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Low-Temperature Thermodynamic Properties of Vanadium.
I. Superconducting and Normal States*
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The specific heat of vanadium (resistivity ratio=140) has been measured in the superconducting and
normal states between 0.5 and 5.4'K. The normal-state specific heat is given by C„=9.82T+0.035T3+C,„,
mJ mole ' deg ', where the term C „,arises from the interaction of the nuclear magnetic moments with the
applied magnetic field. The coefBcient of the cubic term corresponds to a Debye temperature eo at O'K of
(382+10)'K, which is slightly less than the value 399.3'K obtained from elastic measurements. The super-
conducting specific heat contains a term linear in T which is 0.52% of the normal-state linear term Th.is
indicates the presence of a very small energy gap at the Fermi surface in addition to the normal gap. At all
but the lowest temperatures the specific heat is governed by the normal energy gap and is in fair agreement
with the BCS prediction. The agreement becomes excellent if the normal energy gap is assumed to be aniso-
tropic with a maximum value of 3.52kT, and a minimum of 3.20kT„which is consistent with ultrasonic
measurements. The superconducting transition temperature for this sample is (5.379+0.004) K with a
total transition width of only about 1 mdeg. The intrinsic transition temperature for vanadium is estimated
to be (5.424&0.010) 'K.

I. INTRODUCTION

'PREVIOUS measurements' ' on the normal state
specific heat of vanadium at liquid-helium tem-

peratures gave widely varying values of both the
electronic coefficient y and the Debye temperature Op

at O'K. All values of Oo were considerably lower than
the value 399.3'K determined from velocity-of-sound
measurements. In addition, many diQerent transition
temperatures T, have been reported'''; however,
T, is dependent on purity. The superconducting specific
heat' has shown very good agreement with the
Bardeen-Cooper-Schrieffers (BCS) theory. This is to
be expected since vanadium is a weak coupling super-
conductor and the impurity contents in previous meas-
urements were suKciently high to produce an isotropic
energy gap. For higher purity samples the energy gap
becomes anisotropic, "and so small deviations from the
BCS specific heat should occur.

The present investigation was begun when a single
crystal vanadium sample of much higher purity than
that used in previous work was kindly loaned to us by

e Work supported by U. S. Army Research Otiice (Durham)
and Advanced Research Projects Agency.

t Present address: Institute for Materials Research, National
Bureau of Standards, Boulder, Colorado.

'R. D. Worley, M. W. Zemansky, and H. A. Boorse, Phys.
Rev. 99, 447 (1955).

'W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and A.
Wexler, Phys. Rev. 102, 656 (1956).

3 N. M. Wolcott, Conference de Physique des Busses Tempera-
tgres, Paris, jg55 (Institut International du Froid, Paris, 1955),
p. 286.

4 G. A. Alers, Phys. Rev. 119, 1532 (1960).' A. Wexler and W. S. Corak, Phys. Rev. 85, 85 (1952).' G. Busch and J. Muller, Helv. Phys. Acta 30, 230 (1957).
7 J. Miiller, Helv. Phys. Acta 32, 141 (1959).' B.B. Goodman, Compt. Rend. 244, 2899 (1957).' J. Bardeen, L. N. Cooper, and J. R. SchrieBer, Phys. Rev.

108, 1175 (1957).
' H. V. Bohm and N. H. Horwitz, in Proceedings of the Eighth

International Conference on Joe Temperature Physics, edited by
R. 0. Davies (Butterworths Scientific Publications Ltd. , London,
1963), p. 191.

the Ford Scientific Laboratory. Preliminary results"
showed that the sample had higher values for T„y,
and Oo then reported before. A large deviation from the
BCS specific heat has been found at very low tem-
peratures comparable to that found in niobium by
Shen et al."This can be explained by the existence of
two energy gaps. Also the presence of a mixed state
showed that the sample was a type-II superconductor.
Properties of this mixed state will be discussed
separately. "

II. EXPERIMENTAL DETAILS

Measurements of the specific heat were done using
the He' cryostat described previously. '4 An L-shaped
thermometer was cut from a highly doped (gallium)
and highly compensated (phosphorus) germanium
crystal of 5)& IO" cm ' total impurities. About 6.3)(10"
excess carriers were present" after compensation, which
gave a room-temperature resistivity of 0.047 0 cm. The
thermometer was glued to the top of the sample using
Glyptal lacquer with the measuring leg of the ther-
mometer situated parallel to the magnetic field to
decrease the magnetoresistance effect. A thin strip of
pure germanium provided electrical insulation between
the sample and thermometer while maintaining good
thermal contact. Total weight of the thermometer was
0.035 g. Typical resistances were 1800 0 at 0.5'K and
120 0 at 4.2'K. The heater consisted of 20 cm of 0.0445-
mm constantan wire wound around the sample and
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TABLE I. Speci6c heat of vanadium in the normal state at
different magnetic fields. (C„ is in mJ mole ' deg '). Geld was canceled with a double Helmholtz coil for

measurements of the superconducting specific heat.

a (Oel

3055
3055
3055
2841
2841
2841
2700
2700
2700
2418
1996
1996
1792
1792
1418
1150
1040
937
937
937
700
552
552
250

0.8144
0.9620
1.135
0.9727
1.192
1.446
1.415
1.758
2.197
2.401
2.867
3.446
3.124
3.575
3.902
4.251
4.294
4.136
4.427
4.343
4.760
4.964
4.908
5.075

c„T(Kl

8.03 0.4082
9.49 0.416&

11..21 0.4245
9.61 0.4329

1i.75 0.4447
14.28 0,4603
13.93 0.4730
17.37 0,4885
21.90 0.5095
24.17 0.5300
29.06 0.5508
35.36 0.5896
31.84 0.6065
36.89 0.6290
40.83 0.6549
44.05 0.6796
44.86 0.7133
43.11 0.7615
46.47 0.8092
45.33 0.8531
50.74 0.8881
53.50 0.9198
52.46 0.9498
55.03 0.9769

1.006
1.052
1.119

4.588
4.670
4.704
4.747
4.910
4.993
5.088
5.305
5.472
5.633
5.859
6.198
6.342
6.538
6.803
7.011
7.351
7.787
8.23
8.69
8.97
9.26
9.58
9.78

10.08
10.50
11..14

1.197 11.93
1.247 12.38
1.305 13.02
1.371 13.65
1.436 14.31
1.496 14.84
1.578 15.70
1.665 16.58
1.747 17.37
1.844 18,38
1.892 18.90
2.152 21.46
2.235 22.25
2.324 23.58
2.421 24.42
2.502 25.56
2.618 26.82
2.760 28.20
2.907 29.96
3.096 32.11
3.293 34.24
3.498 36.82
3.686 38.57
3.843 40.26
4.016 42.26
4.234 44.75
4.462 47.20

H=14 koe
C. r ('K) C.

Heating and cooling curves were also take to determine
the transition temperature very precisely. A heating or
cooling rate of about 0.02'K/min was used and gave
a,pproximately a 45' slope on the recorder chart.

The systematic error in the specific heat due to in-
a,ccuracies in the temperature scale, addenda correc-
tions, heater resistance, current, a,nd timing errors
should not exceed 2% at the lowest and highest tem-
pera, tures. Between 1 and 4.2'K this error should be
less than 1%. Error limits stated for experimenta. l

quantities are those found from random scatter of the
data and represent the standard deviation.

The single crystal vanadium had been prepared by
the electron beam floating zone technique and was in
the form of a cylinder 7 mm in diameter by 19mm long
containing 0.08529 moles. The sample had a resistance
ratio R»&/Eo of 140 measured potentiometrically. A
field of about 2600 Oe was used to quench supercon-
ductivity for measuring Eo at 4.2'K. Before zone
refining the sample was 99.95% pure and had a re-
sistance ratio of 40. The zone rehning probably in-
creased the purity to at least 99.99%.

cemented with Glyptal lacquer. The data of Ho et al."
were used for the heat capacity of the constantan wire.
For the sample in the superconducting state the cor-
rection due to the heat capacity of the addenda

(Glyptal, heater, and thermometer) varied from about
15% at the lowest temperature to about 0.5% 3ust
below the transition temperature. In the normal state
the addenda correction varied from 0.1% at 0.5'K to
about 1.2% at the transition temperature. Calibration
of the thermometer was based on the 1962 He' tem-

perature scale" for the range 0.5 to 1.2'K and the
1958 He' temperature scale" for the range between
1.0 and 5.2'K. An IBM 7094 digital computer was used
to expand 1/T in powers of logR up to (logR)' using
the method of least squares described by Moody and.

Rhodes. " Two calibration regions were used which

overlapped 0.6 at 1.5'K. Calibration in different
fields indicated that the magnetoresistance of the ther-
mometer could be neglected for Q.elds less than 3000 Oe.

The specific-heat measurements in a Geld of 14 kOe
were done using a set of high-Geld cans described in an
earlier publication. "All other measurements were ma, de
using the original set of low-Geld cans wound with
copper-plated Nb-25% Zr wire. The earth's magnetic
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III. RESULTS AND DISCUSSION

A. Normal-State Speci6c Heat

The normal-state speci6c heat C„ is listed in Table I.
The data were obtained in a 6eld of 14 kOe as well as
in 13 different magnetic fields used for the study of the
mixed state."Except in the case of II=14 kOe, most
of the points listed in this table represent averages of
T' and C/T for anywhere from 3 to 10 individual
points and span temperature intervals ranging from
a,bout 0.1'K at the lowest temperature to about 1 K
at the highest temperature. The number of points
chosen were such that each average value of C/T
would have about the same standard deviation. These
large number of points with a small DT were obtained
from measurements'~ pinpointing the transition tem-
perature in different fields.

In the normal state the specific heat can be expressed
in the form

C„=yT+nT'+C „,
where y and o, are coefFicients of the electronic and
lattice contributions, respectively, and C, is the
contribution due to the interaction of the nuclear
magnetic moments with the applied field. The Debye
temperature 00 at O'K is found from the relationship

n= (12/5)a4E/0, '= 1944/e, ' J mole —' deg ', (2)

which follows from the Debye theory of lattice specific
heat. A term of the type PT' in C would determine
the temperature dependence of 0 at Iow temperatures.
However, for vanadium the lattice speciGc heat is so
small compared to the electronic contribution that the
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TABLE II, Results of specific-heat measurements on vanadium.
1 1.0

Measurement

Worley et at. '
Corak et al. b

EVolcotto
This work

a Reference 1.
b Reference 2.
e Reference 3.

~296

E4.2 Purity

99.8~/
4 99.8)99 98/

140 )99.99%

7
r„, (mJ mole-1

('I) deg ')

4.99 8.83
5.03 9.26

9.20
5.379 9.82

Op

(K)
273
338
380
382

~~10.5

O
E

O
E

10.0

D1' term is hidden by experimental error. The results
of the normal state specific heat are displayed in Fig. 1.
The high-temperature data in a field of 14 kOe are not
shown in this figure since these data are not as precise
and, therefore, do not represent the normal state as
well as the data in the lower fields. For magnetic fields
less than 3100 Oe, the specific heat can be represented.

by

C„= (9.82&0.03)T+ (0.035~0.003)Ts mJ mole ' deg
—'

The values of y and n and their standard deviations
were obtained by the method of least squares.

The coefficient of the cubic term corresponds to a,

Bp of (382+10)'K. This is slightly lower than the value
399.3'K derived from velocity of sound measurements, '
which is shown in Fig. 1 for comparison. The error of
&10'K is not enough to account for the difference in
the two values; however, this error includes only the
standard deviation associated with random sca, tter of
the data. Systematic errors in Bp (calorimetric) might

possibly be la,rge enough to account for the difference,
but there is some reason to believe that the difference
is real. Specific-heat measurements on niobium" "have
shown that 8 changes quite abruptly at about 3'K and
below this temperature agrees with Bp (elastic). A
similar change may very well occur in vanadium at a
slightly lower temperature. Unfortunately, the scatter
of the data is too great to determine whether this is
indeed the case. Another explanation for the difference
iil Bp (calorimetric) and Bp (elastic) which cannot be
completely ruled out is the fact that the latter was
deduced from measurements on a sample with a re-
sistance ratio of only15. Judging from hardness measure-

ments made by other authors, ' ' ' the hardness of this
sample would be about twice that of the higher purity
sample used in the present investigation. It is con-
ceivable, then, that the lower purity sample may have
higher elastic constants, which give rise to a larger ep
(elastic), though the effect is usually very small. Corak
et al.s found values for y and Bp of (9.26&0.03) mJ
mole ' deg ' and (338&5)'K. Further comparison with
other work is shown in Table II in order of increasing
sample purity.

"H. A. Leupold and H. A. Boorse, Phys. Rev. 134, A1322
(1964).

~ H=I4 KOe

H&3.1 KOe

9.5
0

I

10
T ('K)

I

20 30

Fro. 1. Specific heat of vanadium in the normal state
plotted as C/T versus T'.

In a field of 14 kOe the normal state specific heat for
T& 2.0'K shows the T ' behavior of a Schottky
anomaly. This anomaly arises from the splitting of the
nuclear energy levels as a result of the interaction of
the nuclear magnetic moments (p =5.14 nuclear
magnetons) with the external field. For vanadium the
nuclear spin is ~, so a, Inagnetic field gives rise to eight
separate energy levels. Experimentally we find that
C„«——0.8&(10-PH'/Ts mj mole ' deg ', where H is in

Oe, but this value is accurate to only about a factor of
2 because of the limited temperature range a,nd
uncertainty in the applied field. Theoretically the
specific hea, t is given by"

C „,= sI(1+1)R(IJH/kT-)s, (3)

where I is the nuclear spin. For I=~ this becomes
C„„,= 1.54&&10 'H'/T' m J mole ' deg '.

C..=nyT, exp( —bT,/T) . (5)

The results of the superconducting specific heat are
given in Table III and shown in Fig. 2. As can be seen,
C'„contains a small additional term linear in tempera-
ture: y, T, where y, =0.051 mJ mole ' deg '. The
presence of this linear term indicates that a fraction

". Marshall, Phys. Rev. 110, 1280 (1958).

B. Suyerconducting-State Syecific Heat

The superconducting specific heat should have the
form

C, =Ci.+C .

The first term is the superconducting lattice contri-
bution and is assumed to be the same as the normal
la, ttice term, o.T'. The second term is the supercon-
ducting electronic contribution, which, according to
the BCS theory, may be approximated by
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TAax,z III. Specific heat of vanadium in zero magnetic field.
(C, is in rnJ mole deg .)

T ('K.) C, T ('K) C,

0.8—
Ol

Ol

O

0.6—E
Vl

0
E

I-
o 0.4—

0.2—

0
0

I

0.4
I

0.8
T'( K)'

I

l.2 I.G

I'IG. 2. Specific heat of vanadium in the superconducting state
below 1,2'K plotted as C/T versus T2.

C.,= d+ C.,',
1V,+1Vg 1V,+1Va
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of the material behaves as if normal. Since the earth' s

magnetic Geld was compensated, this cannot be a result
of trapped Qux. Any impurity which could give rise to
a linear speci6c heat would constitute considerably less
than 0.5% of the total sample and, thus, would be
unable to cause such a large value of y, . A similar term
was first noted" in Nb and recently by Shen et a/." in
high purity Nb and Ta and moderately pure V. Shen
et al. attributed this to the existence of two energy gaps
as predicted by Suhl et al.23 when extending the BCS
theory to the case of overlapping s and d bands. Using
a similar approach, Garland'4 showed that a two-gap
model of superconductivity is appropriate only for
clean superconductors and degenerates to a single-gap
model in the dirty range. This mean free path of the d
electrons in our vanadium sample is about five times
the coherence length"; thus, by Anderson's" criterion
the sample is well within the clean superconductor
range. The existence of the linear term in the speci6c
heat down to the lowest temperature of 0.65'K (T/T,
=t= 0.12) indicates that kT at this temperature is still
larger than the smaller of the two energy gaps. The
total electronic specific heat can be written" as

0.9296 0.207
0.9364 0.219
0.9422 0.234
0.9514 0.243
0.9591 0.256
0.9729 0.276
0.9861 0.300
0.9968 0.321
1.010 0,347
1.025 0.378
1.045 0.426
1.070 0.489
1.087 0.539
1.106 0.582
1.130 0.676
1 ~ 157 0772
1.186 0.893
1.209 0.987
1.236 1.119
1.273 1.305
1.308 1.508
1.349 1.769
1.393 2.090
1.433 2.401
1.483 2.820
1.533 3.280
1.567 3.634
1.629 4.333
1.697 5.132
1.760 5.931
1.830 6.948
1.912 8.272

2.009
2 ~ 121
2.208
2.301
2.438
2.592
2.759
2.954
3.133
3.373
3.621
3.883
4.231
4.661
5.116
5.201
5.445
5.808

0.6415
0.6426
0.6465
0.6533
0.6619
0.6717
0.680'1
0.6864
0.6932
0.7027
0.7116
0.7214
0.7338

10.03
11.98
13.88
15.84
19.08
22.68
27.41
32.89
38.39
46.51
55.42
65.14
80.07
98.90

122.6
127.6
85.5
65.7

0,0445
0.0446
0.0452
0.0467
0,0476
0.0501
0.0502
0.0522
0.0539
0.0561
0,0584
0.0622
0.0651

0.7445
0.7653
0.7855
0.8015
0.8122
0.8205
0.8298
0.8416
0.8535
0.8646
0.8812
0.8989
0.9125
0.9283
0.9484
0.9690
0.9914
1.007
1.024
1.046
1.070
1.093
1.124
1.167
1.208
1.267
1.307

0.0690
0.0769
0.0878
0.0927
0.0991
0.1046
0.1133
0.1235
0.1320
0.1415
0.1540
0.1745
0.1896
0.209
0.237
0.270
0.309
0.341
0.378
0.427
0.488
0.554
0.648
0.810
0.983
1.273
1.495

where X& and E, are the density of electronic states
at the Fermi level in the d and s bands. The terms
C,." and C„' are the specific heats due to the larger
and smaller gaps, respectively. It is to be expected for
a very small energy gap and for temperatures not too
low that C,.'=yT, which then gives 1V,/(1V, +1V~)
=y,/y=0. 0052. Therefore, according to the theory of
Suhl et ul. ,

" the smaller energy gap should be about an
order of magnitude lower than the larger gap. Sung
and Shen" were able to Gt the specific-heat data" of
high-purity niobium very well by using the two gap
theory of Suhl et al. They used: 26, (0)=0.32kT„
q=0.5, and 1V,/(1V, +1Vq)=0.015, where D, (0) is the
smaller energy gap at O'K and p is related' to the
coupling constant between the s and d bands. To fit
our data on vanadium the theory must predict a con-
tribution to the specific heat which is linear in T down
to about 1=0.12. This can be satisfied by using 26, (0)
&0.10kT, and q&1.0. Measurements at lower tem-
peratures need to be made to determine h, (0) more
precisely. The term C,.—p,T should then be the con-
tribution to the specific heat from the larger energy
gap only, i.e., 1VqC„"/(1V,+1V~).

Figure 3 shows both the total superconducting
electronic specific heat C,. and the term C„—y,T.
Actually the term p, was found by trial and error from
this type of plot. As 7. varies from 0.048 to 0.053 mJ

~'See Ref. 26. Theiro, is our g.
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IO

IO

TICAL

IO'

FIG. 3. Comparison of the supercon-
ducting electronic specific heat of va-
nadium with various theoretical pre-
dictions. The two-gap model includes
the anisotropy of the larger gap.

10

1.57 lg/T

IO =

IO
I 5

Tc/ T
10

mole ' deg ', the low-temperature data change from
perfect exponential behavior (7.14e i 3'r'r) to a much
stronger function of temperature. The value 0.051 mJ
mole ' deg ' for y, was chosen to give an approximate
BCS type behavior for C„—y,T. Several different
theoretical methods of describing C —y,T were tested:
(a) BCS theory (isotropic gap of 3.52kT,), (b) modified
BCS theory using an isotropic gap of different value,
(c) modified BCS theory using an anisotropic gap.
Method (a) is shown in Fig. 3 and, as can be seen, does
not agree with experiment at low temperatures. Method
(b) is not represented in this figure but was unable to
give a good ht of the data at all temperatures. As the
figure shows, method (c) gives an excellent fit for all
temperatures when it is assumed that 75//0 of the Fermi
surface has a gap of 2hq(0) =3.52kT„and the remainder
of the surface has a gap of 26'(0) =3.20kT, . Each of
the gaps was assumed to have a BCS temperature
dependence. These are given as possible values but
certainly are not unique since so many variable parame-

ters are used. The specific heat due to this anisotropic
energy gap is taken as

C„"(t)=g A,C..(a&', t), (7)

with

A,=i,

6 1 " exp[(x'+uP)'~'/t]
C..(hg', t) =——

~' t2 (exp[(x'+u, ')'/'/~j+1}'

t d(u, 2)-
X x'+up —— ch, (9)

2 dt

where A; is the fraction of the Fermi surface with the
gap hq'. We have chosen the simple case of X=2. The
8CS theory leads to the following equation for
C, (~.',~):
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where N, =LL&'(t)/kT, . This equation was integrated
numerically with the aid of a digital computer. The
value for $C,./yT, jr, from these measurements is 2.49
compared with the anisotropic gap value of 2.38 and
the normal BCS value of 2.43. The curve in Fig. 3
representing the two gap model is the theoretical pre-
diction for the total superconducting electronic specific
heat C as determined from Eq. (6) by using C '= pT;
1V,/(1V, +Eq)=0.0052, and from Eqs. (7), (8), and

(9) for C.,".
For our sample, C,./yT, devia, tes from the expression

7.14 e " '~r for T,/T)4. Measurements by Shen
et at." on a vanadium sample with a resistance ratio
ten times smaller than our sample showed tha, t C,./yT,
deviated from exponential behavior only for T,/T) 7,
which implies that the specific-heat contribution due
to the smaller energy gap is also about ten times smaller
than in our case. The apparent increase of 1V,/(E, +1Vq)
with purity has already been observed in niobium and
tantalum. " Calculations" show that X,/(lV, +IVY)
=0.046 for vanadium when assuming a parabolic s
band and 0.5 s electrons per atom. Our value of 0.0052
is about ten times smaller than the calculated value,
but it may very well be that this number will approach
0.046 in much purer samples.

2hg(0) H,s(0)V '~'
= (4m/v3)

kT, SxyT, '
(10)

Actually p —p, should be used in place of 7, but in this
calculation y, is negligible. Using the values of 7 and
T, found before and the value of H, (0) to be discussed
later gives 2hq(0)/kT. =3.52&0.02, which is just the
value predicted by the BCS theory. Following Good-
man, ' A~(0) may also be estimated from the coefficient
b in Eq. (5) by the relation

2hg(0)/kT, =3.52 (b/1.44), (11)

which results in 2hd(0)/kT, =3.35&0.02. This is some-
what lower than the va1ue just obtained from free-

energy considerations but can be expected when the
energy gap is anisotropic. The coefficient b is deter-
mined for T,/T) 2.0, and at these lower temperatures
the minimum of the energy gap becomes more eRective
in determining C„. The value obtained from free-

energy considerations is more sensitive to the high-
temperature specihc heat so that 3.52 would be close
to the maximum value of the gap. As discussed previ-
ously, the specific heat showed the need for an aniso-

tropic ga, p with a maximum of 3,52kT, and a minimum

"D. 0. Van Ostenburg, D. J. Lam, H. D. Trapp, D. &P,
Pracht, and T. J. Roseland, Phys. Rev. 135, A.455 (1964},

C. Energy Gap

According to BCS, the energy gap 26d(0) may be
estimated from free-energy considerations by the
relation

of 3.20kT, . Corak et uL.' obtained the value 3.58 from
Eq. (10) and 3.66 from Eq. (11), but their sample had
suAicient impurities to eliminate most of the energy
gap anisotropy.

Bohm and Horwitz" measured ultrasonic values for
the energy gap in planes normal to three diQerent
crystal directions in vanadium with a resistance ratio
of 130. Their values for the energy gap in units of kT,
are 3.1+0.2 in the (100) direction, 3.4+0.2 in the
(110), and 3.2+0.2 in the (111). Our results for the
anistropy of the larger energy gap are certainly con-
sistent with their measurements. Ultrasonic measure-
ments by Brewster et al."showed that the energy gap
in the (110) direction varied from 3.4%0.2 in dirty
samples to 3.5+0.2 in a clean sample. Infrared-absorp-
tion" and tunneling" measurements both give a value
of 3.4 for the energy gap. Toxen" pointed out that the
relationship

2a (0) 2T, dH,

kT, H, (0) dT, .
(12)

holds for nearly all superconductors. With vanadium
one would take 6(0)=Ad(0) in this equation. For our
sample the right-hand side of Eq. (12) becomes 3.55,
which indicates the relationship holds very well for
vanadium.

D. Transition Temperature and Gap Anisotropy

Extremely sharp reproducible changes in slope
occurred in the heating and cooling curves when passing
through the superconducting-normal transition in zero
field. The earth's magnetic field was not compensated
during these measurements. Cooling curves were not
used in the determination of the transition temperature
since they showed an appearance of supercooling of
about 3 mdeg and required about 1 min for the sample
to come back to thermal equilibrium after leaving the
supercooled state. Since the measuring sensitivity was
about 0.5 mdeg, further details of the cooling curves
couM not be obtained. In a true zero Geld no super-
cooling should occur, but for these heating and cooling
curves the earth's field was still present and would give
rise to a mixed state" 1 or 2 mdeg in width between
the superconducting and normal states. A resistance
to flux motion exists in the mixed state near H, (Tr)"
which can delay entry of the sample into the super-
eonducting state during cooling. During heating, how-
ever, the resistance to Aux motion acts to decrease the
width of the mixed state. The transition for the heating
curves had a total width of only about 1 mdeg and
occurred at (5.379&0.004) 'K. The total transition
"J.L. Brewster, M. Levy, and I. Rudnick, Phys. Rev. 132,

1062 (1963)."P. L. Richards and M. Tinkham, Phys. Rev. 119, 575 (1960)."I. Giaever, in Proceedings of the Eighth International Con-
terence on Jodo Temperatlre Physics, edited by R. 0. Davies
(Butter&vorths Scientific Publications Ltd. , London, 1963},p. 171.

'2 Arnold M, Toxen, Phys. Rev. Letters 15, 462 (1965).
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TABLE IV. Energy-gap anisotropy of several elements.

Element

V
Sn
In
Al
Z,n
Ta

0.016
0.019
0.021
0.011
0.047
0.011

Reference

this work
a

b
c

FIG. 4. Variation
of T, with normal-
state electronic mean
free path.

hc 5,2

Corak

et al.

a Reference 35.
b D. Farrell, J. G. Park, and B. R. Coles, Phys. Rev. Letters 13, 328

(1964).
& D. P. Seraphim, D. T. Novick, and J. I. Budnick, Acta Met. 9, 446

(1961). (A value S/Sf =0.6 was used for the Fermi surface area of Ta.)

tl
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width was taken as the interval wherein the heating
curve slope changed from one constant value to another.
The major source of error in T, comes from the un-
certainty in the calibration of the germanium ther-
mometer. The highest calibration point was at 5.186'K,
which is just below the critical tempera, ture of He'.
The transition temperature, therefore, had to be ob-
tained by extrapolating the calibration curve, which
results in an uncertainty of about 3 mdeg. Any error
inherent in the 1958 He' temperature scale is not
included.

The transition temperature of this sample is higher
than that reported by other investigators' ' ' due to
better purity. A measure of the purity is given by 1/p„
which is proportional to the mean free path and dehned
by p„=Rp/(Rsss —Ep) where R»s is the room tempera-
ture resistance and Eo is the residual resistance. Figure
4 shows the variation of the transition temperature
with p„. Extrapolating to infinite mean free path yields
a, value of T,s (5.414+0.010)'K——for the intrinsic
transition tempera, ture of vanadium. Anderson" pro-
posed that the initial decrease of T, for small impurity
concentrations arises from the removal of the anisotropy
of the energy gap by impurity scattering of the elec-
trons. Until the gap anisotropy is removed the change
in T, is independent of the impurity. According to
Anderson the gap anisotropy should be nearly removed
when the mean free path / becomes comparable with
the coherence length $s, but there is experimental
evidence"" that the anisotropy is not completely re-
moved until l is reduced to a few percent of fs Beyond.
this region the change in T, depends on the specific
impurity. For vanadium i= ps when p„=0.039 and is
indicated by the arrow in Fig. 4. In view of the pre-
ceding discussion most of the data in Fig. 4 should be
in the anisotropy region. Consequently, the slope
dT,/dp„may be used to calculate the anisotropy of the
energy gap as shown by several authors. " '~

"B.J. C. van der Hoeven, Jr., and P. H. K.eesom, Phys. Rev.
137, A103 (1965)."B.B. Goodman, Rev. Mod. Phys. 36, 198 (1964)."D. Markowitz and L. P. Kadanoff, Phys. Rev. 131, 563
(1963)."C.Caroli, P. G. de Gennes, and J. Matricon, J.Phys. Radium
23, 707 (1962)."T.Tsuneto, Progr. Theoret. Phys. (Kyoto) 28, 857 (1962).

Markowitz and KadanofP' (MK) take the anisotropy
into account by introducing a simple factorized form
for the matrix elements coupling pairs formed from
states with momenta, &p and &p'.

Vs, ——L1+a(Q)]V)1+a(Q')], (13)

where Q and Q' are unit vectors along y and y' and a(Q)
describes the anisotropy of the interaction. The terms
a(Q) a,re chosen so that their average is

dQ
(a) = —a(Q) =0.

4m.

The energy gap then has an angular dependence given
by t 1+a(Q)]. Hence, the mean-square deviation (a')
is a measure of the anisotropy of the energy gap. MK
show that the change in transition tempera, ture from
that of the pure metal can be given by

d (T,/T, p)
(a') = lim 0.458

f—woo d((s/1)

in. which the relation between (a') a,nd the ratio (s/l
is easily seen. The values of (a') for vanadium and
several other elements are displayed in Table IV. These
values show that the energy-gap anisotropy of va-
nadium is approximately the same as for the other
elements listed with the exception of zinc. The ultra-

where Ir ' depends on the impurity (denoted by i) and
the host. The function I(x) is calculated by MK with
x= lt/kT, r, where r, is a relaxation time cha, racteristic
of the effect of electron sca, ttering on energy-gap
anisotropy. If r is assumed to be the same as the
relaxation time associated with electrical conduction,
then the value X= 142p„ is obta, ined for vanadium using
a Fermi surface area of 0.7T4 times the free-electron
area. " In the anisotropy region the term (a' )T,sI(X)
should dominate Eq. (15), and in the limit of infinite
mean free path I (X) is given by MK as I (X)= —(a/8) X.
The anisotropy (as) can then be obtained from the
experimentally determined value of dT,/dp„ for large
mean free paths. From Fig. 4 it follows that dT, /dp„
=-4.8'K. An equivalent expression for (as) is given by
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of 1421+5 Oe. If nuclear entropy is included, H, (T)
will be lowered in the order of SO Oe below about
10 "K. The discrepancy between the present value
of H, (0) and the value 1310 Oe found by Corak ef al.'
can be attributed to the difference in purity of the
samples. The deviation of H, (T) from the parabolic
law is shown in Fig. S and is in good agreement with
the BCS prediction for weak-coupling superconductors.
The quantity (dH, /dT)&, has the value (—469.3&1.9)
Oe deg ' as deduced from the jump in the zero-field
specific heat through the Rutgers formula,

—.04
0 0.4

t

0.6
I

0.8 T g, 4' dT z,
(19)

FIG. 5. Deviation of the thermodynamic critical Geld of
vanadium from the parabolic law.

A large part of the error arises from an uncertainty in
the molar volume V.

sonic work of Bohm and Horwitz' gives only a rough
indication of (a'), which is not inconsistent with the
result (a')=0.016. Using the gap values 3.52kT, and
3.20kT, occupying 75% and 25%%uz of the Fermi surface,
as determined from the specific-heat measurements,
leads to the value (a')=0.006. However, this result
should also be regarded as only a rough indication of
the true value, since specific-heat measurements do not
determine a unique behavior of the energy gap at the
Fermi surface.

E. Thermodynamic Critical Field H,

The difference in entropy, AS (T), between the normal
and superconducting states was derived from the specific
heat, neglecting the nuclear contribution, through the
thermodynamic relation

DS(T) =S„(T) $, (T)=yT+—,'nT'-
(C,/T)d T, (17)

where the integration was carried out numerically.
The entropy diGerence at the transition temperature
was made to vanish in accordance with a second order
phase transition, which also was consistent with the
experimental error in smoothed values of C,. This
further supports the choice of values for y and o,.

The thermodynamic critical field H, (T) was then
deduced by numerical integration of the relation

IV. CONCLUSIONS

The value (382&10)'K for Op (calorimetric) found
in these measurements is higher than that arrived at
from previous calorimetric investigations and also is
in closer agreement with the value 399.3'K deduced
from elastic measurements. The error of &10'K is not
enough to account for the difference between the two
values; however, this error includes only the standard
deviation associated with random scatter of the data.
There is reason to believe the difference may be real
and not due entirely to systematic errors in Op (calori-
metric). The difference may be a result of a sudden
change in 8 at about 3'K or below, as in niobium, or
it may be due to a decrease of 80 with purity. Further
work is necessary to make any definite conclusions.

The low-temperature superconducting specific heat
cannot be explained by the BCS theory alone. Instead,
a modification which predicts two energy gaps, such as
the theory of Suhl et at. ," is necessary to explain the
data. The existence of a linear term down to t=0.12
in the superconducting specific heat places an upper
bound of about 0.10 for the smaller energy gap
26, (0)/kT„which is considerably less than the value
0.32 for niobium. "The linear term is about ten times
larger than that previously seen" in a less pure sample
of vanadium. The results also indicate that the larger
energy gap for this sample is slightly anisotropic.
Because of this anisotropy, the transition temperature
increases with increasing electronic mean free path and
approaches the intrinsic value T,p (5.414+0.010)'K. ——

H '(T) = (8~/V) AS(T)dT, (18) ACKNOWLEDGMENT
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