. Theory and experiment agree fairly
well.

Another way of examining the same data is by plotting
the theoretical and experimental values of Owmeas/
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TasLE. I. Calculated effect of modulation amplitude on NQR
induction signal (no saturation, no static field).»

Single Crystal (6=0) Polycrystal
_'_Y_I?zt 0Wmens OWmeas (al)max SwWmeas OWmeas (a1>ms.x
8w dw Yhm C dw Yhm 0.41C

0 1.000 < 0 1.000 o 0
0.0866 1.006 11.6 0.129 1.005 11.6 0.105
0.1732 1.032 596 0.253 1.018 5.88 0.208
0.2598 1.067 4.11 0.369 1.041 4.01 0.306
0.3464 1.119  3.23 0475 1.070  3.09 0.399
0.4330 1179 2.72 0.569 1.107  2.56 0.486
0.5196 1254 241 0.651 1.150 2.21 0.565
0.6928 1.436 2.07 0.779 1.256 1.81 0.699
0.8660 1.645 190 0.867 1.380 1.59 0.802
1.299 2.29 1.76 0973 1.749 135 0.952
1.732 3.00 1.73  0.999 2.17 1.25 0.998
1.819 3.15 1.73  1.000 2.27 1.25 1.000
1.905 3.31 1.73  0.9997 2.35 1.24 1.000
1.992 3.45 1.73  0.999 2.44 1.23 0.998
2.078 3.60 1.73  0.997 2.55 1.23 0.996
2.165 3.74 1.73 0.995 2.63 1.22 0.992
2.252 3.90 1.73  0.992 2.74 1.22 0.987
2.338 4.05 1.73  0.989 2.84 1.22 0.981
2.598 4.49 1.73 0977 3.15 1.21 0.960
3.464 5.95 1.72 0.931 4.26 1.23 0.874
5.196 8.68 1.67 0.837 6.67 1.28 0.716
8.660 14.12 1.63 0.735 11.8 1.36 0.519
17.32 28.06 1.62 0.670 24.6 1.42 0.309
34.64 56.12 1.62  0.650 51.4 1.49 0.173

a Note that at low vAm/dw, (a1)max for polycrystal =} (a1) max for single
crystal. Above amplitudes are normalized to 1.000.

(Yhm). We see in Fig. 6(b), that as /., — 0, this ratio
approaches 2.0 much more slowly than for magnetic
resonance.?®

Table I lists the theoretical values of dwmeas/6w and
8wmeas/ (Yhm) as functions of +k./déw for both single
crystal and polycrystal samples.

3. Signal Amplitude

In Fig. 7 the theoretical dependence of the normalized
polycrystal signal amplitude on modulation amplitude
is given by the solid curve. The experimental points

Fi6. 7. Effect of modula-
tion on observed poly- 8 =
crystal NQR-induction V-
mode signal amplitude.
Points are data; solid curve
is theory (with built-in
Lorentzian signal shape);
dashed curve is theory
shifted to low %, by a factor
0.58 to compensate for the
fact that signal shape is
roughly Gaussian (see text). 3

Note added in proof. The
point on the solid curve is .
erroneous and should be
deleted. 1 o

NORMALIZED AMPLITUDE
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F1c. 8. Effect of modulation on polycrystal NQR-induction
V-mode second moment. Points are data; solid curve represents
Eq. (39).

are shifted somewhat to low amplitudes with respect
to the theory. However, this is not surprising since we
know? that in magnetic resonance the modulation-
dependent amplitude curve for a Gaussian line is shifted
by a factor 0.54 to lower %, than the curve for a
Lorentzian. The dashed curve of Fig. 7 is the theoretical
curve shifted to low %, by a factor 0.58. The shift of
the amplitude curve is consistent with the fact that the
line shape is closer to Gaussian than Lorentzian. We do
not necessarily expect the line-shape shift in the cases of
magnetic resonance and NQR induction to be the same
because of the angle dependence of the magnetic
modulation term for NQR. It appears that, as for
magnetic resonance,? the field dependence of the NQR
induction signal amplitude is a more sensitive function
of signal shape than is the field dependence of the
linewidth.

The theoretical dependence of amplitude on modula-
tion for single and polycrystals is given in Table I. The
amplitude has a maximum as a function of %, because
low fields are necessary to produce any signal at all,
but large fields broaden and flatten the signal.

4. Second Moment

The experimental second moments S for powdered
hexamethylenetetramine were determined by numerical
integration of line tracings using an IBM 7094 computer
program based on a method of Janzen.? At low modula-
tions the undistorted room-temperature second moment,
So, is 0.0765 kHz? or 0.81 G2. (Matzkanin et al.% find .S
to be about 259, larger at 77°K.) As the modulation
amplitude is increased, the line is broadened, and S
increases in a manner qualitatively reminiscent of
magnetic resonance.®® In Fig. 8 the points show the
dependence of the experimental second moment (as
normalized to S,) upon the modulation parameter.

38 G. W. Smith, J. Chem. Phys. 42, 4229 (1965); 43, 4325
(1965).

GEORGE W. SMITH

149

Because of the angle dependence of magnetic field
effects, it is perhaps not surprising that the increase
in S (in G?) is not given by the Andrew® term %,2/4.
The averaging over angle reduces the effectiveness of
the magnetic modulation so that instead, a good
empirical fit to the data is now given by

S=S¢+0.207%n? (in G?).

An alternative form of the same expression is, for the
hexamethylenetetramine data,

3 /vhm\?
S=Sol:1+—<——) :I .
4\ dw
Equation (39) is plotted in Fig. 8 as a solid curve. The
fit to the data is satisfactory.

(39)

B. Static Field Effects

In these experiments the modulation amplitude, %,
was kept at a low, nondistorting level, while the static
field strength %, was changed, step-wise from one ex-
perimental run to another. As mentioned above, the
probe was so placed that the ambient field parallel to
hs was zero. Values of %, were both calculated from the
Helmholtz coil equation and checked experimentally
using a Hall effect probe. The static field, in the follow-
ing discussions, is expressed as a dimensionless parame-
ter, vhs/8w (or 0.866¢, for the theoretical Lorentzian
line).

1. Line Shape

Experimental and theoretical polycrystal V-mode
tracings are shown in Fig. 9 for various strengths of %,.
The theoretical curves are plots of Eq. (29) for e, small
and various €, values. Computations were made on an
IBM 7094.

Theory and experiment agree in the qualitative be-
havior of the polycrystal line shape. Both show the
appearance of line splitting at relatively small values
of %,. Furthermore, experiment and theory agree that a
sufficient increase of 4., will smear out the splitting so
that only a broadened line is observed. This is consistent
with Fig. 5 which shows that splitting does not appear
for fairly large /m, although some structure does appear.

In essence, the structure of the signal for large %,
can be regarded as being due to the superposition of two
derivative signals, equally displaced about the central
frequency.

2. Linewidth

The theoretical dependence of the measured poly-
crystalline linewidth, Swmeas, on static field amplitude
was found by solving Eq. (30) numerically, as previously
mentioned. For values of %, large enough to produce
splitting, Swmess 1S the separation of the outermost
cxtrema.

In Fig. 10(a) are plotted the polycrystalline theoreti-
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(a)

/\/ /\/\/(b)/\/\/ /\/\/
Fic. 9. Effect of static magnetic field on polycrystal NQR-induction V-mode line shape. (a) Experiment for vk,/6w=0.396, 0.544,
0.873, 1.59, and 2.44, respectively. (b) Theory for vk,/6w=0.433, 0.566, 0.892, 1.65, and 2.41, respectively. Experimental modulatlon

parameter yh,,J&w 0. 37; in theory modulation parameter taken as 0.19 (in either case, modulation is effectively nondistorting). Note
that experimental frequency scan is nonlinear. In first trace, total scan is about 1.7 kHz.

cal and experimental results for 8wmeas/0w as a function
of the static field parameter v/,/8w. The behavior is
somewhat like that of Fig. 6(a), but it is apparent that
the measured linewidth is more sensitive to static field
than modulation field. The agreement of theory and
experiment is good.

A plot of theoretical and experimental 8wmeas/ (v%s) is
shown in Fig. 10(b). We see that Swyens approaches
2vh, fairly rapidly. However, in contrast to the be-
havior for both NQR induction and magnetic resonance
With Zm, 8wmeas/ (vks) is monotonically decreasing.

Table II lists the theoretical values of dwmeas/8w and
dwmeas/ (Yhs) as functions of vk,/8w for both single and
polycrystals.

3. Signal Amplitude

In Fig. 11 the theoretical dependence of polycrystal
signal amplitude at outer extrema on %, is plotted as a

solid curve. The experimental data, as normalized to
the zero field value, are shifted to low %, with respect
to the theory. This shift, like that for amplitude as a
function of %, is probably at least partly due to the
non-Lorentzian line shape. Some of the deviation may
be due to the extreme sensitivity of the signal to static
fields (which may include stray ambient fields).

Table II gives the dependence of single and poly-
crystal signal amplitude upon static field strength.

The fact that the amplitude is a monotonically de-
creasing function of %, is due to the nature of the phase-
sensitive method. The modulating field 4, serves
simultaneously to remove energy-level degeneracy and
to act as a reference signal for the phase-sensitive de-
tector. The static field 7, contributes essentially nothing
to the component of the signal at the modulation fre-
quency, but it does produce broadening and hence
diminishes the signal intensity.

| 1
60 L —
(a) 6 W eas. 10 w
40 -—
\ () 0 Wneas! ¥ g
20 |-
F1c. 10. Effect of static magnetic 10
field on polycrystal NQR induction —
V-mode linewidth; points are data; 8 =
solid curves are theory. (a) 8wmeas/8w 6 /‘
versus vhs/dw. (b) 8wmeas/vhs versus =
~hs/bw.
4 -
74 (b)
A S ——Oamo—
®
1 o e "°
L1 | I [N | ] L1
.04 .06 .08 1 2 4 6 8 1 2 4 6 810
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F1c. 11. Effect of static magnetic field on observed polycrystal
NQR-induction V-mode signal amplitude. Points are data; solid
curve is theory. Experimental and theoretical amplitudes=1.00
at vk, /8w=0.

However, calculations show that in an experiment
using a sensitive, broad-band detector and a static
field only, the amplitude would show a maximum as a
function of %,. In essence, these calculations are merely
solutions of Eq. (21). In this “static field only” experi-
ment the field is needed to remove the degeneracy, but
it also acts to broaden the line. As mentioned earlier,
noise considerations make this technique unusable.

4. Second Moment

In Fig. 12 is shown the experimental dependence of
the polycrystal second moment upon the static field
parameter. The second moments were determined as in
Sec. VII. A4. We see that .S increases with %, in spite
of the negative portions of the signal which appear at
large %, values (Fig. 9). This increase of S is not sur-
prising since large fields, in addition to producing a
complex line structure, broaden the line and shift por-
tions considerably. Because of these complexities, we
find that no simple correlation of S with %,? exists.
The solid curve of Fig. 12 is merely a hand-drawn fit to
the data.

Yhgldw

Fre. 12. Effect of static magnetic field on experimental poly-
crystal NQR-induction V-mode second moment. Points are data;
solid curve is smooth fit to data. Second moments were determined
from curves like those of Fig. 9(a).
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C. Saturation Effects

Since Egs. (36) and (38) contain factors of Hj;, let
us follow the usual practice®! and remove this portion
of the rf dependence by dividing it out. Furthermore,
we wish to normalize the resulting expressions to 1 at
¢=0. The normalized equations are

1 T g \?2
Vmax/H1='—"*—[1"‘0.3("———)‘!“0.145(—*—‘)
(140)3/2 140 140

o \* o \*
—l—0.0SO(——-—) +0.047(—> +-- ] , (36a)
14 14

g g

1 |" T o \?
1-|—0.2< )+0.0857(———)
140 1

Umax/Hy=
/H l—l—aL g

o \? o \*
—|—0.0476<——) +0.0303<——) +-- :I . (38a)
140 1+

Plots of these equations are the saturation curves. In
order to fit theory to experiment it is necessary to
shift® the equations by normalizing ¢ to the square of
the rf voltage, ey, since H; is proportional to ey As
BPP point out, shifting the saturation curve corre-
sponds to normalizing to H,2T1T.. An independent
measurement of 71 plus knowledge of T, allows one to
determine relative changes in T from the saturation-
curve method. In the following sections the data were
taken at 300°K.

1. V-Mode Saturation Curve
In Fig. 13 are plotted experimental Viye./H; data
points as a function of ey Equation (36a), as nor-

TasLE II. Calculated effect of static field on NQR induction signal
(no saturation, no modulation broadening).

Single Crystal (§=0) Polycrystal
"/hs 8wWmens OWmeas NOIm OWmeas  OWmeas 33X
dw dw vhs Amp dw vhs (Norm.Amp.)
0 1.000 « 1.000 1.000 1.000
0.0433 1.015 23.44 0.994 1.007 23.26 0.996
0.0866 1.036 11.96 0.978 1.018 11.76 0.985
0.1732 1.129  6.52 0.921 1.077  6.22 0.948
0.2165 1.199 5.54 0.884 1.115  5.15 0.925
0.2598 1.285 495 0.846 1.169 4.50 0.896
0.3464 1481 427 0.773 1.295 3.74 0.835
0.4330 1.697 3.92 0.712 1.446 3.34 0.776
0.5196 1.905 3.67 0.666 1.597  3.07 0.723
0.6928 2312 3.34 0.605 1.960 2.83 0.639
0.8660 2.685 3.10 0.569 2.300 2.65 0.580
1.299 3.585 276 0.529 3.118 240 0.490
1.516 4018 2.65 0.520 3.53 2.33 0.461
1.732 4460 2.58 0.515 3.93 2.27 0.437
2.598 6.201  2.39 0.505 5.58 2.15 0.367
3.464 7933 2.29 0.502 7.24 2.090 0318
5.196 11.40 2.19 0.501  10.61 2,044 0.251
6.928 14.86 2.15 0.500 14.03 2.025  0.206
8.660 18.32 2.12 0.500 17.47 2018 0.175
17.32 35.65 2.06 0.500 34.7 2.005  0.0998
34.64 70.32 2.03 0.500 69.3 2.001  0.0535
69.28 139.6 2.02 0.500 138.6 2.000 0.0277
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malized, is plotted as a solid curve. In spite of the ex-
perimental scatter, the agreement is satisfactory.

2. U-Mode Saturation Curve

Figure 14 shows data and theory for the Umax/H1
as a function of €. The solid curve is Eq. (38a) nor-
malized using the normalization factor for ¢ determined
for the V-mode curve of Fig. 13. This factor is obviously
not correct for the U mode, and a suitably shifted
theoretical plot is shown as a dashed curve. This dis-
crepancy between the U- and V-mode normalization
factors may be due in part to three causes: (1) the
necessity of approximating the position of the V-mode
signal extrema (see Sec. V.A); (2) the non-Lorentzian
line shape; and (3) the neglect of passage effects (our
experiment may be closer to case II of BPP than to
case I). The approximation in the first case corresponds
to the assumption that the linewidth is proportional to
(14-0)V2. An experimental check of this assumption
showed that it is indeed correct, but that the nor-
malization constant between ¢ and €2 is different from
those of the U- and V-mode saturation curves.

In Table III, Eqs. (36a) and (38a) are evaluated as a
function of ¢. Also tabulated are the values of the BPP
case I V- and U-mode functions, (14¢)~%2 and
(14-0)"Y, which are the leading terms in Egs. (36a)
and (38a). It appears that the difference between the
BPP case and Egs. (36a) and (38a) does not become
appreciable (~10%) until ¢=20.5.

Taere III. Calculated effect of rf for polycrystal (no static
field, no modulation broadening).

4 (1+0)h3/2 Vmax/Hl (1+‘7)~1 Umax/fll
10-3 0.999 0.999 0.999 0.999
102 0.985 0.988 0.990 0.992
2X1072 0.971 0.976 0.980 0.984
41072 0.943 0.954 0.962 0.969
6X1072 0.916 0.932 0.943 0.954
8X1072 0.891 0.911 0.926 0.940
0.1 0.867 0.892 0.909 0.926
0.2 0.761 0.802 0.833 0.863
0.3 0.675 0.727 0.769 0.809
0.4 0.604 0.664 0.714 0.761
0.5 0.544 0.609 0.667 0.719
0.6 0.494 0.562 0.625 0.681
0.7 0.451 0.521 0.588 0.648
0.8 0.414 0.485 0.556 0.617
1.0 0.354 0.424 0.500 0.565
1.2 0.306 0.375 0.454 0.520
14 0.269 0.335 0.417 0.483
1.6 0.239 0.302 0.385 0.450
1.8 0.213 0.274 0.357 0.422
2.0 0.192 0.250 0.333 0.397
3.0 0.125 0.169 0.250 0.307
4.0 0.089 0.125 0.200 0.250
5.0 0.068 0.097 0.167 0.211
6.0 0.054 0.078 0.143 0.183
8.0 0.037 0.054 0.111 0.144
9.0 0.032 0.047 0.100 0.130
10.0 0.027 0.041 0.091 0.119
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F1c. 13. Effect of saturation on maximum recorder swing of
observed polycrystal V-mode signal. Solid curve is fit of Eq.
(36a) to data.

VIII. THE THEORY APPLIED TO SINGLE-COIL
(ABSORPTION) EXPERIMENTS

A. Preliminary Considerations

Although the present theory was evolved to explain
the NQR induction method, it is apparent that it is
easily applicable to single-coil or absorption-type ex-
periments. We shall consider three possible experimental
methods: sinusoidal magnetic modulation, Zeeman
(square-wave magnetic) modulation, and frequency
modulation. The latter two methods are the usual NQR
single-coil modulation techniques.

The quantity to be calculated, instead of M,
Eq. (7), is M+, the magnetization along the transmitter
coil itself:

M =M o1 cos(X,X")+M %l cos(V,X").  (40)

100 1.000 10,250
£” ARBITRARY UN!TS

Fic. 14. Effect of saturation on maximum recorder swing of
observed polycrystal U-mode signal. Solid curve is Eq. (38a)
using normalization constant for ¢ as obtained from fit of Fig. 13.
Dashed curve is a fit of theory to U-mode data.
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In terms of the Euler angles we have?
cos(X,X")=4-1=cos¢ cosy—sine siny cosd
cos(¥,X")=3-I=sine cosy+cose sing cosf.

The calculations proceed similarly to those for the

GEORGE W. SMITH
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induction signal, except that now the cosw? term yields
the dispersion mode and the sinwt term the absorption
mode.

1. Dispersion Mode (coswt Term)

The exact solution is

2CAwT5(1—sin%y sin20) [ s+ (Aw?— Q2 cos20) T2 ]

Mz, oS —

For no saturation (s=1) and low fields (2=0),

which is indeed a dispersion-like signal.

The magnetization is

Mz,sin=

which for s=1, =0 becomes

. 41
Ls+(Aw+Q cos8)2T 2 [ s+ (Aw— 2 cos6)?T 5% ] )
2CAwT5(1—sin%y sin2f)
M 08= (42)
1+ Aw?Ty?
2. Absorption Mode (sinwt Term)
2C[s+ (Aw2 Q2 cos§) T»2 ] (1—sin%y sin?f)
[s+ (Aw+Q cos8)2To2][s+ (Aw— 2 cos6)2T52]’ (43)
~ 2C(1—sin%} sin%)
lesm= (44)

a Lorentzian absorption signal.

1+Aw2T22

B. Sinusoidal Magnetic Modulation, Phase-Sensitive Detection, Absorption Signal

Let us now derive the absorption signal for a single crystallite, in the absence of saturation (s=1). Letting

B=AwTs and e= QT cosb, we have from Eq. (43)

3 2C(14-B82+ €?) (1—sin%y sin2f)

[1+B+e)I[1+B—e)?]

(45)

With sinusoidal modulation, € becomes € COSwnl= €x COS0n, Where e, is understood to be a function of 4. The
equation for the signal [coefficient ¢, in Eq. (28)] becomes

4C(1—sin?y sin%) /=

1482+ €n? c0s20,,) €080, A0,

a1 =

Equation (46) is identically zero because cosfn is
antisymmetric about /2, and the remainder of the
integrand is symmetric about 7/2. Hence, no absorp-
tion signal is seen. The dispersion signal is also predicted
to be identically zero. Since the signal for any crystallite
is zero, the signal of a polycrystalline sample is zero.
This result was substantiated experimentally. B. W.
Joseph, of our laboratory, performed a sinusoidal
magnetic modulation, phase-sensitive detection, single-
coil experiment using an externally quenched super-
regenerator.® The instrument was adjusted so that a
35C] resonance in p-dichlorobenzene was easily observ-
able on an oscilloscope when frequency modulation
methods were used. However, in the sinusoidal magnetic-
modulation experiment no appreciable signal was re-
corded. Although %Cl has I=% (and %=0.08 in

39 J. M. Velten and H. S. Story, Am. J. Phys. 33, 32 (1965).

=0.
T o [14 (B4 €m c080,)2 ][ 14 (B— €m c080,,)2]

(46)

p-dichlorobenzene®), the above arguments are still
expected to be qualitatively correct, as we shall see
below when we discuss the extension of the present
theory to higher spins.

It is probable that phase-sensitive detection at har-
monics of the modulation frequency will produce useful
signals for sinusoidal magnetic modulation.

C. Zeeman Modulation, Phase-Sensitive
Detection, Absorption Signal

Zeeman (magnetic-square-wave) modulation is fre
quently used with phase-sensitive detection techniques
to observe NQR resonances. Negita!® has given a
rather complete quantum-mechanical consideration of
Zeeman-modulated Lorentzian and Gaussian NQR

0 H. C. Meal, J. Am. Chem. Soc. 74, 6121 (1952); quoted in
Ref. 6, p. 159.
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lines. Therefore, we shall only briefly discuss the present
treatment with its Lorentzian shape. By slightly modify-
ing the approach of Sec. VIIL.B, we can derive a theo-
retical expression for the absorption signal. The argu-
ments which follow are equally applicable either for
off-on magnetic modulation between 0 and /. (with
phase-sensitive detection at the modulation frequency®)
or for antisymmetric Zeeman modulation (with detec-
tion at twice the modulation frequency*!). The modula-
tion parameter is e,=+v#,Ts, and all other parameters
retain their previous meanings.

1. Single Crystal, No Saturation

Equation (45) is applicable to this situation, but e
is now a square wave alternating between 0 and e, cosf.
With phase-sensitive detection at the modulation fre-
quency, wn, our integration of the expression for signal
amplitude

1 T
a=- / M, c0S0,,d0,n
TJx
where 0,,= wnt, can no longer be reduced to an integral
from 0 to = for symmetry reasons. We have
2C(1—sin% sin®g) = (14624 €)c0s6,.d0,,
™ —r [14+(B+€)* L1+ (B—€5)*]
4C(1—sin?y sin%0)

a1=

™

1 (14B2+¢.? cos™)
% { H—ﬁzﬁ [14(8+¢. cos®)Z][ 14 (B—e. cose)zj}
4Ce,2(cos?0) (1—sin%y sin?%0)
) (1469
€,2 cos?0-1— 3032
% {[1+(ﬂ+ez cos®)*J[1+(B—e. 6050)2]} .

(47)

Equation (47) is an even function of both 8 and e;, as it
should be for the proper symmetry of the line shape and
the proper independence of sign of the Zeeman modula-
tion. The expression for a given e, has its maximum at
B=0. This maximum @, increases monotonically with
€.(h.). The dependence of (@1)max On Zeeman modula-
tion is illustrated for an optimally oriented single
crystal (=0) in Fig. 15. The most rapid increase in
signal strength occurs when the Zeeman modulation is
about equal to the true linewidth (in magnetic field
units).

From Eq. (47) we see that a; goes to zero at 382
= (1-+¢,2 cos?0). This corresponds to a measured line-
width at zero amplitude given by

Beomensd= (Bus?-F §y7h cos?6) /2.

41T, A. Scott, Ph.D. thesis, Harvard University, 1959 (unpub-
lished).
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F16. 15. Theoretical single-crystal and polycrystal amplitudes
for Zeeman modulated signals as a function of modulation ampli-
tude. Single-crystal orientation for maximum signal. Single-crystal
curve is solid, polycrystal curve dashed.

For large 7., 8wmess®=~2vh,cosf/V3. The theoretical
linewidth behavior is given for §=0 in Fig. 16.

For 382>1+e¢,? cos®, a; is negative, corresponding
to the negative wings of a Zeeman modulated signal.

2. Polycrystal, No Saturation

The polycrystal signal can be calculated exactly by
straightforward averaging of Eq. (47) over 6 and .
We have

1 T a2

ay=— / / a1 sinfdydo
dr Jo Je
C 8

™ [3(1+ﬂ)2
)

3

2 B H@Ete)
o e LH—(ﬁ-— €)?

[tan~'(8+4¢.)—tan™(B—e,) ]} .

€

1000 T

B 1 10 100 1000
Yh,lsw

Fic. 16. Effect of Zeeman modulation amplitude on linewidth
at zero amplitude for single-crystal and polycrystal. Single-
crystal orientation optimized. Single-crystal curve is solid, poly-
crystal curve dashed.



364

i I [ | ! [ i

—— 7‘hz 16w=1.30

......... Y hzldwﬁ 3.6

—— Experiment

3412 3476 3480 3484 3488 3492 3496 3500 3504
v (KHZ)

Fic. 17. Comparison of experimental and theoretical Zeeman
modulated absorption line shapes for Z=1, =0 (polycrystalline
sample). The experimental curve, shown by the solid line is from
Ref. 41. Theoretical curves for v/,/8w=1.30 and 3.46 are shown by
the dashed and dotted lines, respectively.

As required, this expression is even in 8 and e,. The line
shape given by Eq. (48) shows the proper frequency
dependence for a Zeeman modulated line: a maximum
at the resonance frequency flanked by netative wings.
Equation (48) is equivalent to Eq. (19) of Negita.!?

The maximum powder signal as a function of Zee-
man modulation is shown in Fig. 15. We see that the
behavior is qualitatively like that of a single crystal.
As expected,?? the maximum is £ that for an optimally
oriented single crystal.

In Fig. 17 are compared experimental and theoretical
Zeeman modulated line shapes. The experimental line
is a resonance in solid polycrystalline N with a Zeeman
modulation of about 35-37 G.¥% Two theoretical
polycrystal lines are shown. One, with vk./6w=3.5,
corresponds to the actual experimental situation.4!
The other, with yk,/éw=1.3, was chosen to give agree-
ment with the experimental linewidth at zero amplitude.
It can be seen that neither theoretical line gives better
than qualitative agreement with experiment. The
experimental width in Fig. 17 is about 4.8 kHz, and the
present theory for v/,/éw=3.5 gives 8.6 kHz. The dis-
crepancy between experiment and the present theory is
presumably due to the fact that the true experimental
line shape for solid Ny is roughly Gaussian.** The Gaus-
sian shape has been shown by Negita!® to give better
agreement with experiment. The polycrystal linewidth
at zero signal amplitude as given by the zeros of Eq.
(48) is plotted in Fig. 16 as a function of vk./ .
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Although the present theory of Zeeman modulation
was derived for the case I=1 and n=0, it should be
equally valid for all integral-spin, =0, cases. Further-
more, for half-integral spins it should also be applicable
if transitions to m=x=1% levels are not involved. The
applicability of the theory will be further discussed
below.

D. Frequency Modulation, Phase-Sensitive
Detection, Absorption Signal

We consider frequency modulation (FM) briefly
since it is an often-used technique to which the present
theory is easily applied. Let us treat separately the
cases of no magnetic field and static magnetic field.
For FM the frequency parameter 8 becomes

BB coSwmt .

1. No Magnetic Field (2=0)
a. Single crystal. Equation (44) becomes for 6=0:
2C

14 Aw2Ty?

which, as we have already seen, is the usual Lorentzian
expression. For FM (Ao — Aw- f coswxl) the theoretical
treatment for line shape and width is exactly that
already given for Lorentzian magnetic resonance signals
and magnetic modulation.?”=?% The treatment for fre-
quency modulation of Gaussian NQR lines is expected
to be just that for magnetic resonance.?2° We shall not
discuss these cases further except to remark that signal
amplitude and linewidth plots as a function of modula-
tion amplitude are given in Ref. 29. In using these plots
it is necessary to replace the modulation and linewidth
parameters A,/ 6H, 6H meas/OH, and 8H meas/m of Ref. 29
by the quantities f/6w, wmeas/0w, and Swmeas/ f-

b. Polycrystal. Averaging Eq. (44) over 6 and ¢
gives the polycrystal result

4C

3(1+Aw?Ty?)

M=

M= (49)

which is just § the optimum single crystal value, as
expected.*? Hence, the behavior of both single crystal
and polycrystal NQR FM signals as a function of
modulation is given in Ref. 29, at least for Lorentzian
and Gaussian lines.

2. Static Magnetic Field (Q70)

a. Single Crystal. In Eq. (43) we again have Aw — Aw
+ f coswnt. Letting 8= AwT's, Bn=fT2, €,=QTo=~h,T>,
and s=1, we get

2CT1+ (BB coswnmt)?+ €,2 03?0 J(1—sin?y sin%6)

’

42 Reference 12, p. 328.

" 14 (318 cosomi+€, c088) T 1 (BB cOStmi— e, c0S0)?]

(50)
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Fic. 18. Effect of static magnetic
field on theoretical single crystal and
polycrystal derivative signal am-
plitude for frequency modulated
signals. The curve for a single crys-
tal optimally oriented is solid, that
for the polycrystal is dashed.

NORMALIZED AMPLITUDE

.01

The optimum magnetization, of course, occurs for Z
and Z’ axes coincident (f=0). The theoretical ob-
served signal is again @; as found by substitution of
Eq. (50) into Eq. (28) (replacing M, by M.,). The re-
sulting integral identically vanishes for either 8=0 or
Bm=0, as it should to agree with experiment since the
signal is zero at the center frequency and also zero if
the modulation amplitude is zero.

The theoretical observed signal for an optimally
oriented single crystal, as calculated from Eq. (50), is
qualitatively similar to that calculated for nuclear in-
duction in the presence of a static field. In fact, a com-
parison of the two signal shapes at v%,/6w=1.732 shows
little quantitative difference. However, the difference
in angle dependence between Eq. (50) and Eq. (16)
results in marked deviations in the behavior with %,
of the polycrystal signals for the two methods.

The theoretical FM signal, as %, increases, shows
splitting which can be regarded as the superposition of
two derivative signals. As %, — 0, each half-signal tends
to half the zero field amplitude. The theoretical behavior
of the peak amplitude is shown (for optimum crystal
orientation) in Fig. 18 and Table IV. Also given in
Table IV are the theoretical parameters for the line-
width measured between extrema.

b. Polycrystal. Averaging Eq. (43) over 6 and y gives
as the polycrystal magnetization:

C{ 2 B : 14 (B+e.)?
—_
&2 €% 14+(B—e)?

52— 1
+———[tan(f+e)—tan~(8—e,) ] } . (81)

€s

Letting B — B+Bm coswnmt, we find in solving for a;
that the first term integrates to zero. The polycrystal

signal for phase-sensitive detection thus becomes

1+ (8+Bm cosbn—e;)*
14-(B+Bm cosbn+€;)?
+[(B4Bum c080) 2+ €,2— 1] tan—1(84 B cosbn—+€;)

C T
aQ=— / {(B—i—ﬁm €080, In:
med Jo

— tan (BB coSOn— €5) ]| €0S0,d0m, (52)

where 0,=wnt. As is required of a physically correct
solution, Eq. (52) integrates to zero if either =0
or Bn,=0. Like the induction and single-crystal FM
signal, the polycrystal signal shows complex structure
at large static-field amplitudes. The line splits into

Tasre IV. Calculated effect of static magnetic field on line-
width and signal amplitude for experiments using frequency
modulation and phase-sensitive detection.

Single Crystal (§=0) Polycrystal

'Yhs SWmeas OwWmens Norm. Owmeas OWmeas 3><

dw dw vhs Amp. o vhs (Norm.Amp.)/2
0.02598 1.005 38.7 1.000 1.005 38.7 1.000
0.04330 1.010 23.3 0.996 1.008 23.3 0.999
0.08660 1.031 11.9 0.980 1.013 11.7 0.992
0.1732 1.126  6.50 0.922 1.048 6.05 0.967
0.3464 1.472 4.25 0.774 1.195 345 0.880
0.5196 1.905 3.67 0.667 1.420 2.73 0.777
0.6928  2.303 3.33 0.605 1.697 2.45 0.681
08660  2.702 3.12 0.570 2.009 2.32 0.600
1.039 3.048 293 0.548 2.356 2.27 0.534
1.212 3.395 2.80 0.535 2.667 2.20 0.481
1.386 3.723  2.69 0.525 3.031  2.19 0.440
1.559 4.070 2.61 0.519 3377 217 0.404
2.598 6.235 2.40 0.505 5.37 2.067 0.276
3.464 7.97 2.30 0.503 7.10 2,05 0.220
5.196 11.43 2.20 0.501 10.57 2.03 0.157
6.928 14.90 2.15 0.5007 14.02 2.025 0.123
8.660 18.36 2.12 0.5006 17.32 2.00 0.102
17.32 35.68 2.06 0.5004 34.64 2.00 0.054
34.64 70.32 2.03 0.5004 69.28 2.00 0.029
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antisymmetric components, the intensity of which
approaches zero as %, increases. This behavior is, of
course, due to the broadening which results from the
polycrystal average over angle.

The theoretical behavior of the peak polycrystal
derivative amplitude as a function of static magnetic
field is shown in Fig. 18 and Table IV. Table IV also
gives the theoretical linewidth parameters.

E. Comparison of Theoretical Signal Amplitudes
for the Methods

Let us now compare the optimum theoretical signal
strengths expected for the various methods, apart from
noise considerations. In the absence of a static magnetic
field, the maximum theoretical signal strengths for the
optimally oriented single crystal and the polycrystal
are given in Table V. The experimental conditions are:
(1) same H; for each method (no saturation), and (2)
field or frequency modulation amplitude adjusted for
maximum phase-sensitive detected signal. The maxi-
mum signal is given in terms of the quantity
C=2yH.MT: and does not include the factor w (as
discussed in Sec. II.B.1) or such parameters as gain,
filling factor, etc. Actually we are interested in the rela-
tive amplitudes of the signals, so that the normalizing
constant is of little consequence. Although the poly-
crystal induction signal is  the optimum single crystal
value for low modulations, this is not so for the maxi-
mum signal because of the angle dependence of the
modulation parameter. Since the frequency term con-
tains no angle dependence, the polycrystal FM signal
is Z that of the optimally oriented single crystal for all
modulation amplitudes.

Some of the numerical coefficients in Table V may
contain small errors due to the approximate nature of
the machine integration methods used in their calcula-
tion. However, the accuracy is satisfactory for our
purposes.

Although the peak single crystal signals for induction
and FM are the same, Robinson? has shown that the
induction method has the better signal-to-noise ratio.

TaBLE. V. Theoretical maximum signal strengths for three
experimental NQR methods.2 (No saturation, no static field.)

Single Crystal (8 =0) Polycrystal

odulation Modulation
Method Peak signal at peak  Peak signal at peak
Yhm vhm
Induction —=1.8 0.41C —=1.9
dw )
vhs 8C vhz
Zeeman modulation —=127C —=o —=0.85C —=o
Es dw 3r ow
f 2c f
Frequency modulation C -—-=1732 — —=1.732
ow 3 dw

a Signal is also proportional to frequency w, as discussed in text. @
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IX. DISCUSSION, SUMMARY, AND
CONCLUSIONS

This section has a twofold purpose; first, to review
the applicability of the present theory to the experi-
mental situation for which it was derived; second, to
examine the possibility of generalizing the theory to
other situations.

A. Applicability of the Method for I=1,7=0

The present theory was derived under several restric-
tions. These included four major assumptions: (1)
nuclear spin I=1; (2) electric field gradient cylindrically
symmetric about the Z axis (n=0); (3) relaxation proc-
esses parallel to and transverse to the Z axis each
describable by single relaxation times; and (4) no spin
quenching. The effect of the first two assumptions will
be examined below. The third assumption automatically
builds into the theory a Lorentzian line shape, and as a
result, produces an effect on the agreement between
theory and experiment. However, the assumption of
single relaxation times is not so restrictive as to prevent
the theory from being at least qualitatively (and
often quantitatively) correct in all aspects investigated.

1. Induction Experiment (Phase-
Sensitive Detection)

The theory gives good quantitative agreement with
the experimental results for the dependence of line-
width on both modulation field and static field. The
theory is qualitatively correct for the dependence of
line shape and signal amplitude on these parameters.
The saturation behavior of the signal also shows
reasonable agreement between theory and experiment.

Any discrepancies between theory and experiment
can reasonably be associated with the non-Lorentzian
line shape of the experimental signal or with spin-
quenching effects (which are probably minor for
hexamethylenetetramine). Unfortunately, it is con-
siderably more difficult to build other line shapes (e.g.,
Gaussian) into the present theory than into the analo-
gous NMR theory. However, since the main features of
the experiment are explained using a Lorentzian line
shape, this difficulty is not critical.

A slight modification of the theory indicates that
frequency modulation in the presence of a static mag-
netic field yields an observable signal. For low enough
fields the V-mode signal looks like a second derivative
of an absorption line.

2. Absorption Experiments

a. Sinusoidal magnetic modulation. Theory predicts
that, for sinusoidal magnetic modulation and phase-
sensitive detection at the same frequency, the signal is
identically zero. An experiment on 3Cl in p-dichloro-
benzene (I=%, n=0.08) confirmed the theoretical re-
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sult. Since the theory was derived for I=1, =0,
it would be useful to repeat the experiment for N in
hexamethylenetetramine. However, we expect the
theory to be qualitatively applicable to half-integral
spins for any 7.

b. Zeeman modulation. The present theory gives the
proper qualitative line shape for both single crystal
and polycrystal samples. The theoretical line shape in-
cludes both the positive signal at the resonance center
and the negative wings. The work of Negita!® is more
general, including both Lorentzian and Gaussian lines
for >0, the present work agrees with that of Negita
for n=0 and a Lorentzian line.

¢. Frequency modulation. In the absence of static
magnetic fields the theory of this method reduces to
that for sinusoidal magnetic modulation of Lorentzian
magnetic resonance lines as previously considered in
Refs. 27-29. The effect of static magnetic fields has been
considered in the present work in some detail, and
reasonable results for the linewidth, line shape, and
signal amplitude obtained.

B. Extension of the Theory to Other Cases

Although the present theory was derived for I=1,
7=0, it is possible to extend it qualitatively to other
cases without detailed calculations.® This can be done
by considering the general form of the dependence
of resonance frequency upon # and magnetic field for
these cases.

1. Integral Spin Nucle:

a. n=0. In the absence of saturation effects the
present theory should be as valid for I=2, 3, 4, ---
as it is for I=1. This is true since for these spins also
the application of a small magnetic field H produces
shifts of the precession frequencies from w to
wotyH cosb.

If the rf field H; is strong enough to produce satura-
tion, the theory must be altered by changing the
squared matrix elements P2(=S?) in the saturation
parameter!® 4y2H,*T 1T2P?sin?;. The values of P?
are easily calculable,?? and so the change in the theory
is minor. Das and Hahn** discuss relaxation effects in
some detail.

b. 7>0. Although the present theory is not applicable
to the case >0, some general conclusions can be
drawn.*? For 5 small, the degeneracy of the energy levels

4 The author is grateful to Dr. W. G. Proctor for valuable
comments pertinent to this discussion.
44 Reference 6, p. 60.
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is removed linearly with applied magnetic field,* as is
the case for »=0. Thus we qualitatively expect, by
analogy with the present treatment, that the induction
method will work for integral spins, small 5, as does the
Zeeman-modulated absorption method.#s However,
since the degeneracy is removed quadratically with field
for large u, the induction method, like the Zeeman-
modulated absorption method* fails.

2. Half-Integral Spin Nuclei

a. 7=0. Since, for =%, §, Z, - - -, the shift of central
precession frequency for all transitions except those to
the m==3 levels is given by Eqgs. (15), we expect the
present theory to apply in all aspects except saturation.
For saturation curves the saturation factor must be
adjusted as previously discussed (Sec. IX B 1.a).

If transitions to the 43 levels are involved, the appli-
cation of a magnetic field mixes the two states so that
four transitions (instead of two) between the =+32
levels and the new mixed states are now allowed.2!
Although this complicates the picture somewhat, the
shift of the new levels is essentially proportional to
© cosf. Thus, the nuclear induction method should still
be applicable, but some structure may be present in the
observed signals, due to the involvement of four in-
stead of two levels. One expects this structure to dis-
appear for low enough modulations.

b. n>0. The degeneracy of quadrupole energy levels
for half-integral spins is not removed by nonaxial field
gradients, but each level is shifted by an amount de-
pendent upon #. The degeneracy is removed linearly
by a magnetic field,* so the induction method should
work for half-integral spins, any .
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