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Zero-Field Splitting of 8-State Ions. I. Point-Multipole Model
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The zero-field splitting terms in the spin Hamiltonian for an S-state ion, DL3S,'—S(S+1)g and R(S,'
—S„'),are computed using a point-multipole model. Various contributions to D and E are considered and
quantitative results are given for the most important mechanisms. Specific application is made to Mn'+:
ZnF2 and MnF~, where accurate values for D and E are known from electron-spin-resonance experiments.
The most important contribution for these cases comes from the "Blume-Orbach" mechanism involving
the first-order matrix element of the axial and rhombic fields between excited quartet states which have been
admixed into one another by the cubic component of the crystalline Geld. This term contributes results of
the correct sign, and of nearly the correct magnitude, to explain the entirety of the axial and rhombic Geld

splitting of Mn'+ in these hosts. The next most important contribution arises from the spin-spin interaction
(the "Pryce" mechanism) involving again the first-order matrix element of the crystalline field, but this
time between an excited configuration and the ground state. Instead of the usual perturbation approach,
the Schrodinger equation containing the crystal-field potential is integrated numerically. It is found that
the term considered by Pryce, the d —+ s admixture, is small, and of the opposite sign from the more im-
portant contribution of the d ~ d admixture. The net contribution from the spin-spin mechanism yields
results for D of the wrong sign and of roughly one-third the magnitude of the Blume-Orbach term, and for
E a constribution of the correct sign but an order of magnitude smaller than the Blume-Orbach term.
The configuration-interaction contribution of Orbach, Das, and Sharma is shown to be next in decreasing
order of importance, followed by the contribution originally computed by Watanabe.

I. INTRODUCTION

'HE origin of the axial field splitting of S-state
ions was first discussed in a qualitative manner by

Van Vleck and Penney' in 1934. The vanishing of the
diagonal matrix element of an electric operator in a
half-filled shell led them to the consideration of high-
order admixtures involving the spin-orbit coupling
and the axial field. Pryce' in 1950, however, showed
that one could obtain a finite contribution in relatively
low order by the use of the spin-spin interaction and
the admixture of states outside the ground configura-
tion. The Pryce mechanism for the 3d' ions (Mn'+,
Fe'+) involved the matrix element of the spin-spin
interaction Hamiltonian X„between the 'S(3d') and
'D(3d'4s) states, and the matrix element of the axial
field potential X, between the 'D(3d44s) and the
'S(3d') states. Thus,
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Watanabe' in 1957 performed the first quantitative
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'H. Watanabe, Progr. Theoret. Phys. (Kyoto) 18, 405 (1957}.
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calculation of both the spin-orbit and spin-spin (Pryce)
contributions. In additon to the Pryce term, Watanabe
also considered the admixture of the excited I'I'& into
the ground I'S) state by the spin-orbit coupling X„.
The matrix element of the axial field potential was then
taken between the I4I'& admixed into the ground level
and the I'D) excited level.

Thus,

( sl x..l'z&&'z
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x.„l'D&&'Dl x..l'z&&'z

I
x,.I
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It is understood in (2) that all the term values are con-
structed from the 3d' configuration alone. Watanabe's
results appeared to be considerably smaller than the
values measured experimentally and Kondo4 suggested
in 1960 that anisotropic covalent adrnixtures might
remove the discrepancy. In this and a subsequent
paper' Kondo computed the covalent contributions
to the axial field splitting of Mn'+ in MnF~ and strained
Mgo. He fitted his formulas to the observed experi-
mental results obtaining a (small) value for y, the
electron transfer coe%cient for O.-type bonding orbitals.
He considered both spin-spin and spin-orbit contribu-
tions to D and E. Because agreement was obtained
using a small value for the electron transfer, it appeared
that the overlap contribution to the axial field splitting
was dominant. Subsequently, Blume and Orbach' (BO)

J. Kondo, Progr. Theoret. Phys. (Kyoto) 23, 106 (1960).
5 J. Kondo, Progr. Theoret. Phys. (Kyoto) 28, 1026 (1962).' M. Blume and R. Orbach, Phys. Rev. 127, 1587 (1962).
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considered the axial field splitting of S-state ions in a
deformed cubic host. They proposed a mechanism in-
volving the spin-orbit admixture of the excited I4P)
into the ground

I
'S) and the fLrst-order matrix element

of the axial and rhombic fields. Normally such terms
would vanish but in this case a nonzero result obtained
because of mixing of the excited quartet states by the
cubic crystalline field. More specifically, the I'4 com-
ponent of the I'P) is strongly admixed with the 'r4
components of the I'G) and I'P) states by the cubic
crystalline field. Nonvanishing first-order matrix ele-
ments of the axial and rhombic field potentials exist
between the I'P), I4P), and the I'G) components of
the admixed excited 'I'4 level. Thus,

six,.l
r,)«r, lx.„l r,)('r, lx,.

l
s)

z( r.)—z( s)y

Notice that treatment of the cubic field by conventional
perturbation theory would result in an extra factor in
(3) of X,„b;,/I E('S)—E('G)$, which would consider-
ably reduce the value of D. Such a procedure is not
appropriate, however, when the cubic field potential is
of the same order as the 4P, 4G, 4' free-ion energy
separations. It is necessary to first diagonalize the
quartet I'4 matrix in a cubic crystalline field and then
use perturbation theory to consider the effects of the
spin-orbit coupling and axial and rhombic fields. The
values obtained by BO for the spin-Hamiltonian coefE-
cients in a deformed crystal were of the same magnitude
but opposite in sign to the experimental values obtained
by Watkins and Feher, Shiren, and Feher. Unfor-
tunately the sign of their result was wrong because of
an incorrect choice of phase for the 'G state. A sub-
sequent calculation by the authors' will consider this
question in more detail. Another attempt to fit the
axial field splitting of S-state ions was made by Orbach,
Das, and Sharma, " (ODS) using a method due to
Sternheimer. "They added the axial field potential to
the Hartree-Fock potential derived from Watson's" 3d
functions and integrated the one-electron Schrodinger
equation numerically to obtain s-, d-, and g-like ad-

' G. D. &atkins and E.Feher, Bull. Am. Phys. Soc. 7, 29 (1962).' N. S. Shiren, Bull. Am. Phys. Soc. 7, 29 (1962).' E, Feher, Phys. Rev. 136, A145 (1964).' R. R. Sharma, T. P. Das, and R. Orbach (to be published)."R.Orbach, T. P, Das, and R. R. Sharma, in Proceedirlgs oj'
the Intermatiorlal Corfferemce ops Magneti san, Eottiegham, i%64
(The institute of Physics and the Physical Society, London,
1965), p. 330.

lt is appropriate to point out some numerical corrections in this
earlier publication on the configuration-interaction mechanism.
The right-hand side of Eq. (15) in this reference should read
(—17.82/E'). Equations (17) and (19) should be replaced, re-
spectively, by

D=+0.0007 cm ',
and

D~= —0.0005 cm ',

Equation (21) suffers from some algebraic errors and should be
replaced by Fq. (52) of this paper with 820=2/I".

'2 R. M. Sternheimer and H. Foley, Phys. Rev. 102, 961 (1965)."R, E, Vq"atson, Phys. Rev. 118, 1036 (1960).

mixtures to the unperturbed functions. The term value
determinants were then constructed using the per-
turbed orbitals, and the matrix element of the axial
field perturbation was taken between the perturbed
states. Denoting the configurationally admixed states
by a prime, this leads to an axial field splitting

( s
I
x,.I'r.')«r, 'I x.„l r,')«r.'I x,.I

s
I:~('s)—~('r4') j'

a result of very much the same form as D&o. A direct
comparison showed this result to dominate that com-
puted by Watanabe, but to still fall somewhat short of
the experimental values.

This paper presents a comprehensive treatment of
the axial field splitting of Mn'+ ions in the point-
multipole approximation. All the preceding mecha-
nisms, with the exception of Kondo's covalent contri-
bution, are computed using axial rhombic and cubic
potentials appropriate to Mn'+ in ZnF2 and MnF2. It
will be shown that very close agreement is obtained
with the experimental values of D and E in these two
salts. In a subsequent paper, the covalent terms con-
sidered by Kondo will be re-examined and computed
in considerable detail. It will be shown that covalent
contributions to D and E are smaller than the point-
multipole contributions by, in some cases, an order of
magnitude. The origin of the discrepancy between our
covalent estimates of D and E and those of Kondo
seems to lie in some approximations which Kondo was
forced to make in order to evaluate some two-center
integrals appearing in his final expressions for D and E.
A third paper will discuss the axial splitting of Mn'+ ions
in a strained cubic host. Specific application will be made
to MgO to facilitate comparison with experiment.

In the next section, the wave functions of a 'S, 3d'
ion are obtained in a cubic crystalline field, perturbed
by axial and rhombic potentials and the spin-orbit
coupling. The resulting wave functions are used to
compute: Sec. III, the Watanabe contribution; Sec. IV,
the BO contribution; Sec. V, the ODS contribution;
and Sec. VI, the spin-spin (Pryce) contribution to
D and E. In Sec. VII, the explicit expressions for the
crystalline electric fields are derived and a specific
evaluation is made for the cases of Mn'+: ZnF~ and
MnF2.

In Sec. VIII the results are discussed and compared
with the experimental values.

II. 8—STATE ION WAVE FUNCTION IN
AN AXIAL FIELD

The Hamiltonian governing the 3d functions is

X= p(A'/2m—)Vp p(Ze'/r;—w)+p e'/r;;

+x,+x,.+x„+Vm'+ V2'+ V4+ V4'.



ZERO —FIELD SPLITTING OF S—STATE IONS. I 259

The first three terms in (5) represent the free-ion
Hamiltonian for the 3d electrons. %e shall assume that
these terms are not modified upon going from the free
ion to the solid. The fourth term is the cubic crystal-
line field

&.=B 'P "(Y'(i)+(5/14)'"[Y'(i)+Y (i)j) (6)

47.7
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52.3
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and the fifth, the spin-orbit coupling

X,.=g 1 (r;)1,"s, . (7)

26.8

Schematic of level splittings for Mr

In this paper we shall take the free-ion value for f'(r~).
In a subsequent paper treating covalent e6ects it will
be necessary to use the Inore correct operator form for
1 op(r, ) = (eh'/2m2c')(1/r)dV(i)/dr. The sixth term in

(4) is the spin-spin interaction,

SS
s; s; 3(s; r,;)(s; r,;)-

(8)
gp i&j —fij . ,5rij

V22= —B2'(4m/5)' ' p rp[Y2'(i)+ Y2 '(i)j. (9b)

The ninth term is the so-called "unbalanced" axial com-
ponent of the 3=4 terms in the crystalline field po-
tential. That is, V4 represents the remainder of the
potential,

and the seventh and eighth terms are the axial and
rhombic potentials, respectively,

V2' ———B~'(4~/5)'~' p r Y2'(i),

Ire. 1. Schematic of level splittings for Mn2+. The atomic
energy levels for the free 3d' —Mn'+ ion are indicated on the left
while on the right the levels appropriate to a cubic Geld are sho~n.
The numbers in the Ggure give the energies of the levels relative
to 'S in units of 10' cm '.

comparable in magnitude to the relative splitting of
4P, 4F, and 4G. Hence it is necessary to first diagonalize
the 'F4 matrix in the presence of the cubic field. De-
fining the phases of the quartet states for which
3II.=I., M'+=S by

,=4)= I2+2-1+0+-1+&

le,Mi, =3)= (1/v2)[l 2+1+1 0+—1+&

+ l
2+2 1+0+—2+&g,

l4P, Mr, =1)=(1/+5)D 2+1+0+—1+—1 ) (11)
+ (+2) l

2+1+0+0 —2+)

+ (v'2) I
2+1+1 —1+—2+)

+ l

2+2-0+—1+—2+&],

the three eigenfunctions of X, which transform as F4
can be written as

V4 —— B4"(4'/9)' '—Q r Y4'(i), (10a)
l

r4m„&=[~,
l

p4r4m, &+p,
l

p4r~, )
+&,lG4r~, &j,

after the cubic component (5) has been subtracted.
Finally V4' represents the fourth-order rhombic field,

V = —B'(4/9) '2,'[Y'(')+Y-'(')j ( o )

The low-lying eigenstates of the free-ion Hamiltonian
(in the absence of V„) are shown on the left of Fig. 1.
The ground level 'S is the only sextet in the d' con-
figuration and is an orbital singlet. Because we need
to compute the matrix elements of orbital operators
[Eqs. (8)—(10)$ it is clear that we must consider ad-
mixtures of excited states with orbital Inoment into
the ground level. This necessitates the use of the spin-
orbit coupling (7). Using the fact that 1(r,) transforms
as F4 of the cubic group, and the orbital part of the
ground 5 level as F~, only excited F4 levels can be
admixed by K„.The only excited quartets which con-
tain F4 character are the P', Il, and 'G. The triangle
rule assures that only the 4P will be admixed by 3C„
into the 'S. However, as Blume and Orbach' point out,
the cubic crystalline Geld (6) admixes the three 'r4
levels into one another. The size of the cubic field is

where 3fi denotes one of the three subvectors of the
r4 representation which we label by —1, 0, +1. The
coeKcients n, , P,, and y, are determined from the
secular determinant of BC,.Using the free-ion splittings, "

E(4P) E(4G) = 2357.5 cm '—

E(4F)—E(4G) = 16 782.6 cm ', (13)
E('G) —E('5) = 26 800.0 cm—'

and values of K, appropriate to 10Dg=9000 cm ',
10000 cm ', and 11 000 cIn ', the eigenfunctions and
eigenvalues (6,) of the cubic secular determinant were
computed and listed in Table I. It will be seen that a
similar table in the Blume-Orbach' paper apparently
gives the same signs for the y, as found in Table I.
However BO should really have found a value for p;
of opposite sign because the phase factors chosen for the
46 state here and that adopted by Blume and Orbach
di6'er by a negative sign.

"Charlotte E. Moore, Atomic Energy Levels, Natl. Bur. Std.
(U. S.) Circ. No. 467 (U. S. Government Publishing and Printing
Once, %ashington, D. C., 1949).
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TABLE I. values of n;, p;, y;, and 6; for the Mn~ ion. TAar.E II. List of u(3f8}, b(M8), and c(3/I8)
describing the spin-orbit effect.

0.633
0.761
0.143

10Dq =9000 cm '
—0.127 0.763

0.285 —0.583—0.950 —0.277

d; {cm ')
measured
from 'S

19 501
35 380
44 805

~s
a(~s)
b(Ms)

b
1 3 5

+QS +VS +~+6 +~v2 0 0
0 0 +be +A/6 +vs +v'5
0 —K2 +@3 +v3 +V2 0

0.637
0.751
0.176

10Dq =10000 cm '
—0.135 0.759

0.334 —0.570—0.933 —0.314

18 546
36 001
45 138

apparently only those involving 3d —+4s have pre-
viously been considered. Because these admixtures will

be proportional to

0.640
0.739
0.212

10Dq=11 000 cm '
—0.143 0.755

0.385 —0.553—0.912 —0.352

17 588
36 569
45 529

0.'i
['SMg)'=

~

'SM8) —g —t't'u(Ms) [;«I,M8 —1)

where

+b(Ms)
~

~4F4—1, Ms+1)

+c(Ms) i
~4F O,Ma) j, (14)

The spin-orbit coupling can now couple the

~,'F4,Mr& to the 'S ground level. To first order, the
admixed wave functions are

(isla 13d&/I E(3d) E(Ns))

where X, is the axial or rhombic perturbation, not
only will 4s admixtures be important but also Ss,
6s, . ~ 4d 5d - ~ and 4g, 5g . . This occurs because
the 3d function, when weighted by r' or r', has signif-
icant overlap with a large number of excited conlgura-
tions, and the energy denominators do not increase
rapidly enough to overcome the sizeable matrix ele-
ments of K,„.This difficulty is one often encountered
in shielding problems and was erst treated in detail by
Sternheimer" and subsequently by Das, Bersohn, and
Kik.ner, " Dalgarno " Khubchandani, Sharma, and
Das. ' To the unperturbed one-electron Hamiltonian
X for the ith electron with wave function P(i) and
energy e,-' is added a perturbing potential h~. The first-
order change in wave function bf, is determined from"

(
~4F41M, )

= &~'I»&+e'E(v'8) I»&+(v'8) l~-3)j
—v.L(v'l) IGI)+(v'l) IG—3)j) I-:M );

~
F4OMB)
= (~,

~
rO)+ p. IZO)+p, L

—(I/v2) I «&
+(I/~&) IG—4&j) I2M~) '

~,'F4—1Ms)
= (~'I &—I&+&'L(v'8) I ~3)+(v'8)

I
~—1&3

+v'E —(1/v'8) IG3&+(v'l) IG—1)j) lk Ms)'

and a(M8), b(MB), c(M8) are delned by

a(M,)= ;(ZIM, 1~+ i,+s, ~-6SM,);—

(~,'— )b~;—Z(,'-.;)Q'(j)
I W;)~'(j)

= —b 4'()+Z(4'(j) Ib IP())P(j) (17)

The presence of the second term on the left makes (17)
15

an integral-differential equation and complicates the
solution greatly. It has been shown" that its omission
will not lead to error of more than 15%. We thus
consider the simpler differential equation

(X,o—e,o)g,
= —h 0'(i)+EM'(j) Ih I4'(i))4'(j) (18)

b(MB)=g'(4P —1MB+lip I;-s;+iaSMB); (16)

c(Ms)=(4EOMs~Z I s ('SMs);

and ~'I'Mz@XB)= ~'PMi) ~S=-'„Ms). The quantities
(16) are listed in Table II.

So far the above states have been constructed im-

plicitly out of 3d functions. The presence of an axial
Geld will alter (14) in two ways. The first involves
admixture of other 3d' states, the second admixtures of
excited configurations into the 3d shell. The former
will be considered in Secs. III and IV, the latter in
Secs, V and VI. Concerning configurational admixtures,

The functions f'(i) represent one-electron d orbitals
of the form

0' '(i) = E'iid'(~)/r3I'2" ~ (19)

To find the perturbed wave function g (i), consider a
perturbation of the type

p m~riV
7 (20)

where pq is a constant defining the required potential.

"T. P. Das and R. Sersohn, Phys. Rev. 102, 733 (1956);E. G.
%'ikner and T. P. Das, ibid. 109, 360 (1958).

"A. Dalgarno, Proc. Roy. Soc. (London) A25j. , 282 (1959).
' R. G. Khubchandam, R. R. Sharma, and T. P. Das, Phys.

Rev. 126, 594 (1962l.
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TABLE Ill. Table of (4w/5)'~'P2, 4 ~&(l') for k=2.

4
2 2

0

v'(2/3S)
0
0

1/(v'35)
0
0

2&2/7 (v'5)
(v'6)/7 (V'5)

0

VS/7 (v'5)
—2/7(v'5)

0
(v'6)/7 (V 5)
1/7(v'5)

0
6/35
2/7(v'5)
1/5

1/7(v'5)
—(v'6)/7(V'5)

0
4/35
—1/7(V'5)

—1/5
(v'6)l7(v'5)
1/7(v'5)

0
242/7 (V'5)
(v'6) /7 (V 5)

0

1/35
—2/7(v'5)

1/5
1l7(v'5)

—(1/7)(v'6)/(v'5)
0

VS/7 (v'5)
—2/7(V'5)

1/(v'35)

v'(2/35)

0

The product

kgb '(i) = —
p&, 'r~Fp "Pug'(r)/r)F2

p nayrkP~ 0(r)/rg

yP P „m,ma(P) P', m+ma (21)

defines the quantities P~, &,
"'(l') tabulated in Tables

III and IV for appropriate values of k, m, mj„and l'.
The form of (21) suggests that we can write

u„ap &'& (r)
g, .—p~ a Q p ~, gg(p) p', m+mgg (22)

l'=f2—k[ r

Taking k=2, appropriate to the axial and rhombic
potentials (9), P in (22) can assume the values 0, 2, 4
representing the admixture of s-, d-, and g-like functions
into P (i). Inserting (22) and (21) in (18) results in
the three differential equations,

evaluation of the spin-spin contribution to D and E in
Sec. VI and in the less important excited conGguration
spin-orbit contribution (ODS) to be considered in
Sec. V.

IIL THE WATANABE MECHANISM

The contribution to the axial field splitting from a
mechanism considered by Watanabe' has already been
outlined in the Introduction and displayed in Eq. (2).
It will be shown in Sec. VIII that the contribution to
D from this term will be small for reasonable values
of the electric Geld gradient and will be nearly can-
celled by the contribution from conGguration interaction
(ODS) considered in Sec. V. We include a discussion
of (2) here for completeness and to demonstrate the
role of the cubic crystalline Geld. Watanabe found

(26)

Ng~~g ~ ~ d Ng—ug ~ o&+
dr' r' Ng' dr'

= r'ug' (23)
where 82 measures the strength of the axial field (9a)

2.50—
d Nd 2g Qg ~d d Ng

—=r'ufo (u& Ir'Iu—& )ufo, (24)
Ng' dr'

2.00

l.50

+—ug ~ &'&

Ng~~g &'& d2gg'
+ = r'ua'. (2S)

Ng' dr'

1.00
at

.50

—.50

These equations were solved for Mn~ using Nu-
merov's numerical integration procedure and Watson's"
analytical solutions of the Hartree-Fock equation. The
solutions I& 2, &'&, I& ~&&'&, and e& ~,&'& are displayed
graphically in Fig. 2 for Mn++ and will be used in the

—I,OO

—
I 50

0 4 6

Pro. 2. Plot of uq~e, ', Nq~~d ', eq~2, ' for Mn'+.
All quantities are in atomic units.
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Q

Qcu g

0

&0o 0 0

&0 0

and &us, &z s are the energy differences E('D) —E('5),
J&'('P) E(—'S), respectively.

The presence of the cubic field will alter somewhat
the value obtained for Drr in (26) because the 'P state
will not be "pure" but will contain admixtures from
the'F and G states as shown by (12).These admixtures
will result in changes of the energy denominators and
contributions to the matrix elements from the admixed
states. We find

O

I

where

i 2 4 2

(r')'(fl2')' p-+ p-~-
70 ADs 7

(27)

t

v) I

R

00

0
p..=P n,2/6;,

(2g)

$o &

vK

R I

$o
I

~H~ Q M M 0No

X I

O

0
c

LPj l/)

QQ

$O
1/)

M

0

w a I

W

Q

l/)
I I

~ 0g 0
0

I

O

$0 &~

I

vh

I

The n, , P, , and 6, are listed in Table I. The expression
(27) is the correct one to use for the case of a weak
axial perturbation superimposed upon a strong cubic
crystalline field. Evaluation of p and p s for
10Dq=10 000 cm ' shows that D~& exceeds D~ by
a factor of 1.6. Hence the presence of the cubic field
causes an enhancement of the Watanabe contribution
to the axial field splitting.

It is also possible to compute the rhombic splitting
E using the Watanabe and configuration-interaction
mechanisms for E. Such contributions would arise out
of second-order effects involving V20 and V~'. One
could derive expressions for E resembling Eqs. (27) and
(39) following essentially identical procedures as for D.
However, as we shall see in Sec. VIII, where numerical
results for various In.echanisms will be considered, the
Watanabe and configuration-interaction mechanisms
both yield rather small contributions as compared to
the spin-spin and Blume-Orbach mechanisms. In addi-
tion, the signs of the Watanabe and configuration
interaction results are opposite, and nearly cancel one
another. Thus, we shall not give expressions here for
+g and +QDS

&00

o 0

1/)

O

&0o ~ 0

I

pg)

~ lg

I

Q

IV. THE BLUME—ORBACH MECHANISM

The next contribution to D and E we shall consider
was first proposed by Blume and Orbach. ' The mecha-
nism has been outlined in the Introduction and the form
of the result given in Eq. (3). In addition to the l=2
terms (9a) and (9b), the BO mechanism also allows the
/=4 terms (10a) and (10b) to contribute to D and E.
These additional terms do not contribute to D~ be-
cause the triangle rule causes their matrix elements to
vanish between the 4P and 4D states. They can, however,
connect 4P and 'F with 'G states in a d' configuration. "
The contribution of the axial and rhombic crystaHine

' S. R. Polo, RCA Laboratories (unpublished).
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~Z(M, )= '( SM,
l
x..

l
sSM, )'

The value for D is then

D-=—:.9~(l) -~&(-:)3.

(29)

(30)

helds to D and E is found using the spin-orbit-perturbed
cubic wave functions (14). The energy shift for a
particular ground M8 level is found from

The a ~ are components of the matrix

I'0 4/49 3/49 &
a=', 0 1/49 6/49 (37)

4/49 36/245)

The matrix elements of r' contained in (36) have been
computed numerically using the perturbed wave func-
tions found in Sec. II and displayed in Fig. 2. We 6nd:

It turns out that the matrix element of Fss in (29)
vanishes so that only (10a) contributes to D. Inserting
(14) and (10a) into (29), we find

~~(M.)= —:(~5)(~ ) (~)L"(M.)+~ (M.)i
Xl |'p.,(2p- —p.~)3, (»)

(u&s lr'lu& "&'l)=6.70,
(ug'lr'lug sgo&) =1.70,

(ud. lr'luq~s, &'&) =1.38,

in atomic units. These lead to

(38)

to second order in Vss. Here p, and p p are as defined

in (28) and P v=g, tsn, ,y,/6, . Using the values of

a(MB) and b(M8) given in Table II and (30), we find

DBo= —(&4') 'L (Q5/36 j(r4)Lf'p. ,(2p..—p.s)j . (32)

The BO contribution to E is found in an analagous
manner. The matrix elements of the rhombic terms

(9b) and (10b) are taken between the states (14) with

diRering M8 values and compared with the matrix
elements of E($,' 8„') betw—een the same 5= ss spin-
Hamiltonian states. Again, the matrix element of the
l=2 rhombic component vanishes so that only (10b)
contributes. We find

~BO ~4'(~/6) (r4)l f 'p.,(2p..—p.s)j . (33)

It is interesting to note that

~BO/Dso 6(v 5)~4 /(~4 ) (34)

independent of the strength of the cubic admixtures of
the excited quarted states. This ratio will serve as a
useful check on the numerical estimates of D and E to
be given in Secs. VII and VIII.

V. THE ORBACH, DAS) AND SHARMA
MECHANISM

In this section, we make use of the configurational

mixing discussed in Sec. II brought about by the

presence of the axial and rhombic Gelds. To the indi-

vidual 3d wave functions f '(i), a perturbed quantity
8|P, as defined by (22) is added. The individual term

functions 4I', 4F, and 4G are then constructed using the

perturbed one-electron wave functions f (i)+hip„(i).
Then, exactly as in Sec. IV, the matrix elements of
K are taken between the spin-orbit perturbed cubic
wave functions (14) composed now, however, out of the

con6gurationally admixed one-electron wave functions.
It is found that

Dons= (&s ) L(V 5)/192' jLPp~v(2p~~ p~P) j
X (Ms —4Mi+3M p), (35)

Dona=2 1044(Bs')' (39)

where Bs' is expressed in units of e'/2us'. This contribu-
tion is proportional to the square of 82', as is the
Watanabe contribution (27). However (39) is opposite
in sign to (27).

The magnitude of (39) will be shown to be nearly
equal to (27) in Sec. VII so that a nearly complete
cancellation of D~~ and DoDS obtains. The same result
occurs for the rhombic terms and is the reason for the
omission of explicit expressions for E in Secs. III and V.

In addition to the quadratic effects in V2' one might
expect to And excited configuration contributions to
DoD8 from either V4 acting twice or V4 and Vq each
acting once. These contributions may be termed Dg~.
Expressions for D~q due to these latter mechanisms
can be derived following the procedure in this section.
We have made rough estimates of Dgg from these
mechanisms and Gnd results an order of magnitude
smaller than DoDS computed in this section. One can
therefore neglect these contributions, as well as similar
Watanabe-type contributions, to D.

VI. THE SPIN —SPIN MECHANISM

The use of spin-spin coupling (8) to admix an excited
4s configuration into the 3d' condguration was erst
proposed by Pryce. ' His paper represents the 6rst
meaningful quantitative treatment of the axial field
splitting of S-state ions. Pryce did not perform the
detailed atomic calculations necessary to find the mag-
nitude of D but rather relied on an extraction of the
strength of the spin-spin interaction from free-ion
excited-state splittings. His approach has been criticized
by Blume and Watson" and by I eushin. ' These criti-
cisms take note of the importance of other interactions
which shift the free-ion excited levels (e.g. spin-other
orbit) and which may be wrongly included in an
estimate of the strength of the spin-spin interaction.
Blume and Watson actually calculate the 4s spin-spin
admixture and find it much smaller than estimated by

where
M = P a i(us'lr'jug 'i'").

lM, 2,4
(36)

'9 M. Blume and R. E. Watson, Phys. Rev. 139, A1209 t'1965).
so A. M. Lenshin, Fiz. Tverd. Tela S, 2352 (1963) t Eng1ish

transl. : Soviet Phys. —Solid State S, 1711 (1964)j.
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Pryce. In this section we shall not make use of con-
ventional perturbation theory to treat configurational
mixtures but rather rely on the Sternheimer" method
outlined in Sec. II. It will be shown that d-like admix-
tures are more important than s-like admixtures and
yield an axial field splitting of opposite sign. Hence, the
results of previous treatments considering only 4s ad-
mixtures and using conventional perturbation theory
(e.g. , Watanabe, ' I.eushin2') ca2122oj yield a result of the
correct magnitude and sign.

At this point we should mention the work of Chak-
ravarty" who also attempted to determine the spin-spin
contribution to the axial Geld splitting of S-state ions.
He used the same approach as we shall make use of in
this section, except that he employed analytic Slater
rather than Hartree-Fock orbitals. The inaccuracy of
Slater orbitals leaves Chakravarty's results open to
serious question quantitatively, though he did also
find d-like admixtures more important than s-like
admixtures. Our numerical results differ substantially
from his; the source of this difference appears to
lie in the difference between the wave functions used
and also in some numerical errors in Chakravarty's
formalism.

In order to detail the method of computation of the
spin-spin contribution to the axial and rhombic field
splitting it is necessary to expand the spin-spin interac-
tion (7) in the following way:

1 g2p2

2 ~; -'I (3s"—r.j')(3s"j'—s. sj)
2 Qp»&i

Here

Then,

4-(i)"'=4-(')'+ ~0-(i).

Dss 12LIVss(2&2) ass(2&2)g &

E-=L1/(V 10))W-( ) . (43)

where the matrix elements of the spin functions have
already been evaluated. Thus, states appearing in (44)
are solely orbital and of the same form as (42). This is
permissible because of the half-flied character of the d'
configuration and the spin independence of 3C, . We
now adopt the same technique used in Sec. II to write
Vs»s& ——P&,m, V&"' where I see Eq. (20)j

V„m2 p,m, p r.iy m„(,) (43)

For an axial field only mA,.——0 terms are present while
for a rhombic field nz&

——&2 terms can also be present.
For simplicity we shall first evaluate the axial term

in (44). Using (22) we find

Inserting (40) into (41), and using (42) and (43), we
obtain

g2P2 3 (s 2 r 2)
I's)',

208p &&j
g2P2 3 (a, ,2 y . ,2)

z.,= — (SIZ
" "

I
s)',

2Pgp

+3(x '—y ') (s,*s;*—s;"s;")

+6 (sj sj"+sos j*)$ jul &j
+6(sj"sj*+s&sj")Jjjs&z

where

+6(s;*s; +s,*sj )s,jx;,$. (40) D"(d &') =—

2+It,

D,.= P D„(d~l'),
t'=l2—g

(46)

g2p2 p„o
f~ s, lil i, l~i+2D, l'~— (47)

20up3 2
The first term in (40) contributes to D, the second to E.

Our method of calculation is somewhat similar to
Sec. V. %e construct the S ground determinant out of
the perturbed one-electron orbitals p„'(2)+bf„,, given

by (22). The matrix element of the spin-spin interaction
(40) between the perturbed S, Ms ground levels is then

In (47) we have introduced the symbols

(2js'(1))' 2je'(2)2ja sl ' (2)chr,dr2, (48)

w„(M,',M,)='( S,M, 'Ix„I S,M, )'
=2('SMS I3('- I'S,MB)'.

and

(41)
F2,2' (l')(C,. ,(—1) +&

The prime in (41) indicates the use of perturbed one-
electron orbitals in constructing the ground Slater
determinant. Thus,

s M.)'= D/(Cs l)j. ..,,„
X1i-(1)"'6(2)"'|t (3)"'1t2(4) "'0.(~)"'

~ (42)

I'SM )=L1/(V'3.')Je-.S, .
X& (1)VP(2)Vv(3)V2(4)V. (3)'

"A. S. Chakravarty, J. Chem. Phys. 39, 1004 (1963).

crQP=2

XI F2, P (/" —1)F2,2
s &(i"+1)

+F2,P (l"+1)F2,2 s s(l" 1)]-
~i-. ap"22's, (i" 1),F-,

, ,;& -—(i"+1)

+F2.2
' (i'+1)F2,P ~'(l"—1))). (49)

We have used the quantity F2 s "(P) in (49) defined
by (21) and tabulated in Tables III and Ip, as well as
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the normalization coe%cient TttttLE V. Table of two-electron integrals fq~«v" ""~
appearing in (52).

l', m'C,
)(n'+ 1)(2t'+3)]' '

—(l' —m'+1)!(l'+m'+1)! '"X, . (5o)
(l'+ m' —1)!(l' m'—1)—!

—0.522343
—0.375473

—0.403704
—0.230164

0.065059
0.030665
0.019571

The coeScient C~ ~ occurs in the expansion

y o(1'2)
I'v —i '(1)I't'+i '*(2)

&

y l +2

which is true for r~(r2 For r~)r2 one should inter-
change 1 and 2 (both radial and angular variables).
Using the numerical values found in Tables III and IV
and Eq. (50), (46) reduces to

of D„ in an analagous manner. Using again the
quantity (48),

gsp2 p m«

Q f~ «, V'-i, v'+s
20u0' 2

Xk(F«, v. t""'(l)&m«, s+F«,-v.v~"'(2)&~«, s), (56)

D-=D-(d~~)+D-(d~d)+D-(d~g), (51) where

where

D„(d—+ s) =— Bs'$3.58fg~r," 5.37.fg—~r ' ']
40 (+5)

F-«, t, t '(1)

F, ""(~)( (—1) +e

D„(d~ d)=—
gsp2

B, (3o83f„„o,o 4 38f
40(~5)

'

(52)

where 6&, is the 3d~4s promotion energy. Using
Table V we find (52) reduces to

D„(d + g) = — Bs'$9.20fe~~o" '
40(~5)

5.59' ro"—19 17fe~oo'—.].
The two-electron integrals f~ «v" "+' appearing in
(52) can be evaluated using Watsonls" Mn++ analytic
functions for Nq&'& and the values of uq &~&'~ found in
Sec. II. These integrals are tabulated in Table V for
Mn'+. Our result D„(d —+s) agrees with Dv LEq. (1)]
if conventional first-order perturbation theory is used
to admix the 4s configuration by the axial field. In par-
ticular, one can obtain Pryce's result by setting

(use
~
Be.„~N4, o)

Nd~cg( ) =N4g (53)

X/C ,vi'Fs, p
— +"«(l"—1)Fs,s ~ e(l"+1)

+Ctl~, i'F2, 2 e'(/" —1)F2 v ~"«(l"+1)]
—LCt-, tt .'F,; t'(l"—1)Fs t.

—e'+~«(l"+1)
+Cv ~ p t'Fs v ~ +"«(/"—1)Fs s

— ~(l"+1)]).

(57)

(l'+m'+2)! '"
E(»'-1) (»'+3)]'" (~'+m'-2)!

(58)

The quantity E« t. v. «(2) can be obtained from
E«,t, t '(1) by interchanging n and P in Cv, tt +i' and
Cv, tt ~ i'. We identify (9b) as the form for the rhombic
field, so that Bss= (ps'+ ps ')/$2(4or/5)'t']. Then, using
Tables III and IV and (58) to evaluate (57), and in-
serting into (56), we find

F-..=F-..(d —+ &)+F...(d +d)+F-„(d -+ g), —(59)

where
D„(d -+ s) = —0.01915B«' cm ',
D.,(d ~ d) = 0.0707 Boo cm—',
D.,(d ~ g) = —0.0068 Boo cm '.

(54)
F.„(d-+ s) = —(g'P'/40)Bss

XI8.76fa~o," 13.15fd „' 'J, —
&-(d d) = —(g'P'/4o)Bs'

(9.38' «do s 10.73',f o],—(60)

g) = —(g'P'/40) B 'L22 53f.-,"
—13.68fg, o' ' 46.95f„„or]. —

The total spin-spin contribution to the axial field
splitting (51) becomes

D„=0.04478~' cm-' (55)

where Boo is again expressed in units of e'/2ttos. The
methodof computationforE„foll sotwhe computation As before, using Table V for the fq, v" '"+', we—
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evaluate (60) to yield

F.„(d-+ s) = —0.0475Boo cm—'

Z„(d~ d) = 0.1735Bo2 cm—',
E„(d +g) =——0.0168Boo crn ',

(61)

where Boo is expressed in units of e'/2ao'. Combining,
we find hnally that

Ess= 0.1092822 cm '. (62)

Again we see that d ~ d admixtures give contributions
to E of greater magnitude and of opposite sign than
contributions from d —+s admixtures.

One might also expect first-order contributions to D
and E from the crystal-field components V4' and V4'

in combination separately with the spin-spin interac-
tion. These contributions can be shown to vanish
identically from the properties of the rotation-group
matrix elements. We shall demonstrate this briefiy for
the case of D. Following the same procedure as in Sec. II
we can write

D„= P D„(d~'lo),
l2=2, 4,6

(63)

where fd 4l,' "+' can be obtained from the expression
(48). The quantity D4, l,' can be expressed as a sum of
two parts, one of which is given by

since, using the form (10a) for V4', one can show that the
perturbed d orbitals involve d-, g-, and i-type adrnix-
tures. Thenumber 4 onI& in Eq. (63) indicates the eRect
of the V4 potential. The quantity D„(d ~43&) can be
expressed as

D„(d~'4) = —(g'P'/20ao ) (B4 )

f 4 l'—l, l'+2D l' (64)
i=1,3,5

One can work out the first-order contributions to D via
the spin-spin and Blume-Orbach mechanisms following
exactly the same procedures as in the present section
and in Sec. IV, respectively. Consideration of the perti-
nent matrix elements involved in the expressions
analogous to (47) and (30) shows that D„and Dao by
first-order mechanisms involving the odd crystal-field

components exactly vanish.
Second-order sects of the odd crystal-field corn-

ponents via the spin-orbit interaction lead to expres-
sions for Dnos entirely analogous to Eq. (35) with

XF.,. .- o(P)F, ,.„=o(t'). (68)

In the crystal Mn+'. ZnF2 and MnF2, the Mn'+ ion
occupies a site with inversion symmetry so that the
odd components of the crystalline field vanish. In other
cases, as in ruby, "' or in solid solutions of Mn+' in the
alkali halides, '4 one can expect to find finite odd crystal-
line-field components so that it is necessary to evaluate
the matrix elements (68). However, since Dons and
D~, through the even crystal-field components, are
found to be much smaller than Dpo and D„, we expect
the second-order effects of the odd crystalline-held
components to be also be negligible.

VII. CALCULATION OF CRYSTALLINE FIELDS

An important ingredient in these calculations is the
crystalline fieM as described by its components U2', U4',
V,', and V4' defined by Eqs. (9a), (9b), (10a), and
(10b) in Sec. II.

If Boo, as defined by (9), is Produced by external Point
charges g;~ et situated at (E;,0;P,) with resepect to an
origin taken at the site of the paramagnetic ion, then
820 is given by

D4, im' (1)= 2 F4,o'"(~o)
n&P=2

X [Ci,o(—1) +»o, i. "(1'—1)Fo,o-e e(~'+1)

Boo=+ q;(3 cos'0' —1)/R' (69)

D4, l, '(1)= —D, , l, '(2), (66)

so that these contributions to D„ identically vanish.
In concluding our discussion of the various mecha-

nisms responsible for D and E', we should point out that
when the paramagnetic ion is not at a site possessing
symmetry, odd crystal-held components U2~&' are
present. One has terms of the form, for example,

V, :=—P . 'E,'"+'&.-+'('). (67)

—Ci,~ eFo, o ~(l' —1)Fo,l, ~ "(l'+1)g. (65)

The second part of D4, l, '(2) can be obtained from the
first by interchanging P 1and V+1 in th—e arguments
of the quantities F inside the square brackets. Using
Eqs. (50) and Tables III and IV one finds that

Bo'= (Q—,')P q; sin'O~; cos2C;/R (70)

The crystal-field potential 842 which shall be useful for
the expressions (10b) and (33) is

B4o= o (&10)p q;(sinoO', ) (7 cos'O~ —1) cos2C;. (71)

"R. R. Sharma and T. P. Das, J. Chem. Phys. 41, 3581 (1964);
D. S. McClure, ibid. 36, 2757 (1962); 38, 2289 (1963).

23 J. 0. Artman and J. C. Murphy, Phys. Rev. 135, A1622
(1964).

'4 G. D. Watkins, Phys. Rev. 113, 79 (1959).

where R; is in units of ao and Boo in units of e'/2ao'.
This then yields Voo in rydbergs (e'/2ao). The quantity
Boo, as defined by (9b), can be expressed in terms of a
lattice summation paralleling (71,),
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We shall next consider the axial potential that
originates from the unbalanced part of the cubic
potential V4' in Eq. (9b). For cubic symmetry, the cubic
potential is expressed as

K,= (4x/9)'~'(84')P r, F4'(i)

+ (47r/9)'~284 Q r, (I'4'+ I'4 ') . (72)

have not considered the effect of the induced dipoles
in the computation of the crystal fields B~', 82', 84',
and (84')'. This can be done very easily following the
procedure used by Taylor and Das26 or Artman and
Murphy. "Because, however, the F ions are much less
deformable than 0 —,the dipolar contributions to the
crystalline fields will be much less significant for MnF2
and ZnF2 than for corundum.

If ~, is expressed in rydbergs e'/2ao, then, for the point-
charge model

C

(8 o) =-' P q;(35 cos'O~ —30 cos'0+3)/R'
4

and
S/2

(8,') = — P q sin'O~, cos'4, /R, '.
32 j

(73)

(74)

+ (8,')«(4~/9)'" P «'LI'4'(&)+ I'4 '(~)j (76)

(8,0)„,—~(8,4)„, is no longer zero. We shall
denote this difference by (84 )nc'.

(8:)..= (8.o)..—(8 ').. (77)

For the point-charge model, the quantities (84')„, and

(84')„, can be expressed as

(8 ') =-' P q, (35 cos'O. —30 cos'O~ +3)/R' (78)

and
(84')„,= ', (~ 70) P q, sin'-0, cos4C;/R, '. (79)

In view of Eqs. (76) and (77), the crystal-field com-

ponent (84')' used in (10a) can now be defined in

terms of the crystal-field components (84')„, and

(84')„, as follows:

(8,')'= (84')„.'= (84')„,—CK(84') .. (80)

The quantity (84')' is the appropriate coeKcient to use
in the expression (32).

We have evaluated 820, BP, (84')„„and (84')„, by
both the direct lattice summation" and the Nijboer and
deWette" methods.

It is worth pointing out that in this investigation we

"B.R. A. Nijboer and F. W. deWette, Physica 23, 309 (1957).

It is well known that there exists a constant ratio
between (84'), and (84'),. Let this ratio be denoted by

~= (84')./(84')' (75)

Thus at a perfect cubic site in a crystal (84'),—n(84'),
vanishes. If the cubic symmetry at the site is destroyed,
the new noncubic potential V„, is given by

V„.= (8,o)..(4~/9) ~&' Z r,'&:(~)

VIII. RESULTS AND DISCUSSION

The results for D will now be evaluated using the
expressions developed in Secs. II through VI. To Gx
our ideas and to make a reasonable comparison with
experiment, we shall consider three specific cases. First,
we use as a model a unit charge (+e) totally external
to the Mn++ ion and a distance 2=4.78up away. The
second and third cases will be those of MnF2 and
Mn'+ in ZnF2, respectively.

A. Single-Charge Model

For the hypothetical single-charge model, the crystal-
field components are supposed to be produced by a
unit positive charge on the Z axis at a distance E. from
the Mn++ ion. We have chosen E. to correspond to a
typical field gradient 82' (0.0184)e'/2u——o' which, for
example, is found in the corundum-type lattice. This
leads to R= 4.78ao. In this case, since (844), as given by
(81) vanishes, we obtain from (80) and (81),

(84')'=8.047X10 '.
Using 82O as given by (69) for the evaluation of (27),

(39), (54), and (55), and using (84')' from (81) for the
evaluation of (32), we obtain the values of D for the
diferent mechanisms discussed in Secs. III to VI. These
calculated values are listed in Table VI. Since a unit
charge on the Z axis produces only an axial field 82',
the rhombic crystal fields 82' and 84' are absent and
therefore E vanishes.

Qn analyzing Table VI we Gnd that the contribution
to D through configuration interaction, which we de-
noted by Do», is small compared with D„, and is very
small compared with Dp,o. It also appears that D~ is
nearly equal to Do&z in magnitude but differs in sign.
As a result, the combined eRects of D~ and Do~g add
up to a negligible quantity. Watanabe did not consider
the effect of the cubic field in his calculations. When
the eGect of the cubic field is taken into account, the
resulting contribution, denoted by D~~, is found to be
1.6D ~ and is listed in Table VI.

We should like to analyze why D&o gives the most
important contribution to D. Substituting (84')' from
(81) in terms of R and comparing the resulting equation
with D(C)=Dons+Dwc and D„as given by (39),

"T.T. Taylor and T. P. Das, Phys. Rev. 133, A1327 (1964);
see also Ref. 22.
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TABLE VI. Various contributions to D and E in the three cases (a) single-point-charge model, (b) MnF2, and (c) Mn~:ZnF2.
The D and E are all expressed in units of 10 ' cm '. f has been taken equal to 300 cm '.

Mechanisms
MnF2 —Mn+'

D
ZnF~ —Mn~

D E

Single-point-
charge model

D

Spin-orbit

Spin-spin

Spin-orbit

Total
Experiment

ODS
d~S
d~d
Q~g
Total

Watanabe
WC

ODS+WC
B-O

+1.06
+1.36—5.01
+0.48—3.17—0.68—0.88
+0.18

+10.66
+7.70

+115

~ ~ ~

+2.26—8.26
+0.79—5.21

~ ~ ~

—97.40—102.61—121.5

+1.59
+1.66—6.14
+0.59—3.88—1.01

1431
+0.28

+27.51
+24.01
+10.5

~ ~ ~

+1.38—5.04
+0.49

3I17

~ ~ ~

—99.25—102.32—113.5

+7.09
3152

+12.97—1.25
+8.20—4.53—5.86
+1 23

+34.93
+44.36

B. Case of In+2 in MnF2

The crystal of MnF2 has a rutile structure with its
unit cell tetragonal. However, the environment around
each Mn'+ ion has only orthorhombic symmetry. The
lattice parameters and the coordinates of the ions

TABLE VII. Crystal structure data for MnF2 and ZnF2.

Crystal
MX2

ZnF2

(x)
4.7034

C

(i.)
3.1335

Coordinates
x of M

0.303 (0)0)0)

Coordinates
of X

MnF2 4.8734 3.3099

(27), and (35), we have

D(C):D..:DBO = 1 45/R'. 0.09/R'. 8.68/R'. (82)

The magnitude of Dso is larger than D(C) for two
reasons. First, the numerical coefficient for Dgo is about
six times larger than that for D(C) (this is because
(r') occurring in Dno is larger than (r')' occurring in
the other two mechanisms) and secondly in Dzo the
negative power of R is less by one than that occurring
in D(C), which makes it another factor of 5 larger.
These considerations together thus explain why D&o
is almost 30 times larger than D(C). If we compare
Dgo with D„, we find that through the dependence on
powers of 1/R, Dzo would be expected to be smaller by
a factor of 1/25 as compared to D„. However, the
numerical coefFicient for Dgo is about one hundred times
larger than that for D„which makes Dgo altogether
about four times larger than D„, as may be seen from
Table VI.

%atkins'4 has mentioned that by comparing experi-
mental results with Pryce's expression' he has obtained
the correct sign for the axial field parameter D. How-
ever, we notice from Table VI that D„(d~ d) is larger
than D„(d~ s) and of opposite sign. Watkins' con-
clusions about DI are therefore erroneous.

g Zc
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y~ 1 'I,
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Z

F,

F6

I

I

I 3
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I r

I

Ix~
c Z F5

FIG. 3. Positions of the nearest-neighbor F ions around a Mn++
ion and relative dispositions of X, F, Z and X„F„S,axes.
'r V. W. H. Baur, Acta Cryst. 11, 488 (1958l.

inside the unit cell as determined by Baur'~ are given
in Table VII. We have used Baur's data for the calcula-
tion of the crystal-field components as defined by the
Eqs. (69)—(71) and (78)—(80). The coordinates of the
ions listed in Table VII are expressed with, :respect to
the crystal axes (X„F'„Z,) as shown in Fig. 3. To
compute the crystalline fields, we transform the coordi-
nates of the ions from the crystal axes (X„Y„Z,)
system to the system of axes (X,I',Z) shown in Fig. 3.
This will be a more convenient set of axes to use.
The Z axis in Fig. 3 is perpendicular to the planar
rectangle formed by the four F ions. The X axis is
assumed to be parallel to the longer side of the rectangle.

The crystalline-field components 820, 822, 84', (840)~,
were computed by the Nijboer-deWette method as-
suming 2 units of positive charge on the Mn++ and one
unit of negative charge on the F—sites. These values
are tabulated in Table VIII. These same crystal-field
components were computed for ZnF2 by two di6erent
methods, the direct method of lattice summation" and
the Nijboer-deWette method. " It is reassuring that
the values obtained by the two methods are in very
good agreement with each other.

The constant n appearing in (84')', defined by (77),
can be evaluated using (73), (76), and (77). One finds
cr= —(14/5)'". Inserting this result into Eq. (80), em-
ploying the lattice constants in Table VII, and the
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TAszz VIII. Crystalline-6eld components Bp for MnF2 and ZnF2 in units of e'/2u'+' when u is lattice constant in atomic units. '

Crystal
MX2b

ZnF2

MnF2

Method

Direct summation

Nij boer-deWette
Nijboer-deWette

B 0

—6.095392
-o.103556
—5.542414

BP
—2.038725
—2.043104
—3.728737

B42

66.965694
66.955049
79.768149

(&4') ~

—412.970720
—413.071264
—401.492368

(&4')-

267.79
267.902036
249.702084

B4'

35.127643
35.214571
16.339123

a The various B~~ components are defined in Sec. Il.
b We have taken two units of positive charge on M and one unit o& negative charge on X.

crystal-field components in Table VIII, one finds
for MnF2,

(84')'= 2.462 X 10 'e'/2aos. (83)

Jn the similar units e'/2ao'+' one obtains the following
values for the other crystal-field components:

84' —— 6.011X10 4,

82'= —47.69 X10 4,

,o 7089 X10—4

(84)

Ke insert the values into the various contributions to
D and E derived in Secs. III to VI and list the results
in Table VI. We again observe the same features con-
cerning the relative importance of D„,Dpp, DpDs, and
I' ~~. Ke have not calculated the contributions to E
from the Watanabe and the configuration-interaction
mechanisms, because, as pointed out in Sec. III, we

expect these to be of minor importance.
Our results, when compared with the experimental

values of D and E as found by Tinkham" and listed in
Table VI, demonstrate that the point-charge model is
able to account for the majority of the axial and
rhombic field splitting in MnF2.

~,0= —86.84 X10-4,

~,2= —29.01 X10-4,

(84o)'= 6.338X10 4,

84' —— 6.025X 10—4.

(85)

The various contributions to D and E' in this case are
listed in Table VI. The relative importance of the
various mechanisms for D and E are again of the same
nature as for the use of MnF~.

"M. Tinlrham, Proc. Roy. Soc. (London) A236, 535 (1956).

C. Case of ZnF2-Mn+'

The crystal structure of ZnF2 is similar to that of
MnF2. Baur's crystal-structure data are also tabulated
for ZnF2 in Table VII and the crystal-field components
calculated by the direct lattice summation method as
well as by the Nijboer-deWette method are both listed
in Table VII. Following the same procedure as for
MnFg,

The agreement between our theoretical predictions
from the point-charge model and experimental results
is a little worse for Mn++:ZnF2 than for MnF~. The
reason for this discrepancy may be the neglect of
lattice distortions" produced by the presence of Mn++
ill ZnF2.

IX. CONCLUSION

Ke have examined quantitatively various mecha-
nisms which contribute to D and E from first principles
using a strictly external point-charge point-multipole
model. It has been our primary ain1 to judge the relative
importance of the various mechanisms rather than
attempt an absolute comparison between theory and
experiment. We have tried to minimize the number of
approximations in order to arrive at some realistic
estimates of the various contributions. Our results for
Mn+' in MnF~ and ZnF~ show that the point-charge
model is able to produce results in reasonable agreement
with observed axial and rhombic terms in the spin-
Hamiltonian. An analysis of overlap and charge-transfer
effects will be presented in a subsequent paper" though,
on the basis of comments contained in the Introduction,
we expect the effects of such terms to be small. We
should, however, like to comment on the error that one
makes in treating the nearest-neighbor ions as point
charges rather than as extended charge distributions.
To correct for the eftect of this one would have to use
expressions for B„appropriate to the case where the
electron is internal to the source density producing the
field.""Such correction terms in the crystal fields will
involve negative powers of r, instead of positive powers
which obtain when the source charges are completely
external. We believe, however, that because charge
transfer is directly related to this penetration eGect,
and there is widespread evidence that charge-transfer
effects for the Mn+' ion are unimportant, the correction
due to penetration in the specific cases we have treated
will not be very important.

"T. P. Das, Phys. Rev. 140, A1957 (1965)."R.M. Stenheimer, Phys. Rev. 132, 1637 (1963).
"G.Burns, J. Chem, Phys. 31, 1253 (1959).


