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The interaction is considered between N stationary two-level atoms and a radiation field described by a
single cavity mode. The state vector for the complete system of atoms p)us radiation is expressed as a linear
superposition of states constructed from a product of photon states in the n representation and products of
Pauli spin eigenstates describing all combinations of atoms in the lower and upper energy levels. Fquations
for the corresponding probability amplitudes are derived by substituting this superposition into the Schro-
dinger equation. The resulting equations are combined into bilinear form and phenomenological damping
contributions are added. After the neglect of certain of the bilinear quantities, a master equation is derived
which governs the probability I' of having m atoms in the lower level and n photons in the mode. This
master equation takes account of multiple single-quantum absorption and emission processes but not of
simultaneous multiple processes involving two or more atoms at a time. The equation which governs the
expected number of photons (n) derived from the master equation bears a close resemblance to a rate equa-
tion. The effect of radiation loss from the cavity is incorporated into the master equation. Numerical calcu-
lations for a Q-spoiled laser show that the statistics of the number of photons in the mode bear a qualitative
resemblance to Poisson statistics.

I. INTRODUCTION

'HE theory of maser and laser devices which has
paralleled the extensive experimental advances in

the 6eld has, to a large extent, been based on a single
model. This model, ' " known variously as the phe-
nomenological semiclassical, the neoclassical, or the
SCFA (self-consistent-field approximation) model, has
made possible the qualitative understanding of many
laser phenomena and in some cases has enabled the
quantitative description as well. Despite these successes,
this model is inadequate in several respects. First of all,
the SCFA model embodies the assumption that the
density matrix for the complete laser system can be
represented as the product of density matrices for the
radiation field and for each individual atom. ' "As such
it is not appropriate for understanding the collective
radiative phenomena which have been described by
Dicke" and Senitzky. '4 Second, it is not fully clear from
the usual SCFA derivations just how the eGects of
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spontaneous emission should be taken into account.
These effects have of course an important bearing on
such coherence properties of the laser as 1inewidth and
amplitude and intensity fluctuations. The traditional
approach to this problem has been the phenomenological
one of adding suitable noise sources based on equi-
librium or other considerations to the SCFA equations
of motion. " '~ Finally, the SCFA model sheds little or
no light on the important question of the statistical
nature of laser radiation. ""

A satisfactory program for enlarging upon the SCFA
model to the point where these deficiencies are removed
should involve proceeding from an E-atom Hamil-
tonian, carrying along a fully quantized electromagnetic
field from the start, and treating the density matrix for
the complete system in unfactored form. Nevertheless, a
certain amount of phenomenology remains unavoidable
in treating the effects of pumping, damping, and radia-
tion loss. The success of the model will depend in large
measure on the degree of realism which can be achieved
in this phenomenology. In the present as well as in two
succeeding articles, we attempt to carry out this pro-
gram to determine the density matrix, or at least those
elements of it which bear upon the statistical and
coherence properties of laser radiation.

The present article is concerned with the derivation
of those equations which determine the behavior of the
diagonal elements of the density matrix for a single
cavity mode interacting with X stationary two-level
atoms. As such these equations do not furnish us with
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any phase-dependent information. However, they govern
the dynamics and steady-state behavior of the radiation
intensity emitted from a laser, as well as the statistical
distribution of the number of photons to be found in the
cavity mode. The effect of radiation loss from the cavity
is incorporated into these equations in the present
article, The resulting equations are adequate for a de-
tailed discussion of the emission properties of a Q-
spoiled laser. In the second article in the series, the
effects of pumping and spontaneous-emission loss will be
included. This will enable a discussion of the emission
properties and the statistical distribution governing the
photon number for a single-mode cw laser. The third
article in the series (to be published), will be devoted to
those elements of the density matrix which govern the
phase-dependent properties of laser radiation.

There are two ways to set about the determination,
or, more appropria, tely, the approximation of the density
matrix. The first is to proceed from the general Liouville
equation which is satisfied by the density opera, tor. "
The second equivalent way is to expand the state vector
in an appropriate complete set of states and by substitu-
tion into Schrodinger equation to determine the equa-
tions of motion of the corresponding amplitudes. From
these one can derive equations governing the various
bilinear combinations of the probability amplitudes
which make up the density matrix. In view of the

complexity of the problem under discussion, it is felt
that the second way has definite a,dva, ntages over the
first. In any case, it is the one tha, t is followed here.

A discussion of the Harniltonian and the basic states
along with other preliminaries is given in Sec. II. By
way of illustration, the equations governing the diagonal
density matrix elements for a radiation field interacting
with a single atom are derived and discussed in Sec. III.
Sections IV and V are devoted to the derivation of
bilinear equations in the S-atom ca,se. In Secs. VI and
VII, as well as in the Appendix, these equations are
discussed in two limiting cases: the so-called "super-
radiant" case, first described by Dicke, " in which the
atoms emit at a rate proportional to E', and the normal
case in which the radiation rate is proportional to E. It
is concluded that the latter is the only case of physical
interest where lasers are concerned. Section VIII deals
with variable coupling between atoms and the field. In
Sec. IX the radiation-loss mechanism is introduced. The
basic master equation governing the diagonal elements
of the density matrix is found at the end of this section.
It resembles equations proposed by Shimoda, Takahashi,
and Townes" and by McCumber. "It differs, however,
by the inclusion of additional terms. In Secs. X and XI
numerical examples are discussed which illustrate the
emission and statistical properties of a (7-spoiled laser.
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» K. Shimoda, H. Takshashi, and C. H. Townes, J, Phys. Soc.
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A=c(4s)Us pb sbqb(t)Eb(X),
E= —(4s-)'" pb sbpb(t)Eb(X),
H= c(—4s.)' ' pb(sb x V)q„(t)E„(X),

(2.1)

where the Eb(X) are the normalized cavity eigenfunc-
tions, and the sl, are unit polarization vectors. We re-
strict our attention to a single cavity mode of circular
frequency co and describe the quantized field by means
of the creation a,nd annihilation operators ut, and a
where

I u, at(=1,
a= (2ba) (p—iraq),

ut = (2ha)-" (p+i(oq) .

(2.2)

The Hamiltonian for the uncoupled electromagnetic
field is thus

IIp= AmQtG, (2.3)

if we leave off the zero-point field energy.
We consider next a system of X stationary two-level

atoms with energy levels E = —Ace, and E&———A+&,

where E~ is assumed to be the lower level. The atomic
transition frequency is given by cop= co&—co, , Negligible
overlap of the atomic wave functions is assumed so that
symmetry effects may be neglected. The atomic system

may be represented in terms of products of Pauli spin
functions for each individual atom. For a single atom
these states may be represented in ma, trix form as

(2.4)

A suitable representation for the Hamiltonian of the
nonintera, cting system of atoms is

H.= —ts(u. P, ~,+ ; aha b g, —
o,—-o J+, (2.5)

where 0.,+ and 0.; are, respectively, the raising and
lowering operator for the jth atom, defined such that"

(2 6)

A basis state vector for the T-atom system may be
represented as

(2.&)

where the curly bracket stands for a particular con-
figuration of occupied states in which exactly m atoms
occupy the lower state. The sts, te vector (2.7) is con-
structed as a, product of cV vectors of the ty~e (2.4).

"See Ref, 11, p. 89,

II. HAMILTONIAN FOR THE LASER SYSTEM

We begin by considering an expansion of the electro-
magnetic field in the laser cavity in terms of a set of
normal-mode eigenfunctions. The vector potential and
electromagnetic field are given by
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An electric dipole interaction is assumed between the
electromagnetic field and the atoms,

8;„,=- —M E (2.8)

where M is the electric dipole moment of the entire
atomic system. In terms of the operators (2.2) and
(2.6), Eq. (2.8) can be expressed as

a;„„=(u+a&)P; b, (~;++~;),

If the scalar product of both sides of the resulting equa-
tions is taken successively with (ae1 and (be1 and the
orthogonality of the basis vectors made use of, the
following differential equations for the amplitudes are
obtained:

ib„= ( ere pop—)b„+n(e)»'a„g+n(e+1)»'a„+&, (3.4a)

ia„= (e~—ar,)a„+n(e+1)»'b„+,+n(e)»'b„q. (3.4b)

where

n, = (2~(u/b)»'pE((X, ) . (2.10)
In deriving Eqs. (3.4), we have ma, de use of the follow-

ing properties of the operators u and a~:

In Eq. (2.10), p is the atomic dipole moment matrix
element projected along the direction of the electric field
polarization, and X; represents the position of the jth
atom.

We may thus write the complete Hamiltonian of the
system of interacting radiation and atoms as

H = h(vata Aced. Q, o—,+o, happ p
Q—,—o;o,+. .

+(a+at) P,hn, (o J++o,—). (2.11)

We shall not follow the frequent practice of including in
the Hamiltonian the mechanisms of pumping and radia-
tion loss. Instead we shall take account of them by
making additions to the equations for the elements of
the density matrix, which are consistent with both the
required properties of the density matrix and the desired
effects of the mechanism to be reproduced.

Finally, a set of basis state vectors appropriate for the,
description of the complete system may be written in
the form

1')= 1{m}e)—= 1{m})1e), (2.12)

where e signifies the state of the radiation field in the n
representation.

III. INTERACTION BETWEEN A SINGLE
QUANTIZED RADIATION MODE AND

A SINGLE ATOM

a1e)= (e)'"1e 1)—,

at1e) = (ey1)»21e+1). (3.5)

The last terms on the right-hand sicles of Eqs. (3.4) come
from the nonresonant terms ao. and a~a.+ in the
interaction part of the Hamiltonian (3.2) and can to an
accurate approximation be neglected. When this ro-
tating-wave approximation is made, the amplitude
equations can be grouped into self-contained pairs

ia„g= L(e—1)a)—pp,$a„,+ne"2b„,

i b„= (epp pp.)b„—+ne»2a„g, (3.6)

wherein an amplitude for an upper state and a given
photon number is coupled to the amplitude for a lower
state with one additional photon. The equations (3.6)
are easily solved for given initial conditions of the
amplitudes, and the resulting solution is equivalent to
that obtained by Jaynes and Cummings' in a somewhat
diGerent way. However, we shall be interested in ex-
pressing equations like (3.6) in bilinear form. After
multiplying through Eqs. (3.6) successively by a„&*,
b„*, taking complex conjugates and combining equa-
tions, one obtains

d—1a„g1'=nz(e)'e(a gb
*—a g*b„),

A nonperturbative treatment of the problem of a
single atom interacting with a single quantized mode in
a lossless cavity has been given by Jaynes and
Cummings. 4 This case is brieQy considered here in
somewhat greater generality to illustrate in a simple way
the manner in which the S-atom problem can be
treated. For a single atom, the eigenkets may be
designated as 1ae) and 1be) and the state vector as a
linear combination of them,

—
I
b„l'= in(e)'"—(a b *—a b *)

dt (3.7)

an —tbsp =&(&—&p)a~i4
dt

(e)zlP (I a —& IP
I
b„1P) .

1P(t))=P„a.(t)1ae)+g. b„(t)1be).
( )

((o—(op)'+4n'(e+ 1)
The Hamiltonian is

H = AcoG~G —Lr,a+0 —Acogcr 0+
+An(a+at) (o++~—). (3.2) )&sinp{—tL(a)—cop)'+4n'(e+1) j'"} (3 8)

If, for example, one assumes that initially 1a„1'=1
and 1b„+q1'=a„b„+~~——0, the solution of Eqs. (3.7) gives

(3.1)
4n' e+1

8
i~—14 (t)) = &14 (t)).

Bt
(3.3)

Expression (3.1) is now substituted into the Schrodinger
equation

The obvious interpretation of Eq. (3.8) is that the
photon is periodically absorbed and re-emitted. But this
does not correspond to a real physical situation because
the radiation is not allowed to come into equilibrium
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with the atom. The important ingredient which is
missing and which was not included in the Hamiltonian
(3.2) is a damping mechanism. Such damping could
arise from spontaneous emission into modes other than
the lossless mode considered here or from collisions, etc.
However, we are not interested in details, so we assume
that the statistical eGect of the damping mechanism is
to introduce a Gnite lifetime for the dephasing of the
amplitudes a„ i and b„*.The last of Eqs. (3.7) is thus
altered to read

—a„ ib„*=—(y/2)a ib„*+z(a& ~p)a„ ib„*

+~(~) I (fa. , I
—lb. f'). (3.9)

This is quite analogous to the introduction of damping
into the usual form of the SCFA. The equation (3.9)
and the first two of Eqs. (3.7) also bear a, close resem-
blance to the standard SCFA equations, the only
innovation being the lower photon indices. ' ' '

If the damping is sufficiently strong, the solution of
Eq. (3.9) may, to a good approximation, be written as

zu(N)'I'
u„gb„*= (la=.l'-lb-I ). (31o)—z(cu —cop)+v/2

When this expression is substituted into the first two of
Eqs. (3.7), the following equa, tions for

I
a„ if' and Ib„f'

result:

Ia I'/Ib I'=exp[ —Aced/kT], (3.16)

independent of zz, then condition (3.15) gives

la I'/la--il'= Ib I'/lb —il'=exp[ hen—/kT], (3.17)

i.e., the photons satisfy a Bose-Einstein distribution.
Normalizing we obtain

1—exp[—a~/uT]
I a„I

'= exp[—nhM/kT]
expPia)/kT]+1

exp[i'za&/kT] —1
I b„ I

'= exp[—Nh~/kT]
exp[I ~/I T]+1

(3.18)

Equation (3.14) for equilibrium can be written

0=K 2, la„l'+K 2 ~(la„l'+ lb„l')

spontaneous emission and the second term induced
emission and absorption. However, the correspondence
is not exact because the n cannot in general be removed
from the second surnrnation and replaced by (zz).

In the case of equilibrium, Eq. (3.9) is rigorously
satisfied by expression (3.10), and the equilibrium solu-
tions of Eqs. (3.11) are

(3.15)

Beyond satisfying conditions (3.15), the equilibrium
values of

I
a„f' and

I
b„I' are arbitrary and depend on

the starting condition of the system. If we choose
conditions such that

Ia —il = Kzz(fa —il Ib I )
dt

fb I'=KN(fa—if' —lb I')

(3.11a)

(3.11b)

(I a- I'—
I
b- I')

X . (3.19)
(Ia-I'+ Ib-I')

where
K= yn'/[((u —(oo)'+y'/4]. (3.12)

If we now multiply Eq. (3.11a) by zz —1, Eq. (3.11b) by
e, add the two and sum over n, the result is

—(N)=KZ ~'(fa„-,
l

—Ib„l )
n

K Q zz(zz —1)(fa if' —Ib I'), (3.13)

where (zz) is the expected value of the photon number.
After combining terms and rearranging summations,
we obtain

—(zz)=K+ fa„f'+Kg zz(fa„f' —fb„f'). (3.14)
dt a n

This equation has the form of an equation of transfer
for photons in the mode. '4 The erst term represents

' S. Chandrasekhar, Introduction to the Study of Stellur Structure
(University of Chicago Press, Chicago, Illinois, 1939), p. 199.

Because of (3.16), the fraction

(la I'—Ib I')/(la I'+lb I')

is independent of n, and Eq. (3.19) can be written

Kzlg+K(zz) (zl. gg) =0, — (3.20)

where (zz) is the usual Bose-Einstein average

(zz) =1/{exp[A(v/kT] —1) (3.21)

(3.22)~= V 'o-c,

where V is the volume of the cavity. The factor V '
enters through e' which contains the volume normaliza-
tion of the mode eigenfunctions.

and g and. g~ are, respectively, the probabilities of the
atom being in the upper and lower state. One other case
in which the m could be removed from the summation in

Eq. (3.14) and replaced by its average value is that in
which both Ia„f' and Ib„f' are very sharply peaked
about some particular value.

In view of the form of Eq. (3.14) we are led to relate
the constant w to the radiation absorption cross section 0.

through
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IV. INTERACTION BETWEEN A SINGLE
QUANTIZED MODE AND A SYSTEM

OF N ATOMS

The method applied in the previous section to the
case of a single atom can be extended without diQiculty
to the case involving X atoms. Here the Hamiltonian of
Eq. (2.11) is the one to be used, and the state vector is

expressed as a linear combination of the basis vectors

~
{m}n),

(4.1)III (&))=Z 2 C(-) "(&)
I {m}n),

n {m}

where the summation extends over all configurations
and values of m. When the state vector (4.1) is substi-
tuted into the Schrodinger equation (3.3), the result is

i Q Q C( )"~{m}n)
n {m}

{m}
=Q P C( ) "$n~ m—cu), (N——m)&o,) ~

{m}n)+P P P C( ) "u(n)'»~ {m—1}n—1)
n {m} n fm} {m-].}

fm} {m}

+g g Q C( ")u( n+1)' )~ {m+1}n+1)+Pg g C( ) "u(n+I)'(
~
{m—1}n+1)

n {m} {m+1} n {m} {m—1}
{m}

+Q Q g C( ) "u(n)i)2~ {m+1}n—1). (4.2)
n {m} {m+1}

The summations in Eq. (4.2) with both upper and lower configuration indices signify a summation over all con-
figurations (represented by the lower index) which can be obtained from a given configuration (represented by the
upper index) by means of a single spin fhp. For example, the first such summation in Eq. (4.2) is over all con-
figurations {m—1}which can be obtained by flipping upward a single spin of the basic configuration {m}.This
notation form will be used repeatedly in what follows. No attempt has been made to index o., but it should be
regarded as having an index appropriate to the spin which has been flipped. The last two summations in Eq. (4.2)
come from nonresonant operators of the form ato-,+ and acr;—,and as such they will usually be eliminated from
consideration. However, for the sake of consistency they are retained at this stage.

A differential equation for a specific amplitude C( )" is obtained by taking the scalar product of Eq. (4.2) with
the appropriate bra vector (n{m}

~

and making use of the orthogonality of the basic states. The result is

«m» {m,}

iC(~)"=Pmv m~), —(N m—)(u,—)C(„)"+ Q C(~i) "+'u(n+1)'"+ Q C( i)
—'u(n)')'

{m+1} fm—1}

fm} fm}

+ & C(~)" 'u(n)"'+ 2 C(-)"+'u(n+I)')2 (43)
{m—].}

We shall for the moment restrict our attention to the simpler case where all of the n's are equal, and we shall
neglect the last two summations. The equality of the a's implies that the atoms are clustered at positions having the
periodicity of the mode eigenfunction. We shall, however, relax the condition of the constancy of the n s at a later
point of the development. Equation (4.3) now becomes

{m} {m}
iC(„)"=[m&—mrs), —(N m)~.)C—( )"+u Q C( ~i)"+'(n+I)')'+u P C(„ i)" '(n)'('-

{m+i} fm,—g}

(4.3a)

$0 C'{}1 . . . g«m . . . g g. . . .

C{m} ) C«m+1} )
0

(4.4)

This is the analog of Eqs. (3.4) and couples the ampli-
tude for a given photon number and spin configuration
with amplitudes for photon number one greater and for
one additional spin down; and with amplitudes for
photon number one less and for one additional spin up.
If, for example, the radiation field is initially in the
vacuum state, the amplitude equations for atoms fall, in
general, into independent groups of equations con-
taining the following sets of amplitudes:

If initially the field is in the vacuum state and all X
atoms are excited, the system of equations greatly
simplifies and we need consider only the first of the sets
(4.4). A further simplification results because all of the
amplitudes C{ } for different configurations and the
same m satisfy the same initial conditions and diBer-
ential equations, and hence are equal. For this case,
Eqs. (4.3a) may be written

iC =Pea) neo), (N—m)(o —)C-

+�u(N

m) (n+ I)'—»C~i
gum(n)'»C „m=0, 1,

C (&=0)=1, C (I=O)=0, mWN, (4.5)
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Finally, if the radiation field is in a general state,
there will be a closed amplitude set for each value of e

in which the photon index and the configuration sign
have been dropped. The specific case of Eq. (4.5) has
been derived and studied numerically by Abate and
Haken. "Their results show that, as in the case of a
single atom, the behavior of (n) is oscillatory and shows
no tendency to come to equilibrium, Our interest will

again be directed toward expressing the amplitude
equations in bilinear form and adding damping so that
the system can reach equilibrium.

Another case of interest is that in which all of the
atoms are initially in the ground state and the radiation
field is in a specific n state with m(E. Here the req

'

set of amplitudes is

+ . . . C n+N (4.8)

Here m takes on the values —E to ~, and an ampli. tude
is considered to vanish if its upper index is negative.
Equations similar to (4.5) and (4.7) would govern these
amplitude sets.

V. BILINEAR EQUATIONS IN
THE N-ATOM CASE

~ ~ o C{ }
~ ~ ~ CN

uired
An equation for IC»»" I' can be obtained from Eq.

(4.3a) in a manner similar to the derivation of the

(4 6) bilinear Eqs. (3.7) for the one-atom case. The result is

and the governing equations are

ie„"-"=
I (e—tw)~ —m, —(X—m)~.)C„"--
+n (iV 222) (22 222+ 1)1/2C m—m+1

+n222(ti —222)' 'C i" ' 222=0 1

Cii "(t=0)=1, C„" "(t=0)=0, m/1V. (4.7)

Here again the configuration symbol has been dropped
because the amplitudes for given n and m are all equal.

{m,}—IC»-»" I2=~{ 2 C»~i» "+'*C»-»"(~+I)'"
{m+X}

{m»

+ 2 C»-i»" '*C»-»"(22)'")+c.c (5.1)
{m—l}

The terms on the right-hand side of Eq. (5.1) are
governed by the following equation which is obtained in
a similar way,

—C»„+i»"+'*C»„»"=Li(»d —i00) —7/2$C»~i»"+'*C»» "+in Q C»~2»"+'*C»» "(n+ 2)' '»

dt {m+2}

{m+l} {m}

+~ 2 C»-» "*C»-»"(~+1)'"—i 2 C ~ »
"+'*C»~ »"+'(I+1)"'

{m}' {m+&}'

{m»

E C»~i»""*C»--i»" '(~)'" (5 2)
{m—i»

A phenomenological damping term has been added to the right-hand side of Eq. (5.2) to account for the statistical
effect of dephasing between C» +i»

"+'* and C»»". In Eq. (5.2), primes are used to indicate that the summation
configurations are not necessarily the same as the configurations {222) and {222+1).On the right-hand side of Eq.
(5.2) there appear, in addition to terms with two like upper indices, terms wherein the upper indices differ by 2.
These terms are governed by the equation

{m+2»

C»~2»"—+'*C»»"=2/i(a coo) y/—2$C»—~2»"+'*C»» "+in p C» +2»"+'*C»»"(22+3)' '
df {m+3}

{~2} {m»

+in p C»~i» "+'*C»~»"(22+2)'»2 —in p C»~2» "+2*C»~i»"+'(22+1)'»'
{m+1} {m+1}

{m»

in Q —C»~2» "+'*C» i»" '22'»2 (5.—3).
{m—1}

The damping constant in Eq. (5.3) is taken as twice that in Eq, (5.2) because tt»io independent dephasing processes
are going on: between C{» and C{~~}"+' and between C{ +~}"+' and C{~~}"+'. However, the matter need not be
pursued here. It is seen from Eqs. (5.1) to (5.3) that an exact description of the system requires an infinite sequence
of differential equations connecting the products of amplitudes differing in the e indices by successively larger
integers. It is not difficult to show that if the variables on the left-hand side of Eqs. (5.2) and (5.3) are expanded in

3' F.. +bate and H, Haken, Z. Ng, tgrfgrscb. 19a, 857 (&964).
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a perturbation series in powers of the dimensionless parameter n/y, then to 6rst order in n/y,

—Ci-+il"'"Ci-l"'" =Pi(~—~0)—V/2Ãi~il"'"Ci-l"'"+~ 2 Ci-l "'Ci-l "(~+I)'"
dt {m}'

{m}

in —p Civil "+"Civil "+'(m+1)'l'. (5.4)
{m+1}'

If this equation is solved and the resultsubstituted into Eq. (5.1), then the rateof changeof ~Ci l~~ is proportional
to (n/y)'Xdiagonal elements. Similarly, to second order in n/y

d—Ci-+2l""'Ci-l""'=2Li(~—»)—7/2jCi-+2l""'Ci-l "+" ~ Civil "C(-l"'"(~+2)'"
{~1}

{m}—in 2 CI-+K"+"Ci-+il""""(&+I)"' (55)
{m+1}

If this equation is solved and the result substituted
into Eq. (5.2), the next higher order correction to
Civil"+'*Ci l" will be of order (n/p)' and this in turn
will contribute to the right-hand side of Eq. (5.4) a term
of order (n/y)4.

If only the first-order approximation embodied in
Eq. (5.4) is retained, a coupling between states differing
in e by only 1 is implied. This is interpreted to mean
that the various states are coupled through the emission
or absorption of at most a single quantum by one atom.
If the next higher order approximation is retained, as
embodied in Eq. (5.5), a coupling between states
di8ering in e by 2 is implied, and this is interpreted to
mean that the various states are coupled as well by the
simultaneous absorption or emission of 2 quanta by 2
atoms. The above interpretation is also borne out by the
nature of the resonant terms in Eqs. (5.4) and (5.5), as
well as by the powers of n/y which each approximation
introduces into Eq. (5.1).We conclude, finally, that the
eth-order approximation would involve the simultane-
ous absorption or emission of e quanta by e atoms.

We shall now proceed with the development, as-
suming that the perturbation procedure just described
converges, and retaining only the first approximation.
Thus the basic equations on which our further discussion
is based are Eqs. (5.1) and (5.4). We remark, however,
that these equations still constitute a "nonperturbative"
formulation of the X-atom problem in the sense that
solutions to these equations describe the system for
arbitrary time.

VI. DISTINCTION BETWEEN "SUPER-RADIANT"
AND NORMAL EMISSION

Equations (5.1) and (5.4) still do not constitute a
closed system because the latter contains terms which
involve Ci l

"'Ci l" with {m}'g{m}.These terms can
be disposed of in two limiting cases. From the symmetry
of Eq. (4.3a) one would expect that on a statistical basis
the magnitude of the amplitudes for a given e and m
would be independent of configuration, although the

phase is another matter. One limiting case is that for
which the amplitudes for different configurations but
like values of m and e are all in perfect phase; the other
is the case in which the phases of these amplitudes are
completely random. The erst case leads to radiation
rates which are proportional to the square of the
number of atoms present. This type of emission has been
given the name "super-radiance" by Dicke."The latter
case leads to radiation rates which are proportional to
the number of atoms present, and will be referred to as
normal emission. The applicability of these two phasing
conditions will be discussed in Sec. VII.

We consider the "super-radiant" case first. The
quantities Ci l

"*Ci l" are now all equal, and Eqs. (5.1)
and (5.4) become

d—~C(-l "~'=in{(N m) (e—+I)'l'C i"+'*C "
dt

+me'l'C„-4" "C "}+c.c. , (6.1)

where the configuration signs have been dropped. If the
derivative in Eq. (6.2) is neglected in comparison with
the resonant and damping terms,

in(m+1)'l'
C "+"C "=

i(co »)—+7/—2

X{(m+1)[C "~'—(1V—m) [C~i+'['} (6.3)

As the system approaches equilibrium, the approxima-
tion (6.3) becomes exact, of course. There are in all

cV!/(1V—m)!m! (64)

different configurations for a given value of m; hence the

~-+i""C-"=Pi(~ —~o)—v/2jC~i"" C-"
dt

+in{(m+1)(e+I)'l'~C-"('

—(cV—m) (m+1)'l'(C~i"+'~'} (6.2)
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total probability for all states of given e and m is

P„-= Ic -I .
m! (N—m)!

(6.4a)

If the expression (6.3) is substituted into Eq. (6.1) and
the resulting equation multiplied through by the factor
(6.4), the result is

P"=——z(N —m) (m+1) (n+1) (P "—P~i"+')
dt

—x(N —m+1)mn(P "—P i" '), (6.5)

Eq. (6.2) becomes

~~i"+"C "=Lz(~—~o)—y/2)C &"+'*C "

+zo.(n+1)'"(IC "I'—IC "+'I') (6 2a)

and the relation corresponding to Eq. (6.3) is

~(n+1) i~z

n+l*g n

—z(~—~o)+V/2

&&(IC "I'- IC~i"+'I'). (6.3a)

If (6.3a) is substituted into (6.1) and the resulting
equation is multiplied by (6.4a), the result is

where a is dered as in the single-atom case by

K=
(~—~o)'+V'/4

(6.6)

The y which appears in Eq. (6.6) has, however, a some-
what more specialized meaning than the one introduced
in the single-atom case.

Equation (6.5) has the form of a master equa-
tion.""""The rate of change of the probability in the
state (m, n) is equated to the rates of gain by emission
from the state (m+1, n+1) and absorption from the
state (m —1, n —1), minus the rates of loss by emission
to state (m+1, n+1) and absorption to the state
(m —1, n —1). In Eq. (6.5) the negative terms pro-
portioned to (n+1) and n represent, respectively, the
emission and absorption loss rates.

In the case of normal emission the only terms which
appear in the summations in Eq. (5.4) are

I
C "I' and

I
C~i"+'Io, the other terms giving no contribution be-

cause of their random phasing. The counterpart to

P"=——x(n+1)I (N—m)P "—(m+1)P~i"+'j
dt —anI mP "—(N—m+1)P i" 'g. (6.5a)

The interpretation of Eq. (6.5a) is the same as that of
Eq. (6.5).

It will be noted in Eq. (6.5) that the maximum coeffi-
cient corresponding to emission occurs for m=N/2 and
implies a transition probability (N/2) (N/2+1) times
that which would be expected for a single atom. This is
in complete agreement with the result of Dicke, "which
is based on perturbation theory. Equation (6.5), how-
ever, contains the effects of Beld quantization as well as
multiple absorption and emission. The maximum-emis-
sion coefficient in Eq. (6.5a), on the other band, occurs
for m= 0. The corresponding transition probability is N
times that for a single atom, hence the appellation
normal emission.

It is possible to obtain a better understanding of
Eqs. (6.5) and (6.5a) by calculating the expected emis-
sion rates implied by these equations. If Eq. (6.5) is
multiplied through by e and the resulting equation is
then summed over m and m, the result can be written

—(n)= —g g (N —m)(m+1)(n+1)nP "+x P (N m+1)—mn(n 1)P "—
dt m, n m, n

K P (N m+1)mn'P "+x g—(N—m) (m+ 1)(n+ 1)'P ", (6.7)
m f A

where the summations in (6.7) taken in order represent summations over the four right-hand members of Eq. (6.5) .
When the coeKcients of I' " are combined, the result is

—(n)=~ Q (N 2m)nP "+z—Q (N m)(m+—1)P
OL ~ Sl z R

=z((N —2m)n)+x((N —nz) (m+1)). (6.7a)

The first right-hand member of Eq. (6.7a) represents the combined contributions of absorption and stimulated
emission. The second term represents the contribution of spontaneous emission. The presence of m in the latter is
due to the phasing of the different configuration amplitudes.

2g The master or Pauli equation has been derived by a number of authors under varying assumptions. I or further discussion the
reader is referred to Fuedamemtul Problems Az Statisticu/ M'echunics, edited by E. G. D. Cohen {North-Holland Publishing
Company, Amsterdam, 1962).
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In a similar manner, one obtains for Eq. (6.5a)

(6.8)

After combining the coefficients of I' ", the result is

=.((ar—2m)~)+.((X—~)). (6.9)

The interpretation of the right-hand members of Eq.
(6.9) is the same as for Eq. (6.7); the only difference is
that the spontaneous emission term proportional to m,
as expected, does not occur.

It is a simple matter to show in the case of both Kqs.
(6.5) and (6.5a) that

(6.10)

If it is assumed that the first right-hand member of
Eqs. (6.7a) and (6.9) can be written as the product
(X—2m)(N) and that the second right-hand member of
(6.7a) can be written as the product (X—m)(no+ 1), then
Eqs. (6.7a), (6.9) and (6.10) assume the form of the
simple rate equations, '~ which are often used to describe
the intensity of laser emission, but with the inclusion of
the appropriate spontaneous emission rates. In the case
of Eq. (6.9) the rate equation is

—(n) = z(1V—2m)(N)+~(1V —m) .
dt

(6.11)

This close correspondence with the rate equation ap-
proach is in part due to the approximations (6.3)
and (63a)."

VII. DISCUSSION OF PHASING CONDITIONS

The condition of perfect phasing between the ampli-
tudes of diferent configurations would be impossible to
achieve in practice, although Dicke has suggested two
ways in which it can be achieved in principle. " In the
Grst way, all the atoms are initially placed in the excited
state and the radiation field is left in the vacuum state.
In the second way, all the atoms are placed in the
ground state and the radiation field is initially in a
specific e state. These are precisely the cases considered
at the end of Sec. IV and are governed by Eqs. (4.5) and
(4.7). A mixed radiation state would serve equally well
in the second method, although the description of this

27 See, for example, R. Dunsmuir, J. Electron. Control 10, 453
(1961).Also W. G. Wagner and O. A. Lengyel, J. Appl. Phys. 34,
2040 (1963).

~ For a derivation of the rate equations from the SCFA model,
the reader is referred to Refs. 3 and 5.

case in terms of the amplitudes (4.8) would be con-
siderably more involved. The important thing is that
when all of the atoms start in either of the configurations

(X) or (0) the dynamics determines that all amplitudes
with like values of e and m will be in phase. Under usual
circumstances, however, the starting state of the system
can be expected to be much more complicated and
chaotic than either of the ones just mentioned.

In general the initial wave function of the atoms can
be represented as

(7 1)

For an equilibrium system or for a system pumped by
any conceivable pump source, one would expect an
initial configuration amplitude to be given by

Cl-l =
I
A

I

'" "'
I
BI"exp( —eel-l}, (7 2)

where
I
A I' and

I
BI' are the proportions of atoms in the

upper and lower states and where pl l is a randomly
distributed amplitude. The description of the subse-
quent behavior of the system will generally involve all
of the closed sets (4.8). If the radiation field is initially
in a mixed state, all the amplitudes have initial values.
In any case, because of Eq. (7.2), there will be a high
degree of phase randomness present initially, and it is
shown in the Appendix that this randomness will tend to
be preserved. The initial values of C0" and C~" will tend
to initiate phase correlations. This could be important
at low temperatures. But it must be remembered that
for all amplitudes of given e and m to be strongly
correlated the coupling constants n must be the same,
and this would require that all of the atoms be located in
a volume of dimension small compared with a radiation
wavelength. We conclude that under conceivable prac-
tical circumstances the assumption of dephasing among
amplitudes for configurations with like m and m is the
reasonable one to make for an operating laser.

A natural question to raise at this point is whether
this lack of phasing is in any way inconsistent with the
existence of coherent radiation and of macroscopic
dipole moments. The answer is, of course, no. The con-
nection between macroscopic dipole moments and
coherent radiation and related questions will be ex-



318 J. A. FLECK, JR.

(E)=const&&P P C«« "+'*C««"+c.c. , (7.4)
n {m}

while the expected value of the component of the
electric dipole moment along the direction of the field
polarization

(M,)= const XTrp P, (o,++o, )

can be expressed as

(7.5)

(3II,) =const&&P P C«+.i«""C««"+c.c. (7.6)
n {m}

The summation in Eq. (7.6) is over configuration pairs
{m},{m+1),which are related by a spin flip. It will be
noted first of all that the bilinear quantities which
appear in Eqs. (7.4) and (7.6) have not appeared in the
discussion so far. This is because our analysis thus far
has dealt with only those elements of the density matrix
which deal with energy and not phase. Secondly, the
existence of nonvanishing (E) and (M,) depends only on
the phase differences between C{»"+', C{»" and
C{~y»", C{»", respectively; otherwise the relative
phases of the C{»" for constant n and m may be
arbitrary. It can be shown that such expectation values
will be multiplied by slow time-decaying exponen-
tials.

VIII. EFFECT OF VARIABLE COUPLING BETWEEN
ATOMS AND THE RADIATION FIELD

If the atoms are distributed uniformly over the
standing wave pattern of the radiation mode, the
coupling constants e, vary from 0 at the nodes to a
maximum value at the crests. In this case it is not
difficult to show that the counterpart of Eq. (6.5a) is

C«
dt

7 {m}

{(+1)Z (-» .««-«)
(Qi —Q)p) +pp/4 «eh+i«

{m»

~(lc«-«"I' —lc«~i«"+'I')+~ Z (m-i««"')'
{m—1}

x(lc«-«" I'—I«-i«" 'I')& (8 1)

In Eq. (8.1) u«~i««"«stands for the n; associated with
the atom whose spin must be fhpped in order to get
from {m) to {m+1).If initially IC««" I' is independent
of {m) for given m and e, it will remain so. Since in the

amined in detail in the third paper in this series (to be
published). However, we anticipate later results and
justify our negative answer as follows: The expected
value for the electric fi.eld operator

(E)= const&&Trp(a+at) (7.3)

can be expressed using the notation of the present
article as

summations in Eq. (8.1) a uniform sampling of the o., is

represented, we may in our single-mode case replace the

n, 2 by

(n'). = (1V—m)-' Q (u«,~i««"«)'
{m+Z}

1 N
' Z ( «- ««"«)'= —Z

g g'=)

Consequently, the right-hand side of Eq. (8.1) is inde-
pendent of configuration, and all

I
C "I' for given m and

n satisfy the same differential equation and initial con-
dition. Furthermore, because of the randomness of the
couplings represented in Eq. (8.1) there is no reason to
favor any configuration over any other, regardless of
initial conditions. Exceptions may occur for m=0, lV,

but for large numbers of atoms these cases are unim-

portant. We conclude, therefore, that the effect of
distributing the atoms uniformly over the laser cavity
can be accounted for by replacing the n' in the formulas
already developed by

av

2&co 2'
EP (X)d'X = p' (8.3)

AV AV

IX. RADIATION LOSS FROM THE LASER CAVITY

Thus far we have regarded the radiating system as
though it were contained in a hermetically sealed cavity.
We now incorporate in our treatment the effect of
radiation losses from this cavity. The usual method for
accomplishing this is to include in the quantum-me-
chanical system from the start a set of loss oscillators
which are coupled to the radiation Geld."As explained
earlier, we shall employ a somewhat different phenome-
nological method which leads to results that are con-
sistent with the correct classical behavior of a loss
mechanism while retaining the required properties of the
density matrix. In any case, the results of this method
can be shown to be equivalent to those of the more
usual method.

I.et us for a moment consider the radiation system
alone. We then assert that the following equations in-
volving diagonal elements of the radiation density matrix
afford a suitable description of the loss mechanism in the
sense just mentioned:

P"=y, (v+1)P—"+' y,riP", —
dt

where p, is the cavity decay constant and P"=P P ".
First of all, Eq. (9.1) conserves probability, or Trp=1.
This is easily seen by summing Eq. (9.1) over n.
Secondly, probability lost by a given m state appears in
the next lower e state. This leads to an accumulation of
probability in the vacuum state, as it should when no
radiation sources are present. Finally, we consider the

"Reference 11, p. 255.
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equation satisfied by (n). Multiplying Eq. (9.1) through
by e and summing over e, we have

(n)=P nP",

d—(n) =y.(P n(n+ I)P"+'—2 n'P"}
dt tL

=—T.(n).

(9 2) A

V 6

LLJ

X

MODEL
UAT ION —0.5

In particular, if the radiation system is in a coherent
state, ' ' described by

Pn e—z—s&2e/n l (9.3)

the corresponding classical electric field, i.e. the ex-
pectation of the electric 6eld operator, executes a pure
harmonic oscillation with amplitude and intensity pro-
portional to x and x . Substituting from Eq. (9.3) into
Eq. (9.1), we obtain

z'
0

C5

LII

x 2
HAJJ

—O. I

—0

s g2s g 4 g2% ~-"2(.-»-d~2 0.1 0.5 0.5
-I

TIME (units of a )

-0. I

0.7

ol

dt mt n! (n —1)!
-~—x&g2(n+O ~

—xmgn—

(n —1)!

dx /(B= —'y~g

(9.4)

(9.5)

FIG. 1.Comparison of master-equation and rate-equation calcu-
lation for emission by 30 atoms in a lossless cavity. It is assumed
that initially 75% of the atoms are in the upper state. The
number of simultaneous equations required in the master-equation
calculation is 463. Time is measured in units of the absorption
lifetime for a single atom.

independent of n. In view of Eqs. (9.2) and (9.5) we
conclude that the expectation values determined by
(9.1) have the correct classical behavior.

If we now couple the formulation of the loss mecha-
nism embodied in Eq. (9.1) with the formulation of the
1V-atom radiation problem embodied in Eq. (6.5a), the
result Is

P~"= —ir (n+—1)L (1V—ns) P~"—(m+ 1)Pmt "+'5
dt

n[~P —- (n m+—1)P—;5-
+y, (n+1)P„"+' y,nP„". (9.6)—

Equation (9.6) constitutes the basic result of the entire
article. It is still lacking in terms which describe the
effect of a pumping mechanism. These, however, will be
supplied in the following article in this series. It is
adequate, in any case, for describing the details of
photon emission, including photon statistics, from a Q-
spoiled laser, wherein pumping details are of no im-
portance during the period of emission.

X. NUMERICAL EXAMPLES

In this section we discuss two examples for which
Eqs. (9.6) have been integrated numerically. We con-
sider a system of 30 atoms, initially in a specific state of
inversion, and we assume the electromagnetic 6eld to be
initially in the vacuum state. This situation describes
qualitatively the emission by a Q-spoiled laser. The

~ Reference 11, p. 126.

initial wave function for the atoms is assumed to be of
the form (7.1) with

i=1, 2, ",1V. (1O.1)

P '(&=0)= ig i'&3™iiBJs~.
(1V—m)!1s! (1o.2)

P -(f=O)=O, nyO.

The coupling between the P "in Eq. (9.7) is such that
both m and n run from 0 to a maximum value of E.But
only those I' " differ from 0 for which e&m. Thus the
required number of equations is (1V+1)(1V+2)/2. In
the case of 30 atoms this amounts to 496. We assume
that 75+o of the atoms are initially in the upper state or
that IAi'=0. 75 and i8i'=0.25. We take ~=-I; in case
(a) we take y, = 0 and in case (b) y, = 1. Comparison is
made between (n) and (1V—2(nr)5/1V, i.e., the inversion,
as calculated using Eqs. (9.6) and using the rate
equations (6.10) and (6.11).

Exhibited in Fig. 1 are the results of case (a) corre-
sponding to a hermetically sealed cavity. The interesting
thing here is that the final equilibrium values of (n) are
diGerent for the two methods of calculation. In Fig. 2
are displayed the results for case (b) in which the
radiation is allowed to escape from the laser cavity. In
view of the results of case (a) it is not surprising that the
mean photon number peaks at a higher value and the
inversion drops lower in the rate equation calculation
than in the calculation using Eq. (9.6). However, it is
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interesting to note the close correspondence between the
two methods of calculation for the exponential dropoff
in (e) following the peaks. The discrepancy between the
rate equation and the master equation calculations is to
be attributed to the importance of m-m correlations.
The importance of such correlations in cases involving a
more realistic number of atoms will be the subject of a
later publication.
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FTG. 2. Comparison of master-equation and rate-equation calcu-
lation for emission by 30 atoms in a cavity with 1oss. The loss-rate
constant y, =1, in units of the absorption lifetime for a single
atom. Initially 75% of the 30 atoms present have been excited to
the upper state.

XI. PHOTON STATISTICS FOR A
Q-SPOILED LASER

There has been considerable discussion as to which

photon distribution function should best apply to the
light from a laser. While for light from thermal sources,
the number of quanta in the mode is distributed ac-
cording to the well-known exponential distribution

Pn L1
—~ Are/kT—)g

—nh(a/kT
)

it has been proposed that for laser light the distribution
function most applicable is the Poisson distribution
(9.3).""A detailed discussion of this question with
reference to cw lasers will be given in the second paper in
this series. However, the results of problem (b) described
in the previous section give us some qualitative insight
into the photon statistics to be expected in the case of a
Q-spoiled laser. The photon distribution P" at the time
of the peak value of (e) is exhibited in Fig. 3 where it is
compared with a Poisson distribution with the same
mean. The two distributions are qualitatively similar in
that they are both peaked about their mean values,
unlike the distribution (11.1). In fact, this characteristic
of the laser statistics is exhibited at all times, displayed
in Fig. 2. The laser distribution has the wider dispersion.
One would expect the laser distribution to be less
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FIG. 3. Statistical distribution for the number of photons in the
radiation mode of a Q-spoiled laser. The conditions are the same as
in Fig. 2. The photon distribution is calculated at the time of
maximum radiation intensity in the cavity and compared with a
Poisson distribution with the same mean.
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optimal because of the inhuence of spontaneous
emission.

XII. SUMMARY

We have formulated the problem of E atoms radi-
ating into a single cavity radiation mode by deriving a
master equation satisfied by the probabilities I' "for nz

out of X two-level atoms in the lower state and m

photons present in the mode. In deriving the master
equation, we have taken into account only multiple
single-photon absorption and emission processes. In
addition we have assumed that probabilities do not
change much in a "collision time, " which in turn is
introduced as a characteristic time for the dephasing of
certain probability amplitudes associated with emission
and absorption. When the master equation is used to
derive an equation governing the expected photon
number (e), the resulting equation bears a close re-
semblance to the familiar rate equation. The master
equation has been modifj. ed to account for radiation
losses from the cavity through the heuristic addition of
terms which conserve probability and which lead to
expectation values of the proton number that fall o6
exponentially when no radiation sources are present.
The numerical integration of the master equation for the
situation of a Q-spoiled laser also indicates a behavior
which is qualitatively similar to the rate-equation ap-
proach. The photon statistics calculated from the
master equation are qualitatively similar to Poisson
statistics in that the distribution of the number of
photons in the mode is clustered about the mean value.
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APPENDIX: FURTHER DISCUSSION GF DEPHASING CONDITIONS

The dephasing of the bilinear quantities C~ ~

"*C~ /" where {m}'g{m}can be discussed with reference to
equations of the form of (5.1) and (5.4). In the present case the appropriate equations are

~m}—C, ,
-'C„-=—C .-*C.-+.{ P C, , -+*C.-(+1)"+ 2 C-- "-'*C-"( )"'
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Equations for the other terms on the right-hand side of
Eq. (A1) may be obtained by an appropriate shift of
indices. We assume the constant 7' in Eq. (A1) to be of
the order of magnitude of y. We examine now those
terms on the right-hand side of Eq. (A2) which are
independent of phase. If {m}=—{S—1}, the second
summation reduces to a term proportional to ~C~"~'.
Similarly if {m}—={0},the erst summation reduces to a
term proportional to

~

Co"
~

'. For 1(m, m'(E —1, how-
ever, the right-hand side does not necessarily contain
phase-independent terms. In fact, it is not dificult to
see that for given {m} and {m}' there is at most only
one {m+1}'which will give a term proportional to

~
C~ ~"~' in the first summation and similarly only one

{m+1}'which will give a term proportional to
~
CI

in the second summation. Put another way, for given

{m}and {m}'there is at most only one way to go via a
downward spin fhp from {m}' to {m+1}'and from
{m+1}'to {m}via an upward spin Qip. This one way is
possible only if the configuration {m}differs from {m}'
by the orientations of two atoms.

We now ignore all terms on the right-hand side of
Eq. (A2) which can depend on phase. If we also ignore
the derivative on the left-hand side, then in the favor-

able cases mentioned above,

Ct~i} +' C(m}"= -I C/-)" I' (A5)
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If this result is substituted in.to Eq. (Al) and the
derivative on the left-hand side of the equation is
neglected, one obtains

C(-~ *C/-) = («/v') I C(-I"I' (A4)

The relation (A4) permits us to make an estimate of the
error involved in neglecting the C~ } *CI } in the
summations in Eq. (5.4), if the system starts out in a
highly dephased condition. The constant «/p' is the
ratio of the inverse absorption lifetime for a single atom
to the natural linewidth, and is very small compared to
1. Thus in the summations in Eq. (5.4) mentioned
above, there will occur at most two terms of the order of
(A4), provided {m}g{/Y—1} or {1}.These contribu-
tions will be completely negligible. If {m}—= {/Y—1}or
if {m}={1}there will be 1V terms of the form (A4).
These contributions may not be negligible. However, as
already mentioned, the initial values of ~CO" ~' and

~

C&"~' should be exceedingly small and therefore con-
tribute negligibly to the overall phasing of the con-
figurational amplitudes.


