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We have solved a master equation to obtain the diagonal elements of the density matrix for laser light.
The master equation represents a generalization of a master equation derived earlier for a single radiation
mode interacting with IV stationary two-level atoms. The generalization takes into account the pumping
scheme which characterizes a three-level laser. For positive temperatures and a lossless cavity, the equilibrium
solution of the master equation gives the correct statistical-mechanical description of the atoms and radia-
tion. For negative temperatures, the distribution function for the number of photons in the mode is either
exponential or peaked, depending on whether the laser is operating below or above threshold. The calculated
intensity fluctuations are in good agreement with semiclassical results for lasers operating slightly above

threshold.

I. INTRODUCTION

ARLY speculation'—® on the qualitative differences

between laser light and coherent light emanating
from thermal sources has to a large extent been con-
firmed by recent photo-detection experiments.*—® The
outcome of these experiments, briefly, is that above the
threshold laser light behaves like an amplitude-
stabilized oscillation while below it is characterized by
a fluctuating wave amplitude having Gaussian sta-
tistics. This abrupt change in behavior at threshold
can be justified by appealing to the nonlinear satu-
ration properties of a van der Pol oscillator driven by
a suitable noise source.t%%1% The present article is
directed toward the objective of justifying these sta-
tistical differences by referring directly to the diagonal
elements of the density matrix for laser light.

In a previous article,* hereafter referred to as I, a
master equation was derived for a system of N sta-
tionary two-level atoms interacting with a single
radiation mode. The effect of radiation loss was also
included and the resulting model was applied numeri-
cally to the case of a Q-spoiled laser. In the present
article the pumping effects which characterize a three-
level laser are incorporated into the master equation of
I. But some of our results will be independent of the
pumping scheme. The resulting master equation is
similar in varying respects to equations proposed by
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Energy Commission.
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other authors.’>~* Qur approach resembles most closely
that of Ref. 14, although the starting equations and
the final results are somewhat different. The equilibrium
solution for positive temperatures and a lossless cavity
gives the correct statistical mechanical probability
distribution for the system of atoms and radiation.
When negative temperatures are allowed and radiation
loss is included, the steady-state solutions lead to two
distinct kinds of behavior for the distribution function
of the number of photons in the mode. The forms which
the distribution function takes may be characterized
as “exponential” and “peaked” and the condition which
defines the transition from one form to the other turns
out to be the laser threshold condition. This is in basic
agreement with experimental findings in Refs. 6-8. The
calculated intensity fluctuations are also in agreement
with those obtained using semiclassical theories.®¥

In Sec. II, the basic pumping scheme for a three-level
laser is described in terms of rate equations. In Sec. III,
terms describing the pumping process are added to the
master equation in such a way that the rate equations
of Sec. IT obtain for the expected values of the upper
and lower laser level populations. It is also shown in
this section that the detailed solution of the resulting
master equation at positive temperatures and for a
lossless cavity gives the correct statistical thermo-
dynamic distributions for both atoms and radiation.
Sections IV-VI are devoted to the solution of the
general steady-state master equation for negative tem-
peratures. In Sec. VII, analytic solutions obtained in
Secs. IV and V are compared with numerical solutions
of the general master equation for a single atom.

II. RATE-EQUATION DESCRIPTION
OF PUMPING PROCESS

Let us consider the energy-level scheme of Fig. 1
which characterizes a three-level laser. The upper and
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F16. 1. Energy-level scheme for three-level laser as described by
master equation. It is assumed that atoms are raised from the
ground level b to the level ¢ and in turn decay instantaneously to
the upper laser level a. The rate constant for this process is @.
Atoms in turn make transitions to the ground level via the laser
transition or through some other process like spontaneous emis-
sion into modes other than the laser mode. The rate constant for
the latter process is 8.

lower laser levels are designated respectively as ¢ and
b, and the third level which participates in the pumping
process is designated as ¢. If we consider but a single
operating mode and the transition from ¢ to ¢ is suffi-
ciently rapid compared to all other transitions, we may
ignore the level ¢ and describe the populations of the
a and the b levels by means of the rate equations

AN o/dt=— (W(Na—N3)—kNy+ON,— 8N4, (2.1a)
dNy/di=(n)(No— No)+xNy—®Ns+8SNa,  (2.1b)
No+Ny=N. (2.1¢)

In Egs. (2.1), « is an absorption rate constant, (x) is
the average number of photons in the laser mode, @ is
the rate at which ground-level atoms are pumped to
the upper level, and § is the rate at which atoms are
“de-excited” from the upper level due to all processes
other than the laser transition. (By laser transition we
mean a transition between levels ¢ and b involving the
laser mode only.) The first two terms in Egs. (2.1a)
and (2.1b) describe the rate at which the number of
atoms in a level change owing to the laser transition.
The second two terms in each equation describe the
effect of the pumping process. The steady-state condi-
tion is
0= <n>K(N,,-—Nb)+KNb

+@N,—SN., (2.2a)

Net+Ny=N. (2.2b)

If thermodynamic equilibrium exists, for which we
presume that ®/8<1, then we expect the first and the
second lines of Eq. (2.2a) to vanish separately. We may
then define a temperature by means of the Boltzmann
ratio

No/Ne=0®/8
= exp(—fia/RT), (2.3)
where 7w is the difference between the energy eigen-

values of the upper and lower laser levels.
We would expect that the rate equations (2.1) would
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hold for the expected values of the upper and lower level
populations calculated from a detailed quantum de-
scription of the entire system. Such a detailed de-
scription is furnished by a master equation. In the
following section we shall add terms which describe the
pumping mechanism to the master equation derived in
I. The resulting master equation determines differential
equations for the expected values of the upper and lower
state populations with pumping terms which are
identical to those of Egs. (2.1).

III. MASTER EQUATION FOR N-ATOM
SYSTEM WITH PUMPING

Let us consider the following extension of Eq. (6.5a)
inI:

d
(—i—Pm"= —kn[mPyp"— (N—m~+1)Pp "]
t

— k(1) (N—m) P~ (m~+1) Ppypyt]
+8(N—m~+1)Ppr"—PmP,"

+@(m~+1)Pryp1”—S(N—m)Ppr. (3.1)
In Eq. (3.1), terms proportional to ® and § represent
the effect of pumping and de-exciting. We examine first
the behavior of () determined by Eq. (3.1). If we
multiply Eq. (3.1) through by # and sum over » and #,
the result is

d{n)/dt=rk{(N—2m)n)+x{((N—m)). (3.2)

Equation (3.2) is the N-atom transfer equation derived
in I [Eq. (6.7)]. Its form is thus independent of the
presence in the master equation of terms describing the
exciting and de-exciting mechanisms. We next multiply
through Eq. (3.1) by m and sum over » and #z. The
result is

d{m)/dt=d{n)/dt+8 3 (m+1)(N—m)P,"
—8> m(N—m)Pp"+@Y. (m—1)mP,"

—@ > mEP,"

= k(N —2m)n)+x((N—m))

+8(N—m)—@{m). (3.3)

In a similar way we obtain

d{N—m)/dt=—d{m)/dt. (3.4)

Thus the dependence of the expected values of the
number of upper and lower state atoms on the pumping
and de-exciting mechanisms is the same as that assumed
in the rate equations (2.1).

We examine now the solution to the equilibrium form
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of Eq. (3.1), which is

0= —xu[mPpn"— (N—m~+1)Pp_1™1]
—k(nF+1D)[(N—m) Pp*— (m—+1) Pyt
+8(N—m~+1)Ppy®—CmPy"
+@m+1) Py~ S(N—m)Pur.  (3.5)
Equation (3.5) will evidently be satisfied, provided

P, satisfies simultaneously the following two difference
equations:

Cm+1)Ppr"—S(N—m)Pur=0,  (3.6a)
(m+1) Py — (N—m) Pun=0.  (3.6b)

A solution to Eq. (3.6a) will make the last two lines of
Eq. (3.5) vanish separately; a solution of Eq. (3.6b)
will cause the separate vanishing of the first two bracket
terms of Eq. (3.5). The solution to Eq. (3.6a) may be

written
S\™ N
Pm"=<——> S — R (3.7)
@/ m!(N—m)!
Let us put
®/8=exp(— hwo/kT), (3.8a)
gm=N/m!(N—m)!, (3.8b)
then
P/ Py = (gmy/ gms) €xpl(mr—mz)heoo/kT].  (3.9)

But Eq. (3.9) represents the Boltzmann ratio of the
probabilities of two configuration states in a system of
N uncoupled spins in contact with a heat reservoir.
Thus Eq. (3.7) gives the correct equilibrium distri-
bution for the occupation of the atomic levels. We
determine Py* by substituting expression (3.7) into
Eq. (3.6b). The result is

P0"+1=P0” exp(—ﬁwo/kT) y
Pyr=P¢ exp(—nﬁwo/kT) y (3.10)

which is a Bose-Einstein distribution for the occupation
of the photon energy states. The complete normalized
distribution may be written!®

N!
Pm"=mﬁ’"(1_l>)‘v“’”
X [1—exp(— hwo/kT)] exp(—nhwo/kT), (3.11)
where
p=-exp(hwo/kT)/[1+exp(hwo/kT)]. (3.12)

It will be noted that it is the atomic frequency w,
rather than the mode frequency w (see I), which occurs
in the Bose-Einstein distribution (3.11). This, however,
is to be expected, since it is the atomic system which
is in contact with the heat reservoir.

15 Expression (3.11) satisfies the conditions of detailed balancing.
The uniqueness of (3.11) as a solution to (3.5) follows by a well-

known argument. See, for example, C. Kittel, Elementary Statistical
Physics (John Wiley & Sons, Inc., New York, 1958), pp. 169-171.
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By approximating the binomial distribution in Eq.
(3.12), we obtain for the distribution of the atomic
levels

1 (m—Np)?
Po=[2xNp(1—p) 12 —_— . .
DeNpU=pTen 2 0] 619
From (3.13), evidently
(N—{m))/(m)=exp(—hwo/kT),  (3.14a)
o/ (m)y=[(1—p)/pNJ",  (3.14b)

where o is the standard deviation in . Because of the
large value of IV, the distribution in m/N is therefore
exceedingly sharply defined and for all practical pur-
poses the occupation of the atomic levels can be
characterized by the Boltzmann factor (3.14a).

We have thus demonstrated that the master equation
leads to the correct equilibrium description of the
system of N atoms and radiation field if ®/8<1 or,
equivalently, for positive temperature. If ®/8>1, i.e.,
for infinite positive or for negative temperatures, the
solution (3.11) is no longer finite. However, if terms
describing radiation loss are added to Eq. (3.1),
equilibrium solutions are again possible. We therefore
adopt the following as the complete master equation
describing the laser:

d
;—Pm" = —n[mP,*— (N—m~+1)P,_,* 1]
t

— k(DL (NV—=m) Py — (m+1) Py
+8(N—m4-1)Pp_y®—OmP,,"
+@(m41)Ppy 1" — (N —m) P,y

+ (n+ 1)y P, —nyP,".

It should be remarked, finally, that the time-de-
pendent form of Eq. (3.15) is approximate in the sense
that it is based upon an approximate elimination of
off-diagonal elements in terms of diagonal elements of
the density matrix. All types of rate equations are
approximate in this sense. However, this particular
approximation becomes exact in the limit of equi-
librium. For the further conditions of validity of the
radiation-dependent parts of Eq. (3.15), the reader is
referred to L.

(3.15)

IV. LASER STEADY-STATE SOLUTION
OF MASTER EQUATION

We consider now the steady-state solution of Eq.
(3.15) for negative temperatures. We must solve

= —in[mPy*— (N —m~+1)Pp_y"]
—k(n+ D[N =m)Pu— (m+1) Ppia™t ]
+8(N—m+1)Pry"— P Pr
+@(m+1)Pry1— S(N—m)Pp”

+ye(nt+-1)Pptti—yenPyut.  (4.1)
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Before proceeding, let us define the following moments:

na(n) =2 Pn"(N—m)/NP",

n5(n) =2 Ppm/NP",
m (4.2)

n=z Pmn‘

The quantities 7,(r) and 7,(n) represent, respectively,
the conditional probabilities of occupying the upper
and lower levels, given that there are # photons in the
mode. Let us now sum Eq. (4.1) over m. The terms
proportional to ® and 8 sum to 0, and the result is

(n+1)[yet+Nigy(n+1) P+
— (n4+1)N«[1—1np(n) ] P"
—n[vet+Nigs(n) 1P
N[ 1—ny(n—1)]P+1=0. (4.3)
Equation (4.3) is satisfied by a solution of
Nina(n)
Yot Niny(n+1)

The solution of Eq. (4.4) may be expressed as'¢

Prtl= (4.4)

Pr=1] il :|P° (4.5)

n'=0 l:'yc—I-Nm]b (n'+1)

Equation (4.5) is independent of the details of the
pumping action and is therefore quite general and
covers the cases both of thermodynamic equilibrium
and nonequilibrium steady-state equally well. If, for ex-
ample, it can be stipulated that 5, and 7, are deter-
mined by a Boltzmann ratio at positive temperature,
and if v,=0, then Eq. (4.5) describes a Bose-Einstein
distribution. If y.>0 and %, and 7, are determined by
a Boltzmann ratio at positive or, for that matter,
negative temperature, so long as the general factor in
Eq. (4.5) is less than unity, then Eq. (4.5) defines a
Bose-Einstein distribution whose effective temperature
depends on the temperature of the atoms, on the ab-
sorption-rate constant N, and on the loss-rate constant
Yot

Nk exp (— hwo/kT)
Tots=— hwo/k In P °

. (4.6)
ve[14exp (—fwo/kT) ]+ Nk

In the most general case, the density matrix of the com-
plete system is not factorable as it is in the case of
thermodynamic equilibrium, e.g., the case of Eq. (3.12),
and a determination of .(1#) and 9,(%) may require a
detailed solution of the full master equation. This is
precisely the situation with which we are confronted
in the description of a laser.

16 This solution satisfies detailed balancing. See footnote 15.
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To proceed with the determination of 74(%) and 75(n)
let us assume that in Eq. (4.1) we can to a good approxi-
mation replace P, by Pun* Pma™! by Pm" and
Popi1® by Py1™ Let us also neglect the last two terms
of Eq. (4.1),

Yo 1) Py gt Py "oy P (4.7)

This neglect can be justified in the following way: For
small values of » we expect the pumping terms in Eq.
(4.1) to dominate, so the neglect will not be important
in this case. For large values of #, on the other hand,
the radiation terms will become important. But in that
case the coefficients of the first four terms in Eq. (4.1)
will be like #Nx where Nk=v,, and the terms (4.7)
would be small in comparison. We emphasize, however,
that the terms proportional to v, have been taken into
account without approximation in the determination
of the » dependence of P," in Eq. (4.5).

As a consequence of the above approximations Eq.
(4.1) becomes!?

(m—+1) (C+ k1) Py — (N —m) (8+«n) P
—m(®+xn)Pp+ (N—m—+1)

X (8+kn)Ppy”= (4.8)
Equation (4.8) is satisfied by a solution of
(m+1) (@+«n) Ppyr®— (N—m) (8+kn)Pn"=0, (4.9)
which may be expressed as
S+-km\™ Nl
P,n= < ) Per.  (4.10)
C+xn/ m!(N—m)!
Normalizing, we have
N!
Pr=—————ny ()™ (n) VP, (4.11)
m!(N—m)!
where
no(n) = (8+xn)/ (8+C+2xn) ,
na(n) = (®4xn)/ (8+®+2n), (4.12)

and P» is the probability of there being # photons in
the mode. For large N we may express Eq. (4.11) as

Pn
P,
[2mNo (ma () ]2
{_1 [m—Nno(n) ]
P172 Noumna()

From either Eq. (4.11) or (4.13) the mean values of
(N—m)/N and m/N are 5,(n) and 54(x). From Eq.

(4.13)

17 Another way to derive Eq. (4.8) is to average Eq. (4.1) over
some range of # about the particular value of # in question. The
values of # which occur in Eq. (4.8) are, strictly speaking, suitable
averages of # in this range. We have replaced these averages by #
itself and have also ignored the difference between #+1 and .
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(4.13) the standard deviation in m/N is
o=[ns(n)na(n) JH2/N*2. (4.14)

For large N the distribution (4.13) in m is thus ex-
tremely sharply peaked at its mean value. It is inter-
esting to note the saturation properties implied by
Egs. (4.5) and”(4.7). For given # the ratio of the
probabilities for occupying the upper and lower states
is

1a(1)/1(n) = (®+xn)/ (8+xn) . (4.15)
If we assume that x<K®, k<8, then for small values of
n the ratio (4.9) is determined solely by the pumping
and de-excitation mechanisms. For increasing », how-
ever, the ratio diminishes approaching unity.

V. PROPERTIES OF THE PHOTON
DISTRIBUTION FUNCTION
ABOVE THRESHOLD

The photon distribution function P* defined in Eq.
(4.5) displays two distinct types of behavior, depending
on whether the ratio

Nina(0)/[ve+Nuny(1) 122N wna(0)/[ve+Nins(0)] (S.1)

is less than or exceeds unity. In the former case, P"
decreases monotonically with #. In the latter case, P"
increases initially with #» but reaches a maximum and
then decreases with a further increase in »#. The tran-
sition between the two types of behavior is defined by
the condition

Ni[1a(0)—75(0) J="e. (5.2)

It will be noted that Eq. (5.2) is the Schalow-Townes
threshold condition for laser oscillation. We have
demonstrated, therefore, that the laser oscillation
threshold is also the threshold for the changeover in
the statistical behavior of laser radiation. Note that the
threshold condition (5.2) is expressed in terms of the
unsaturated inversion.

Let us assume now that the laser is operating above
threshold or that the left-hand side of Eq. (5.2) exceeds
the right-hand side. We determine now that value of #
for which the distribution P” peaks. From Eq. (4.5)
we see that the maximum in P occurs for % such that

prii=pn, (5.3)
or, equivalently,

Ni[n.(n)—np(n+1)]=7. (5.4)

Equation (5.4) shows that the photon distribution peaks
at that value of # for which the threshold condition is
satisfied by the salurated inversion. Making use of
Eqgs. (4.12) for 5,(n) and n3(») and neglecting 1 com-
pared with #, we now solve Eq. (5.4) for ». Calling
this value 7o, we obtain

n0=(5+@|:<<?—5\ 1 1]'

2k ®+ S/'y (Vi)

(5.5)

J. A. FLECK, JR.
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The first term in the bracket in Eq. (5.5) can be written
as the ratio

N= [na(O)—nb(O)]/[ﬂa(no)—ﬂb(%)] )

where 9T is the ratio of the inversion which would exist
if losses were large enough to prevent oscillation to the
existing saturated inversion. [ The numerator of (5.6)
depends on pumping; the denominator is an intrinsic
constant of the system and is independent of pumping. ]
Thus, Eq. (5.5) may be expressed in the form

no=[(8+®)/2](N—1).

(5.6)

(5.7

The above value of %, which has been determined
from the detailed solution to the master equation, can
be checked by calculating it from the expected-value
equations (3.2) and (3.4). Because P," is sharply
peaked in m and, as we shall subsequently show, also
in 7, provided the laser is operating somewhat above
threshold, we may write the steady-state form of
Egs. (3.2)'and (3.3) in the following form after adding
a radiation loss term to (3.2):

(5.82)
(5.8b)

N[ na(10)— 75(10) Jrot+Nina=2 o,
¥ o+ 8N4 (120) — ®N 9y (n0) =0.

If the spontaneous-emission term in (5.8a) is neglected,
Eq. (5.8a) is identical with (5.4), and Egs. (5.8) yield
the value (5.7) for #,.8

Let us now examine in greater detail the shape of the
photon distribution P~. Instead of using Eq. (4.5) we
can also write P* in the form

Nina(n')

41
_, 5.9
v+N Knb(%')] .2

Pr= Pno H [

n’=ng

where 7’41 in the argument of 7, has been replaced
with %’ and where the positive or negative exponent
holds respectively in the cases where 7 is greater or
less than #,. Taking the logarithm of both sides of Eq.
(5.9), we obtain

Nina(n')

InPr=InPrt 3 ln[————
Yet+Niny (n')

n’=ngo

] . (5.10)

For the purpose of developing the logarithmic terms in
Eq. (5.10) in a Taylor series about #,, we define

Neera () ] ) (5.11)

f&! )=ln[——~——
Yet+Niny (')
Making use of Egs. (4.12) and (5.4) and neglecting 1

18 The neglect of # compared with #+1 in Eq. (5.4) and the
neglect of spontaneous emission in the rate equation (5.8a) are
thus in a sense equivalent.
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compared with 7o, we obtain

af 1

[’ (o) =15 (n0) ]

dn'l ey Ma(no

2v.

[ — (5.12)

N(G)+1’LOK)

Thus,
InPr=F—-— 3 (1’ —mnq)
N((P-l-%olc) n/=ng
27v. (n—mn0)?
o~ Y. (5.13)
N((P+nok) 2

We may therefore express P” in the form

T™ e —1/2
ol
N (G)+n()l€)

X exp[—

Ye

N—————((P+nOK)(n~n0)2] (5.14)

for a laser operating somewhat above threshold. The
variance in # is

?=N(C+now)/2v.. (5.15)

From Eq. (5.4), N>, and from Eq. (5.8b), N®>v 0.
Therefore, using (5.15), we may write the following
inequality:

a*>ng. (5.16)

[For a Poisson distribution, which corresponds to a
coherent state, o2=mo. ] The form (5.14) is valid also
near and at threshold with a suitable normalization.
Near threshold P» takes the form of a truncated Gaus-
sian. (See Sec. VIL.)

With the help of Egs. (4.5) and (5.4), we can also
express Eq. (5.15) in the form

d* 7a(10)

= . (5.17)
o Ma(10)—n3 (o) (1—1)
Expressing the output power P as
P=ngy. (5.18)
and the laser linewidth Aw as
po Yo melod (5.19)
2P n4(no)—ns(n0)
we can write Eq. (5.17) as
2/nd=[29/(N—1)]JAw/v.. (5.20)

An expression identical to (5.20) except for the factor
9 has been derived from semiclassical theory.!?

18 See Ref. 10, especially Eq. (52).
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It is possible to check the validity of our solution to
the master equation upon which the variance formulas
(5.17) and (5.20) are based by deriving the variance
in another way. To do this we make use of Egs. (4.5),
(5.2), and (5.4). Let us attempt to find a linear approxi-
mation for

Nxna(n) (no—mn)
=~ . 5.21
nl:yc—l-anb(n-f— 1)] 5.21)

0.2
Such an approximation should be valid over the range
of interest in the variation of #, provided the argument
of the logarithm does not deviate significantly from 1
and provided 74(n¢) and 7,(n0) do not differ greatly
from 7,(0) and 7,(0), which we can reasonably infer to
be the unsaturated values of 5, and 7. Both of these
conditions in turn should be satisfied as long as the laser

is not operating too far above the threshold, or if
N=~1. (5.22)

If the approximation (5.21) is now substituted into
Eq. (4.5), then

1 (n—mno)?
P~ exp[— ] , (5.23)
a(2m)1? 242
where, from (5.21),
Nk, (0) 7!
zr2=no[ln————] . (5.24)
vot+Nins (0)

Expanding the right-hand side of (5.24) in a Taylor
series and making use of (5.4) to eliminate vy,(Nk)™,
we obtain

a* _na(no)+[ns(0) =70 (o) ]

no  na(ne)—ns(no)

1 (5.25)

Both Egs. (5.17) and (5.25) are in good agreement,
provided condition (5.22) is met. The distribution (5.23)
also holds in the immediate neighborhood of threshold,
provided it is appropriately normalized. Therefore, we
may be reasonably sure of the validity of the solution to
the master equation developed in Sec. IV and the first
part of Sec. V as long as the laser is operating slightly
above threshold. This conclusion will also be borne out
by numerical examples in Sec. VII. It will be noted that
Egs. (5.24) and (5.25) have been derived without
specific reference to the pumping scheme.

To summarize, we have demonstrated that the basic
character of the distribution function for the number of
photons in the mode changes when the laser threshold
condition is met and that above threshold the distri-
bution is peaked, just as one would expect for an
amplitude-stabilized oscillation and that, furthermore,
the intensity fluctuations decrease with increasing
power above threshold. These results are in basic
agreement with the experimental findings.
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VI. BEHAVIOR OF THE PHOTON DISTRIBUTION
FUNCTION BELOW THRESHOLD

We consider now the case for which
Ni[1a(0)—=n5(0)]<re. (6.1)

So long as nxk<<®, the photon distribution function
behaves like

Pr=const ¢, (6.2)
where ¢ is defined by
quKna(O)/[:'Yc"*‘fVK"Ib(O)] ’ (6.3)

but deviates from (6.2) for k= @. If, however, the laser
is operating sufficiently below threshold, the contri-
bution to () of the P* which show saturation behavior
will be negligible. Under such circumstances we may
to a good approximation write P" as

Pr=(1—q)g". (6.4)

Thus, the effective temperature of a laser operating in
a single mode somewhat below threshold is

Nin.(0) 7
T=— hwo/k lnl:———-—
Ye

, 6.5
+N Knb(())-] (63

and the expected photon number is the Bose-Einstein
average:

(ny=1/(¢"=1)
Nina(0)
(= N1 ()= (0)])
But expression (6.6) is the steady-state solution of
d(n)/dt=Ni[na(0)—15(0) )+ Nna(0)—v.(n), (6.7)

which is precisely what one would expect on simple
phenomenological grounds. However, the difficulty of
understanding what happens as the denominator of
Eq. (6.6) goes to 0 is no longer with us; for inversions
sufficiently close to threshold we know that Eqgs. (6.4)
and (6.6) are simply inadequate and that account must
be taken of the saturation behavior of 7.(%) and 5;(n).

(6.6)

VII. NUMERICAL EXAMPLES

The steady-state solutions developed in Sec. IV and
at the end of Sec. V are applicable alike in the case of
many atoms or in the case of a single atom. In the latter
case it is possible to obtain, for comparison purposes,
steady-state solutions of the master equation by trun-
cating P," at a specific value of #. By adjusting the
parameters ®, 8, k, and 7, it is possible to hold (#) and
7max, the value above which P," is set equal to 0, to
reasonable values and thus to solve simultaneously
the differential equations (3.12). In Egs. (3.11) the
index n goes from #=0 t0 7#2=1#max, and the index m
goes from m=0 to 1. The initial value of P¢° is set equal
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149

to 1, all other probabilities are set equal to 0, and the
system of equations is allowed to approach equilibrium.
Figures 2 and 3 apply to the case of a laser operating
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F16. 2. Comparison between numerical solution of the master
equation and approximate analytic solutions for single-atom laser
operating slightly above threshold. Plotted is P*, the normalized
photon distribution as a function of photon number. By appro-
priate choice of the laser parameters, the expected number of
photons has been held to a low value. Approximation 1 is based on
Egs. (4.12). Approximation 2 is based on Eq. (5.21). Both of these
approximations give good agreement with semiclassical results.

slightly above threshold with ®=75, 8§=15, x=1,
7.=0.5, and #max=350. From Eq. (5.5), #o=15 and
9N=1.333. The numerical solution of P» is plotted in
Fig. 2. Also plotted is the solution (4.5) calculated by
(1) using 7.(n) and 7,(n) as given in Egs. (4.12); and
(2) using n.(n) and ns(n) calculated from Egs. (5.21)
and (5.24). In the latter case the value ¢ was calculated
by Eq. (5.5). It will be remembered that Eq. (4.5) is
exact, but both Egs. (4.12) and Eq. (5.21) represent
approximations. It is to be noted that the value of
no=15, predicted by Eq. (5.5) which is in turn based on
Egs. (4.12), is in perfect agreement with the numerical
solution. The solution based on Egs. (4.12) provides a
good fit to the numerical solution on the front side of
P~ The solution based on Eq. (5.21) provides perhaps
a better over-all fit, but gives a distribution which is too
narrow. Both cases (1) and (2) have been normalized
so that the maximum value of P» agrees with the
numerical solution. The normalized conditional popu-
lation inversion 74(#)— (7w) is plotted in Fig. 3 as a
function of #. Again it is found that Egs. (4.12) provide
a good fit for n<<#ue but a poor fit for #>#n,. Equation
(5.21) again provides a more consistent fit.

Figure 4 applies to the case of a laser operating well
above threshold with ®=17, §=3, k=1, y.,=0.1, and
#max= 100. In this case N=75.455, and #, as calculated
from Eq. (5.5) is 49. This value is in perfect agreement
with the numerical calculation of P However, due
to the large value of 9 it might be expected that
neither Eqgs. (4.12) nor Eq. (5.21) should apply. The
numerically calculated P is to a good approximation
a Gaussian distribution with standard deviation ¢=9.1.
Formulas (5.15) or (5.17) give ¢=18.2. Equation
(5.24) on the other hand gives ¢=7.6. This is a much
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better fit, but the discrepancy is obviously due to the
fact that the logarithmic function in Eq. (5.21) cannot
be expressed as a linear function of # over the range
from O to 7. In fact, if n,(n)—ns(n) is calculated from
(5.21) with ¢=9.1, the dashed curve in Fig. 4 results.
The successful prediction of #¢ by means of Egs. (4.12)
is explained by the fact that approximations like setting
P, =P," as were made in deriving (4.12) become
exact for n=#o. Thus we would expect expressions
(4.11) through (4.13) to be quite accurate for 7= r#,,
even if the laser is operating well above threshold.

In summary, our numerical examples are perhaps
somewhat inconclusive, since they do not correspond to
actual physical laser systems. However, they lend
credence to the intensity-fluctuation formulas developed
earlier in the paper and by implication to semiclassical
formulas, provided the laser is not operating too far
above threshold. They also suggest that considerable
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Fi16. 3. Calculation for parameters of Fig. 2 of n4(n) —m (%) as a
function of #, where 17,,8:) and my(n) represent the conditional
probabilities that an atom will occupy the upper and the lower
laser levels, given that » photons are in the mode. For =0,
na(n) —m(n) should very nearly equal the unsaturated normalized
population inversion. For n=mn,, the most probable photon
number, it should take the saturated value such that N«[74(n)
—n5(10) J="e-
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Fi1c. 4. Numerical solution of one-atom master equation for the
case of a laser operating well above threshold with 91=35.455.
Photon distribution is Gaussian, with standard deviation ¢=9.1.
Analytic expressions developed in text do not fit the numerical
solution well. The dashed curve is a plot of no—s fit to Eq. (5.21).

care may have to be exercised in choosing equivalent
quantum noise sources for semiclassical treatments of
lasers operating well above threshold.

Note added in proof. Our photon distribution function
above threshold can be expressed as

n?  (8+@®@)
Pr=4 exp[——-l—
20

@—1n ],

ko2
where 4 is a normalization constant and o? is defined by
Eq. (5.15). All quantities appearing in this expression
are slowly varying except 9t—1 in the region just above
threshold. Therefore, P* may be determined by a single
parameter which varies with the laser excitation. A
distribution of this form has been fit to experimental
data by A. W. Smith and J. A. Armstrong, Phys. Rev.
Letters 16, 1169 (1966). Similar expressions have been
derived from a Fokker-Planck equation by H. Risken,
Z. Physik 186, 85 (1965) and by M. Lax and R. D.
Hempstead, Bull. Am. Phys. Soc. 11, 111 (1966).



