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The NMR spectrum is obtained from polycrystalline
material and presents a means of detecting such trans-
formations in cases where single crystals are not avail-
able. We have been able to determine that no com-
parable distortion occurs in VBGa.

The unexpectedly large changes in electric field
gradient which occurred in the transformation indicate
that effects of uniaxial stress could be observed in the
NMR of single crystals of the vanadium P-tungsten-
structure compounds. Such measurements would be
useful in establishing a firmer correlation between the
density of conduction-electron states at the Fermi
energy and the electric field gradients in metals.

The changes in EFG found in the present work are

of a magnitude which demonstrates that conduction
electrons contribute dominantly to the vanadium quad-
rupole interaction in V3Si and that a significant change
in electronic band structure occurs in the transfor-
mation. The changes found in the Knight shift also
reQect the change in the electronic band structure.
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The transverse susceptibility, which determines the paramagnetic resonance behavior, is studied for
paramagnetic ions coupled by an effective scalar exchange interaction to the conduction electrons of a host
metal. By means of a temperature Green's-function technique for ionic spins, it is found that the dynamical
behavior of the conduction electrons inQuences the ionic resonance if the relaxation rate of the conduction
electrons is not large compared to their resonance frequency. The predicted effects, namely, a broadening
at low temperature, a shift around the Curie temperature, and a diminished broadening at high temperature,
are compared with experimental data. The last effect can also be seen in nuclear resonance, whereas, the
other effects appear only in ionic resonance experiments, since only the ionic Zeeman energy is comparable
with the Zeeman energy of the conduction electrons. The theory suggests a possibility for distinguishing
between direct and indirect exchange coupling of ions in metallic solutions, since in the erst case the reso-
nance signals are exchange-narrowed, whereas, in the second case they are broadened by a dissipative con-
tribution of the conduction electrons.

1. INTRODUCTION

HE magnetic resonance of paramagnetic ions in
metals has been studied by several authors. ' '

It is well known that the resonance frequency in these
experiments is given by'

~II——co,+Jx,"(H,/tscV) —=co,+8co, (1.1)

where X,' is the static paramagnetic susceptibility of
the conduction electrons, J is the eGective exchange
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Science foundation.
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' M. Peter, D. Shaltiel, J. H. Wernicit, H. J. Williams, J. B.
Mock, and R. C. Sherwood, Phys. Rev. 126, 1395 (1962).

'D. Shaltiel, J. H. Wernick, H. J. Williams, and M. Peter,
Phys. Rev. 135, A1346 (1964).

'A. M. Harris, J. Popplewell, and R. S. Tebble, Proc. Phys.
Soc. (I ondon) 85, 513 (1965).

parameter4 between ions and conduction electrons, JI,
is the applied static field, co; is the resonance frequency
of the free ions, p is the Bohr magneton, and S is the
number of lattice points per unit volume. We wish to
point out here that this relation holds only in the
limits where or,&(co,~, or where the relaxation rate of the
conduction electrons D»co, t (ro,I is the resonance fre-

Iluency of the conduction electrons), or finally where
kT»A;.

If none of these conditions are fulfilled, then the
dynamical sects of the conduction electrons become
important and the g shift and broadening in ionic
resonance experiments are no longer analogous to the
Knight shift and Korringa broadening known from
nuclear resonance. Some anomalous observations on

4R. E. Watson, S. Koidd, M. Peter, and A. J. Freeman, Phys.
Rev, 139, A167 (1965).
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electron paramagnetic resonance (EPR) of ions in
metals can be explained by these effects.

The following model was adopted for our discussion:
The magnetic ions and the conduction electrons are
coupled by the interaction

&-=—& ' JE e"""{s*"(pt(a)—p~(q))
nq

where the sum runs over all q and the paramagnetic-ion
sites R„, and

pt (e)=Z» ~+t(k—a)~+(k),

p~(q) =Z. ~-'(k —q)~-(k),

p~(p) =P, ~~t(k —p)~~(k) .

2. TEMPERATURE GREEN'S FUNCTIONS
OF SPINS

&- (r) = —p'.p'-"(r)S+"'(o)}) (2.1)

where ( ) means an average over a canonical en-

semble, ' i.e.,

with

and

(A)= Tr(e P~+P"A), P= 1/T

e
—PQ Tr (e PII)—

A(r) =e"'Ae ~'

Nonzero-temperature perturbation theory is then con-
structed in the usual way' and leads to the equations

The temperature Green's function for spins is de-
6ned by

S" is the spin operator of the ion on lattice site n, and
a+t(k) are the conduction-electron creation operators
of spin + or —.The magnetic ions at the lattice points
R polarize the conduction electrons, and these elec-
trons react on the ions. Hasegawa' has given a discus-
sion of this model and has shown that in the case where
the conduction electrons follow the iestaetaeeons ionic
polarization, they will give no second-order effects on
the resonance of the magnetic ions, but there will be
such an effect if the conduction electrons follow only
the average polarization. Peter showed that there will
in general be second-order effects if different ionic
species are present, since these different species see only
each other's average polarizations. ' In this paper we
study the effects of conduction electrons on one species
if the hypothesis of very fast relaxation is not imposed.
By this we understand that the relaxation rate of the
conduction electrons is not necessarily fast compared
to the resonance frequency of the ions. However, we
still impose the condition that this relaxa, tion must be
fast compared to the relaxation ra, te of the ions.

This is done by extension to nonzero temperature of
the theory developed earlier' ' to describe EPR in
metals at zero temperature. Nonzero-temperature the-
ory is quite difficult to set up generally for spin systems.
It was however possible to make explicit second-order
calculations using the extension of Wick's theorem to
spin operators' and the temperature Green's-function
technique. '

In Secs. 2 and 3, we present brieQy the general frame
of the theory, in Sec. 4 we give a short account of first-
and second-order calculations, and in Sec. 5 the results
are discussed and compared with experimental data, .

'H. Hasegawa, Progr. Theoret. Phys. (Kyoto) 21, 483 (1959).
3. Giovannini, Sci. Papers Coll. Gen. Educ. Univ. Tokyo,

15, 49 (1965).
B. Giovannini and S. Koide, Progr. Theoret. Phys. (Kyoto)

34, 705 (1965).
A. A. Abrikosov, C. P. Gorkhov, and I. E. Dzyaloshinski,

Methods of QNuntlm Field Theory in Statistical Physics (Prentice-
Hall, Inc. , London, 1963).

where

(A)0——Tr(e Psh+P"'A),
e P~o —Tre P&0

and the operators are now written in the "interaction
representa, tion, " i.e.,

A (r)=e+o Ae xo

Kp is defined in the next section.
One can show8 that

(2.4)

a,nd, if we introduce
1

n„„.((o„)=- e'"-'n.„(r)dr,
2 p

it follows from Eq. (2.4) that

P

~„„,((g )= e'""n„„,(r)dr, co =2m'/P. (2.5)

The inverse transformation is given by

(2 6)

3. SUSCEPTIBILITY OF A SPIN SYSTEM

The Kubo formula for the response to an externa. l

magnetic field perpendicula, r to the s a,xis leads to the

' We work in units defined by A=1, k =1.

and
P

Z (P) = 2', exp — X;.,(r')dr'
v p

( l)e P

dr, dr2 dr~
p

XT,(Se;„( ) SC;. ( )} (23)
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following expression for the transverse susceptibility": From Eq. (2.5) it follows that

If one de6nes

nn'

From Eq. (2.4) we see that

(4.3)

D„„"(t)=—((5 "(t),S "'(0)j)i) (t),
one can show' that its Fourier transform D„„.E(0)) can
be written

(5 "5 ")o=0—P"'(5 "5 ") .

n„„.«0') (0) ) = —2(s,)08„„/(i0) —c0,)

with

gp(&a—&e')

D,R(~) —g eiQ—Ez)P«, nn'

XX' 0)+E, E;+z—0
(3 1) ((S )0 is independent of zz) or

D„„&0)E(0))= ( 2(s—,)05„)/(0) i0;+—i8). (4.5)

The last result can also be calculated directly from the
definition of DE(0)).

It follows that

Similarly,

, (0) ) Q p(Q—Ee)P«, nn'
eP(&z—&x&)

It follows that
Z0&„+E, E;—

Dnn~ (Z0)nz) = Snn~ (0)zn) f01' 00ez) 0.

(3.2)

x &0) (0))=clog'tz'(5, )0/(0) 0)+z7—'))

where c is the ionic concentration. To calculate the
first- and second-order corrections" to X)„„(r), we
must calculate (2.2) up to second order. The procedure
is the following:

As D„„E(0))is analytic in the upper half-plane one can
always construct X)„„.(0) ) from D„„.E(0)). The inverse
problem is fundamentally more difficult, ' but practi-
cally knowing x) (0) ), we obtain

D .E(0))= L)..( z0)+8)—

The calculation of the susceptibility of the spin im-
purities reduces therefore to the calculation of K)„„(r)
defined by Eq. (2.1).

(a) In order to take the denomina, tor of (2.2) into
account, the development of the numerator of (2.2) is
written as

where 2&')(P) is the ith-order" term in the expansion
(2.3). Equation (4.6) defines the quantity X) j')(r).
Then

4. CALCULATION OF $„„(s)UP TO
SECOND ORDER

As in Ref. (7) the Hamiltonian of the system is
given by

K—K0+Kjnf, )

KO KOi+K0 el y

Kine Kl el+Kei q

Koi =0)i Zn Sz"
z

(4.1)

K0,)=g 8()z,)a.t(k)u. (k)

+-',0),j(pz (11=0)—pi («I= 0)}. (4.2)

K„is given by (1.2) and Ki .1 contains electron-electron
and electron-lattice interactions. The form of K~,~ is not
specified. Formally our perturbation series is in powers
of K;„&, but 3'.&,& is taken into account implicitely by
the renormalization of "bare" electron bubbles by
"dressed" bubbles.

To the zeroth order then

I g; is the g factor of the ions, i.e., if co; is the resonance fre-
quenCy, ce; =

~
y, [ g; Hz.

i=0

(b) Using the fact that diGerent sites are statistically
independent if the trace is taken over e ~+&, one can
decouple the average of products of spin operators for
diferent indices (e.g., (S~ 5 5 ')0=(s+ S )0(S ')0
for zzWzz').

(c) The remaining terms are averages of time-ordered
products of spin operators with the same indices. The
time-ordered products are transformed with the help
of the generalized %ick's theorem' and generate terms
which can all be calculated explicitly.

(d) The results of f'jrst- and second-order calculations
appear as the sum of two terms: The 6rst, proportional
to X)„&0)(00 ), is interpreted as a renormalization of
the amplitude cog'tz'(5, )0 of the resonance line and
does not interest us directly here. The second, propor-
tional to [S„„j0)(c0„)$', a,ppears as a natural extension
of the first- and second-order results at zero temperature
given in Ref. 7. These results, extended to a partial
infinite series, gave contributions to the shift and width
of the resonance lines. The nonzero-temperature calcu-
lations are more tedious than their zero-temperature

"In powers of H„.
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x ((u) =A/La& —co,—4)+E&"(cv)j. (4.7)

counterpart because of the finite integrals, and because
the spins of the unperturbed states are no longer
aligned all in the same direction. The relevant result is
that correction terms are added to the ionic resonance
frequency

The first-order contribution is the Knight shift:

au= —N 'J(N~ —e ),
—Try—p(&o el+1 el)pt ~

(4 g)

The polarization bubble is here "renormalized. "
The second-order contribution, E &'&(pp) is given by

+(&) (pp) =
J'(5.) J2

{x "(~ R )—x ((o=O, R„))+ {(e "'~—1)(2(SP)p—(5+S—S.-)p) —(5+5—)p)
Re+p 2N'N'p'(5, )p

J'(e~—e )'P
X{x"(~, R=0)—x "(~=0 R=o))+ {(1—e

—"'p)(2(S,')p —(5+5 5,)p)+(5+5 )p
—2(5,)p'))

2N'N'(5, )p

J'(SpS )p+ {x,"((u—(u; R=O) —Rex "((o=(o;, R=O))+
2p'NP(5, )p

J'(5 5+)p(1—e
—"'~)

2p'N'(5, )p

X{«x-"""(~=~' R= 0)—x'" "'(~—pp', R= 0)), (4 9)

k, q t k.q{

where X" are the electronic susceptibility functions
defined by

x (~,q)=A'(Lpt(qt) —u~(q~)

~ (-qO)-. (-qO»)~«), (4 10)

-'(, )=2' '(L -( ) +(—0)3)~() (411)

and X
eladv and x elret are defined by

x.""'(&q)=—6 'P'{6 ~ (q&) —c ~(q&))

X(p (—«0) — (—qO))))~(~)

x-' " (~q) —=»p'(T{p-(q~) p+(—qO)) )~(—~)

The functions X," and X " can be calculated in per-
turbation theory with help of temperature Green's
functions. They are represented by the bubbles given
ln Flg. 1.

The expression (4.9) looks rather horrible, but only
the two first terms are important, and will be discussed
in the next section. The third term can easily be shown
to be small. In particular, for or;«T, it is proportional
to (boer)'/T. The fourth term is small because Rex "
X(&o;, R=O) and x,"(~=0, R=O) nearly cancel. The
last term has already been found in the zero-tempera-
ture limit, and is negligible for similar reasons. For the
details of this discussion, we refer to Ref. 12.

k'

k
t k~ tk'

(b)

FIG. 1, Diagrammatic representation of x,' (co, q) (a) and
g "(u,q) (b). To get these functions, one must multiply the
expression one gets from the diagram by ip' (a) or 2ip, ' (b) and
integrate over frequency and momentum variables, (k,g stands
for k~, q~). If no spin-Qip mechanism is included in &~,1, the t~o
last diagrams of (a) give zero contribution.

S. DISCUSSION

The dynamical sects described by the first two terms
of Eq. (4.9) are essentially given by the difference be-
tween the susceptibility X," and the transverse sus-
ceptibility X '. The reason for this is that the applied
magnetic field H, transforms the simple interionic
scalar coupling given by Kasuya ' into a more compli-
cated frequency-dependent interaction (including also
damping effects), which can be characterized by a
tensor, the coupling being different in the s direction
and in the x-y plane. This modified coupling gives rise
to the effects to be discussed in this section.

The two first terms of Eq. (4.9) give rise to a shift
(given by the real part) and a broadening (given by the
imaginary part). First we discuss the susceptibility
functions of the conduction electrons, X,' and X '

"B. Giovannini, Ph. D. thesis, University of Geneva, 1966
(unpublished}."T. Kasuya, Progr, Theoret. Phys. (Kyoto} 16, 45 {1956},
Sec. 3, Eq. 16.
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defined by (4.10) and (4.11). These functions are
known in the free-electron limit, v "and their real parts
differ only for small values of

~ q~ (~ q~ &mor, t/kr), so
we can set

X "(or q=O)

=X ei(or =0, q=O) 1—,(5.2)
or —orei +1k

where 6 is a linewidth and ~,~' a shifted resonance
frequency. For any value of 6, this form goes to
X,et(or =0, q= 0) for or -+ 0 and satisfies the sum rule

Jmx "(or', q=O) =rrX', '(or=0, q=0).
CO

For 5~ 0, X "(or, q=0) goes over into the expres-
sion for the undamped free electron gas' if one sets
orei = orst —Lg/orsi (orei= —2'~).

The difference ReX "(or,r) —X,"(or=0, r) which en-
ters in Zq. (5.1) becomes appreciable at a range kr/mor, i.
This is a large distance on the atomic scale, and the
question arises whether the conduction electrons can
traverse such a distance without being submitted to
damping effects. It is interesting to note however that
the mean free path for electron-spin relaxation is of the
order kr/mh and that therefore this free path exceeds
the characteristic distance mentioned above as soon as
h&~,~. We shall see that this is also the condition for
appreciable dynamical effects to occur.

In order for ImX (or) to become maximal (resonance),
co must satisfy

GO GO
—Mej

or —or,—Rr = —ReE't'& (or) = 8
(or—orei ) +LB

'J'(s.).
X "(or=0 q=O)

E p,
'

(5 3)

The solution of this equation is represented graphically
in Fig. 2. We 6nd that or; is pushed away from the reso-
nance frequency of the damped electrons. If co,&'

this effect is only effective if 5 co, or smaller. It com-
pletely disappears for co;«co,&', for co;=co,&', or for
h&&or, i'. (Note that when c increases, 8 increases, but

' J.R. SchrieBer, Theory of SNpercondlctivity (W. A. Benjamin,
Inc. , New York, 1964).

'5 M. W. P. Strandberg, Microzoave Spectroscopy (Methuen and
Company, Ltd. , London, 1954).

Re Q„(X ei(or, R„)—X,et(or=0, R„))
1Vc(ReX "(or, q=O) —X,"(or=0, q=O)) r (5.1)

where c is the ionic concentration, and neglect the con-
tribution from Re/X "(or, R=O) —X "(or=0, R=O)j"
To discuss this expression in a realistic way, one must
take into account the relaxation of the conduction
electrons; we take for X "(or, q=0) the following
I orentzian form":

6 is expected to increase also. The variation of shift
with concentration is therefore difficult to predict. )

The last case (h)M, i') has already been discussed

by Shaltiel et al.': the electrons follow at all times the
instantaneous polarization of the ionic spins and there-
fore produce no torque on these spins, hence no second-
order effect. The same is true for co,«co,~'. the electrons
again follow the spins. If co;)&co,~', the electrons cannot
follow the ions and undergo a polarization only in the
z direction; they then produce the second-order effect
mentioned by Kittel and Mitchell. "We shall see below
that the onset of ferromagnetic ordering favors strongly
the appearance of the second order effect described by
our equation.

For intermediate values of ~; the resonant behavior
of the conduction electrons gives rise to a shift which is
negative for co;(ur, ~', changes sign at or=~,~', and is
positive for or, )or, i . This shift is proportional to (5,),
and hence to T ' for co,«T, and should become large
at low temperature. It should change rapidly when the
ionic spins undergo a ferromagnetic transition. '~ This
may be the explanation of the sudden change of the g
value of the Gd'+ ions at the Curie point for metallic
Gd, observed by Rodbell et al." It is furthermore to
be expected that the relaxation rate 3, of the conduction
electrons diminishes at the Curie point, which would
also contribute to this observed change. The imaginary
part of Ei"(or) gives rise to a broadening, and consists
of two terms of different temperature behavior. The
first term is the imaginary part of the term producing
the shift just discussed; this broadening will be inversely
proportional to temperature for co,«T and increase
with ionic concentration c. Below T„one should observe
an increase of the linewidth correlated with the mag-
netization. "Physically this term i.s due to the damping
of spin waves by the conduction electrons. In Fig. 5
of Ref. 1 an anomalous increase of the linewidth of the
paramagnetic resonance of Gd ions in Pd metals was
indeed observed, which has the indicated characteristics.
This behavior is interesting, because it shows that in-
direct exchange between identical ions contains a
damping term which does not occur for direct exchange.
The measurements of linewidth should therefore pro-
vide a way to decide which interaction is relevant. We
did not calculate the exchange-narrowing term in our
formalism, since it is of higher order, but this term
should be taken into account for appreciable values of
the concentration. At high temperature, the imaginary
part of the second term of Ei'& (or), which is proportional
to ImX '(or, R=O) Lsince ImX, "(or=0, r) =0),predomi-
nates as this part is proportional to T. The half-width—
half-power broadening goes in the low-temperature

"C. Kittel and A. H. Mitchell, Phys. Rev. 101, 1611 (1956).
"To predict this we must replace (S,)o by a more realistic

average (S,l, making sure that we do not double-count terms in
the perturbation series.

' T. S. Rodbell and T. W. Moore, in Proceedings of the Jnter-
national Conference on Magnetism, Nottingham, 1064 (Institute of
Physics and The Physical Society, London, 1965), p. 427.
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FIG. 2. Graphical determination of co~,
from Eq. (5.3), which is written in the
form y&

&'& (cu) = ys (ra), where y&&'& (&o)
=~—ca&'& —bra =co—cur&&'&. (err&&'& corre-
sponds to nuclear resonance, the values
co~('), uII('), and eoII(4) are in the neighbor-
hood of co,g', andes~(') illustrates the Kittel-
Mitchell limit. ) ym(~) =BLca(&u —&o»') g/
p(a& —ca, &')'+As] with the values
coeg =6=28.

limit into the value previously found at zero tempera- (1—p(Ey)t&) is about s for Pd," DH is reduced to
ture. ~ At high temperatures and in the free-electron DH~6T gauss, which is the experimental value.

approximation, we get
6. CONCLUSION

Ao& = 2&r (P/1V') Tp'(Ef),
+~00

(5.4)

where p(E&, ) is the density of states of one spin at the
Fermi surface. This is just one-half the value Korringa
found for the broadening in the nuclear case. The origin
of this difference is at present not understood.

Going beyond the free-electron approximation, one
can see that for the case of strong enhancement of the
susceptibility" the imaginary part of X "(o&, R=O)
becomes

ImX "(&0 q)P Imx "(o&,q)
s s (1—8p(Ef)P(q))'

(5.5)

1—(I ql/24)' I 1+ I ql/2@I
P(q)=- 1+ ln

I ql/4 I1—I ql/2@I

and 8 is the electron-electron screened interaction
(assumed independent of q). Moriya" has carried
through a numerical calculation of the integral (5.5),
and has already suggested that this correction could
account for the relatively small broadening observed
for the EPR of Gd in Pd. Indeed, Gd in Pd should
undergo a broadening of DH = 100T gauss (T in
'K) according to (5.4). But, as the reduction factor

where X ' " is the free-electron function, P(q) is the
Ruderrnan-Kittel potential

In conclusion, we can state that it has been possible
to treat a dynamical problem involving spins at nonzero

temperature by means of the temperature Green's-
function technique adapted to spins with the help of
the extended Wick's theorem (6). This encourages the
hope that more involved problems such as ferromag-
netism and transport phenomena can also be attacked
by this technique. In the case treated here the results
obtained can be understood intuitively by imagining
the system of ionic spins coupled to the system of
conduction electrons in such a way that the dynamical
behavior of the conduction electrons influences the
resonance behavior of the ions. From the experimental
point of view the most interesting effects are the possi-
bility of a change of the g value near the Curie tem-
perature and the appearance of damping eGects in the
case of indirect exchange coupling via conduction elec-
trons between ions in metallic solution. This latter
e6ect should provide a qualitative criterion to dis-
tinguish direct from indirect exchange in certain cases.
Both effects may have already been observed, but
further experimentation will have to show how well the
effects predicted here can be identified in actual metals.
The theory was developed with the free-electron model
and extended in a semi-phenomenological way to include
the effects of electronic damping and of correlation. The
established formalism should permit one to pursue
these studies in a more precise manner and to include
also the effects of band structure.
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