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done this in Fig. 5. We have taken dp/dc= —3tttt,
—4.5tt&, and —5.5tttt for Ni-Al, Ni-Cr and Ni-V, re-

spectively. The 5.3% Ni-Cr has been plotted directly.
We have then plotted the 5.5%-Ni-V and 5.2%-Ni-Al
spectra by erst expanding the frequency scale around
28.5 MHz by 4.5/3 in the Al case and contracting it by
4.5/5. 5 in the V case. The resulting curves enable a
comparison of the Ni-Cr, Ni-V, and Ni-Al results, all
about 5%, normalized to the same dtt/dc. In the Ni-Cr
case there is a fairly pronounced knee which we have
related to Ni atoms in the nearest-neighbor shell to the
solute atom, while the main peak was related to Ni
atoms in more distant shells. The fact that in the Ni-Al
and Ni-U cases the peak of the curve is shifted over
relative to the knee or to the center of gravity means

that the magnetic disturbance in more distant shells is
more comparable to the disturbance in the nearest
neighbor shells in these two systems. A similar scaling,
using Van Kist's value of dts/dc= —6tttt for Ni-Cr, gave
a very poor 6t of the Ni-Cr with the Ni-Al and Ni-V

curves, indicating that, at least for our samples, the
data of Marian or Sadron are more applicable.

IV. CONCLUSION

As in the case of the Ni-Co system previously studied
it has been found that the hyperfine 6eld at the site of
Ni nuclei in Ni-V, Ni-Cr and Ni-Al systems has two
contributions. The major contribution is due to the
moment on the parent atom and a smaller contribution
is from moments on neighboring atoms. The greater
delocalization of the magnetic disturbances in these
three systems is in contrast to the localized behavior of
the Ni-Co system. The magnetic disturbances seem to
be spatially more widespread in the Ni-Al and Ni-U
systems than in the Ni-Cr system. The spatial variation
of the magnetization for the Ni-Cr system, as deduced
from the resonance spectra, is in agreement with results
obtained by Collins and Low by means of neutron
scattering techniques.
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Relaxation from metastable to stable states is considered for a mean-6eld model Ising ferromagnet in
which each spin interacts equally with every other spin in the system. Spins are chosen at random and Ripped
over with probability given by a suitable Soltzmann factor. Approximate solutions to the stochastic equa-
tions, conhrmed by computer calculations on small systems, indicate a relaxation time increasing exponen-
tially with the size of the system (contrary to one's expectation for a system with short-range interactions).

I. INTRODUCTION

HE description of metastable states on a funda-
mental level is both an interesting and unsolved

problem in statistical mechanics. The long lifetime
(especially compared with times characterizing rno-

lecular processes) observed for many such states sug-

gests that an elementary extension of well-established
procedures in the statistical mechanics of stables states
might serve to cover metastable states as well.

In fact, metastable states are fairly easily defined in
certain model systems of magnets or Quids with an
attractive potential whose range is permitted to become
in6nite (the magnitude simultaneously going to zero)
at some point in the calculation. Probably the simplest

~ Research supported in part by the National Science
Foundation.

of these is the mean-6eld (molecular-6eld or Weiss)
model of a ferromagnet. The mean-6eld theory is often
considered an approximate method for solving the
Heisenberg or Ising model with nearest-neighbor inter-
actions. ' It may also be regarded as the exact solution
(in the limit of a large system) for a model in which
each atom interacts equally with every other atom
through an Ising exchange potential. ' We shall adopt
the latter point of view in this paper and investigate
the following question in the case of atoms of spin- —,':
if stich a ferromagnet is at some particular time in a

' J S. Smart, Fffectsee Field Theories of Magnetism (W. Q.
Saunders Company, Philadelphia, Pennsylvania, 1966).

~ F. Sitter, Introduction to Ferromagnetism (McGraw-Hill Book
Company, Inc., New York, 1937), p. 153.The analogous model for
a lattice gas was discussed by K. Husimi at a meeting of the
Physical Society of Japan in May, 1933 (unpublished) and by
H. N. V. Temperley, Proc. Phys. Soc. (London) A67, 233 (1934)
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metastable state, how long will it take to relax to the
stable stateP

The Hamiltonian for the mean-field model is intro-
duced in Sec. II together with an assumed time de-
pendence described by a Marko6 process. The approxi. -

mate solutions to the stochastic equations obtained in
Sec. III are in fair agreement with computer calcu-
lations for small systems. They predict a relaxation
time from metastable to stable states, for a given
temperature and external magnetic field, increasing
exponentially with the number of spins for a large
system. This result, discussed in Sec. IV, is in marked
contrast with what one would predict on physical
grounds for a system with forces of finite range and
lends support to the conjecture (by no means new)
that characterization of a metastable state in a real

system is far more subtle than the simplest models
(including the van der Waals model for a fluid) would

suggest.

II. MEAN-FIELD MODEL

Consider the Hamiltonian

K= —(J/N) Q o,o; pH Q o;——,'—J

FIG. 1. The function
a(x) for a temperature
T C T, and field II O.

We remark that no such simple characterization of
the metastable state is possible for a system with a
short-range Ising interaction. The function a(x) is
convex downwards' for this case and may possess a
"flat bottom" (as shown by a dotted line in Fig. 1),
but never two distinct minima.

Ke introduce time dependence as follows. When
r = 0, a spin is chosen at random and either Qipped over
(o,=+1 going to —1 or vice versa) or not flipped over,
with a probability depending on the change in total
energy (3). The process is repeated at r=1, 2, 3,
The proba, bility P, (e) of finding I "up" spins in the
vth interval satisfies the difference equation

where
E

Z P e
—PU n)(

for E Ising spins r,=+1 in an external magnetic field

H. For convenience we set the constants J and p equal
to 1. I et

(2)

be the number of spins pointing "up" and let us write

(1) in the form

K= U(m) = —(20—N)'/2N —H (2n —N) . (3)

If the system is in equilibrium at a temperature (in

energy units) T=P ', the probability of finding rs spins

up ls

(4)

with

T„,s~i=nN '(N I) exp{——,
—'ppU(&+1) U(rs) j)

T~ ~ i=nN 'ri exp{——,'P(U(N —1)—U(ri)j) (8)
72'i@+i ~A 72 I )

where the constant n) 0 is chosen small enough so that
T„,„is positive for any e, The T,„are chosen so that
P,~i P,=P, satisfies (——7). In a real magnetic system
the number of times per second a particular spin Qips
over should be roughly independent of the size of the
system. So that this condition is satisfied in our model
we introduce the "physical" time scale by

t=r/N.

is the partition function. The "free energy" per spin

a& as a function of the quasi-continuous variable

x=N 'P o;=N '(2)s—N) (6)

(the average magnetization per spin) approaches a
limit g(x) for large N. For T)T,=1, the Curie tem-

perature a(g) has one minimum and for T(T~ two

minima, shown schematically in Fig. 1 for the case
H=O. In a small magnetic field H&0 the curve a(g)
for T&T, as sketched in Fig. Z. Both minima move to
the right; the one on the right becomes deeper, the one

on the left more shallow. The former is naturally
associated vrith the stable and latter with the meta-

stable state,

l

l

I

f~
I

I

xo

l ~g (X)
l

=X

FIG 2 The functions
&(x) and g(x) for a tein-
perature T&T, and a
small positive field II.

3This result has been proved for the ana, logous problem in
fluids by D. Ruelle, Helv. Phys. Acta 36, 183, 789 (1963) and
may be derived for spin systems by similar methods. LSee alsoR. B.Grifiiths, J. Math. Phys. 5, 1215 (1964) and 6, 1447 (1965).g



149 RELAXATION TI M ES FOR M ETASTABLE STATES 303

III. TIME DEPENDENCE OF THE MODEL

A. Short-Term Behavior

Consider the probability P, (l) expressed in terms
of the quasi-continuous variables x, f, by

or metastable state is of order 1, in contrast with the
result we shall obtain below for relaxation from the
metastable to the stable state. For T)1, g(x) has but
one zero, which is, of course, the limit of x as t —+ ~.

p(t, x) =P~, (-', NLx+1]) . (10) B. Long-Term Behavior

Our problem is to find the time dependence of p given
that x has a definite value at 3=0. It seems reasonable
to replace the difference equa, tion (7) by a corresponding
partial differential equation. But one must proceed
with care, since for large 1V even p, (x) (corresponding
to P, (N)] is, by (4), a rapidly varying function of x.
However, p(t, x) defined by

p(t x) = e~&&'~'

should be less rapidly varying. If we insert the approxi-
mations

P(t, x+21V ') P+2N —'g
P(t+N ' x) @+1V 'y,

(subscripts denote partial derivatives) in (7) Lvia (10)
and (11)] and drop certain terms of order N ', we

obtain

Equation (13) is inadequate to describe the relaxation
from the metastable to the stable state; so we adopt an
alternative approach. The functions Q and q, de6ned by

P, ( ) =Q, ( )P.( ) (18)

q(t, x) = Q&&L-',N(1+x)], (19)

should approach 1 as t (or r) becomes very large. Thus
for large times it should be possible to approximate the
difference equation Lcompletely equivalent to (7)]
q(t+N ', x) q(t, x)—

=n'{pi(1+x)e ~&~+'iq(t, x—21V ')
+-,'(1—x)et'&~+ 'q(t, x+21V ')
—L-,' (1—x)ee &~+"i+-,' (1+x)e—&&rr+*&]q(t,x)}, (20)

where

(20a)

n '[e« —1]=',—(1 x)e-~-&~+~—&(e 'P* 1)—
+ip(1+x)e t'&~+~i(e'&*—1). (13)

by the differential equation

q, =n'I —g(x)q.+N-'h(x)q„] (21)

e = g( )~. ,

g(x) = 2x coshP(x+II) —2 sinhP(x+FI) .
(14)

(»)
Along the curve x (t) in the x, t plane P, vanishes and
thus

Clearly the equation makes no sense for very short
times, since p(0,x) is zero and hence g= —pp for most
values of x at 3=0, but it should describe the state of
affairs in some approximation for t&1 when all P, (ii)
are positive.

Suppose that p has a smooth maximum in x at some
x (t). Very near the maximum P, and Lby (13)] Q&

should be small, making possible a linear approximation
to (13):

N 'h(xp) f'(x) = (x—xp)g'(xp) f'(x).
The general solution to (23),

f(x) =A+8 erf L(Nr)'i'(x —xp)],

(23)

with g de6ned in (15) and

h(x) = 2 coshP(FI+x) —2x sinhP(II+ x) . (22)

For large 1V the q„ term in (21) should be important
only near points where g(x) vanishes. In particular let
us look for a static solution q= f(x) to (21) very near
x=xp (Fig. 2), using lowest order linear approximations
for g and h:

0=de, =P„dx+Q, &dt =P„dx+g (x)P„dt, (16)

where we have used (14) and the condition &,=0 to
evaluate $,i. Thus x (t) satis6es the equation

erf (t) = 2m
—'" exp( —y')dy,

r = —g'(xp)/2h(xp) )0,

(24)

dx /dt= —ng(x). (17)

The situation for T& T, and B positive but small is
shown schematically in Fig. 2. The points xp, x&, x2

where g is zero are the extreme points for u(x), the last
two corresponding to the metastable and stables states,
respectively. Clearly if x is initially anywhere to the
right of xp, (17) implies that it approaches xp, the stable
state; whereas starting to the left of xp it approaches
the metastable position x~. This behavior is confirmed
qualita, tively by computer calculations (see below) for
finite E. The time scale for this approach to the stable

where A and 8 are arbitrary constants, is sketched jn
Fig. 3. Provided (x—xp(&O(N 'tp), f is essentially
constant and therefore also (approximately) a static
solution to (21), even for x not near xp. This form for
f(x) implies that the probability distribution on either
side of xp is essentially at its equilibrium value apart
from a constant factor, whereas in the immediate
vicinity of xp there is a strong departure from equi-
librium, indicating a "Row" of probability from one
side to the other. A mechanical analogy would be two
large tanks of water 61led to di6erent levels and con-
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TABLE I. Results of computer calculations for long-time be-
havior of metastable states. Here X, is the numerical result for the
exponent in (34) and X, is the prediction of (35).

xo

2B FIG. 3. The
functions�(x)

de6ned by Eq. (26).

8
8
8
8
8

16

1.2
2,0
1.2
1.2
2
2
2

1.2

0
0
0

0.05
0

0.25
0.4

0

0.33
0.12
0.179
0.190
0.024
0.032
0.048

a

0.31
0.14
0.175
0.188
0.026
0.031
0.049

nected by a narrow pipe. Thus, for large values of t, a
good approximation to the solution of (20) should be

q([,a) =& (f)+B(t) erfL(Er)'"(x —&o)j (26)

with the (very slow) time dependence of A and B
determined by the rate at which probability "Qows"

past xo. This rate is easily calculated.
Let us denote by'

s(&)= 2 P(&,y)= Z P.b)q(f, y) (27)
@gap ygxp

the probability that x is less than xo. This satisfies a
difference equation Leasily derived from P)j:
s(f+Z-~) —.(f) =-'~'P. (*o)(1+~.)e-""'*"

)& $q(f, xo)—q(f, xo 2X )$ (28)
and approaches

s.= 2 P.b)
y(xp

as f —+ oo. If (28) is approximated by a differential
equation and (26) inserted on the right-hand side, one
obtains

„=B(f)(4'.y y (1+*.) -& '*"P.(") (3o)

()n the other hand, upon inserting (26) in (27) and in

Z, P(&,y)=Z, P.b)q(f 3)=1 (31)

and taking the time derivatives of both expressions, we
obtain

where
s,=B' (f)$N p sts,), —

No= z P.(3) «fu&~)"'b —«)j,

Nl=rw P.b) erfr(lV~)"'b —~o)j.

(32)

(33)

Combining (30) and (32) we have

B(t)=Bee "' (34)

)t=rr'{2N[j9(1—xe') —11(~}"'P,(xe)fs,et—Nej
—', (35)

41n the summations in Eqs. (27) to (33) it is understood that
y has the discrete values prescribed by (6) with ts an integer
between 0 and E.

& Value could not be obtained because of roundo8 errors.

where the identity g(ao) =0 has been used to simplify
the expression for X.

For H)0 and X large, p, (x) has two very sharp
peaks, a large one at x~ and a much smaller one at x~.
Under these conditions No may be replaced by —s, and
I&, by 1, to a very good approximation. Also, s, may be
evaluated by using a Gaussian approximation to P,
near x~. The result is

g~(rr'/e. )Lp(j —g 2)—1jr/2$(1 g 2) &pjrl2e N—bp (36)—

where 5 is the quantity indicated in Fig. 2, that is, the
height of the potential barrier above the metastable
minimum. For the case H= 0 the right side of (36) must
be increased by a factor of 2, since N~ vanishes. Our
whole derivation is only valid, of course, when p and
H have such values that the curve a(x) in Fig. 2 actually
possesses two minima, and the result (36) should then
be asymptotically correct for large E.

C. Direct Computation

The analytic results obtained above were checked by
direct iteration of (20) on a computer for F7=4, 8, and
16 and rx=2. Values of P and H are given in Table I.
It was found that if the system started with a definite
value of x less than or greater than xo, the function q
rapidly (t= 1 to 2 times n ') approached a form closely
resembling (24), with B less than'or greater than zero,
respectively, thus providing qualitative con6rmation
of (17).After this distribution was achieved the changes
in A and 8 were comparatively slow and a decay
constant A., could be obtained from the numerical
results. Table I gives this experimental" value to-
gether with the approximate value P, predicted by
(35). For %=16 the decay was so slow that roundoff
errors in the computation made a reliable determination
of X, impossible. The agreement between the two values
for P is certainly as good as could be expected for small
E, considering the approximations used to obtain (35).
We are therefore reasonably confident that (35) and
the asymptotic form (36) give the correct long-time
behavior, and in particular the relaxation time increases
exponentially with the size of the system.
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IV. DISCUSSION OF RESULTS

The exponent in the last factor in (36) is just the
height of the total free-energy barrier (X times the
barrier per spin) separating the metastable from the
stable state, divided by the temperature, a result not
dissimilar to one obtained by Kramers' for the escape
of a particle from a potential well under the inhuence
of random forces (Brownian motion). A similar ex-
potential factor appears in the calculation of Becker
and Boring' for the relaxation rate of a metastable
state in the droplet modeP of condensation; only in
this case the free-energy barrier is the isothermal work
required to form a droplet of sufficient size to provide
a nucleus for condensation, and thus is not proportioned
to the volume for a large system.

In fact, on physical grounds the "droplet" model
appears more realistic than a long-range force model in
describing condensation in systems with forces of
reasonably short range. At low temperatures and a low
degree of supersaturation one expects the condensation
of a vapor to proceed through the random formation
of nuclei ("spontaneous nucleation" ) which then grow
in size. ' An analogous result should hold true in, for
example, the Ising model with nearest-neighbor forces.
As the probability of spontaneous nucleation is pro-
portional to the volume, one expects the relaxation time
to decrease with the size of the system, or at least not
increase, in contrast to our mean-field model.

We suspect, in fact, that the reason metastable states
are so easily defined in the infinite-range force models-
the isotherm in the metastable region is simply the
analytic continuation of the isotherm in the single-
phase region —is that the relaxation time in the thermo-
dynamic limit of infinite volume becomes infinitely
long; that is, the metastable state becomes in fact a
stable state. In contrast, the droplet Inodel of con-
densation provides a less definite prescription for de-
fining the metastable state (one must arbitrarily exclude
from the partition sum configurations containing
droplets greater than the critical size) and also predicts
that the pressure-volume (or field-magnetization)
isotherms possess an essential singularity at the con-
densation point. This singularity does not preclude a

'H. A. Kramers, Physics 7, 284 (1940). We thank G. E.
Uhlenbeck for bringing this paper to our attention.

6 R. Seeker and W. Doring, Ann. Physik 24, 719 (1935).
r J. Frenkel, J. Chem. Phys. 7, 200 (1939); 7, 538 (1939);W.

Band, iNd. , 324, 927. See also F. H. Stillinger, Jr., J. Chem. Phys.
38, 1486 (1963).

8 J. Frenkel, Kirle!ic Theory of Liglids (Dover Publications,
Inc. , New York, 1955), Chap. VII.

9 A. F. Andreev, Zh. Eksperim. i Teor. Fiz. 45, 2064 {1963)
fEnglish transl. : Soviet Phys. —JETP 18, 1415 (1964)g; M. E.

smooth (all derivatives continuous) extension of the
isotherm into the metastable region and would pre-
sumably be very hard to detect experimentally. None-
theless, the presence or absence of such a singularity
in more realistic models is an important problem in our
understanding of phase transitions.

Recent work" has shown that the mean-field results
(and their analogs in fluids) may be obtained by use of
a "Kac potential" with a long but finite-range, " y '
provided that the range is allowed to become infinite

(y ~ 0) after the thermodynamic (infinite volume)
limit. Our considerations do not, of course, apply
directly to these systems. "However, if one adopts the
"nucleation" picture of relaxation from the metastable
to the stable state, our calculation suggests that the
probability per unit volume of forming a nucleation
center probably decreases exponentially as some factor
times p ', or perhaps even more rapidly for small p.
The point is that within a volume of order y ' the
interaction of one spin with any other is, to a first
approximation, of the form (1). Thus the required
"critical nucleus" will involve a number of spins at
least of order y ' and the time required for its formation
should be (very roughly) comparable to, or larger than,
that computed above for E=p ', going to infinity as
7 approaches zero.

The problem remains of characterizing metastable
states in more realistic models for which the relaxation
time is probably finite. Although the aforementioned
droplet model seems a step in the right direction, it
would be of interest to obtain a characterization of
metastable states and an estimate of relaxation times
in, for example, the Ising model with nearest-neighbor
attractive forces.

Fisher, Conference on Phase Transformation at the University of
Kentucky, 1965 (to be published in the Proceedings of the
Conference). The singularity appears intimately connected with
the Quite lifetime of the metastable state: J. S. Langer, Proceed-
ings of the Eastern Theoretical Physics Conference, Stony Brook,
New York, 1965 (to be published).' One-dimensional Quids were discussed in the series of papers
by M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys.
4, 219, 229 (1963); 5, 60 (1964).One- and two-dimensional Ising
ferromag, nets were considered by M. Kac and E.Helfand, J.Math.
Phys. 4, 1078 (1963).J.Lebowitz and O. Penrose, J. Math. Phys.
7, 98 (1966), have obtained very general results for Quids in any
number of dimensions, and E. Lich PJ. Math. Phys. (to be
published) j has recently extended the argument to quantum
Quids. J.Lebowitz, Proceedings of the Eastern Theoretical Physics
Conference, Stony Brook, ¹wYork, 1965 (to be published) hss
discussed the definition of metastable states.

"We use "range" in a loose sense; the potentials employed are
not of strictly finite range, but are characteristically of the form
e ~, where r is the distance between atoms.

'~Since, in the simple mean-Geld model, the range of the
potential is permitted to become infinite simultaneously with the
volume.


