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Magnetic Resonance Molecular-Beam Spectra of Methane
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A detailed analysis of the hyper6ne Hamiltonian for the protons in CH4 is given using group-theoretical
techniques, a generalized concept of irreducible tensor operators being introduced. Experimental results
using the magnetic resonance molecular-beam technique are given and compared with the theoretical results.
The average spin-rotational constant for the protons was found to be (+)10.40%0.10 kc/sec, and the g
value of the rotational magnetic moment for the CH4 molecule was measured to be (+)0.3133~0.0002.
Neither sign was measured, but strong arguments are given that the signs in parentheses are the correct ones.
The proton in CHD3 was also investigated to give, with the CH4 results, the spin-rotational constant for
rotations perpendicular to a carbon-hydrogen band axis as (+)17.4&1.6 kc/sec and for rotations about the
axis as (—)3.6+3.2 kc/sec. A measurement of the quadrupole moment of a substituted deuteron was at-
tempted with inconclusive results.

I. INTRODUCTION

'HERE have been a, number of measurements on
the hyperfine interactions of protons in small,

simple molecules, in which a variety of techniques were
used to suit the molecule and the particular measure-
ment desired. The hydrogen molecule in particular has
been very successfully studied using high-resolution
magnetic-resonance molecular-beam techniques. ' The
moIecules HF ' and LiH' have been studied by both
electric- and magnetic-resonance molecular-beam tech-
niques, which in general have complemented each other.
The electric-resonance beam method has the advantage
that with it a beam of molecules can be selected in a
particular rotational angular-momentum state. The
more complicated molecules, H20 ' and NH3, ' have been
studied by maser and other microwave techniques,
where the resolution achieved on the rotational transi-
tions is high enough to resolve the small hyperfine terms.
The maser and electric molecular-beam resonance
methods, however, cannot be used on methane since it
lacks an electric dipole moment in its ground electronic
and vibrational state. Its small moment of inertia and
high vapor pressure at liquid-nitrogen temperatures,
however, make this an ideal molecule, second only to
H2, for study by magnetic-resonance molecular-beam
techniques, since a beam of molecules in only a very few
rotational states can be produced.

The major hyperfine interactions of the proton are
the magnetic dipole-dipole and the spin-rotational. A
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substituted deuteron has the quadrupole interaction as
well. The analysis of such interactions in NH3 has been
given in some detail, ' and it would seem logical that the
analysis for CH4 might closely follow it. However, in the
course of this study it was found that certain matrix
elements of the energy vanished, and in understanding
why, it was discovered that the operators in the Hamil-
tonian could be rearranged to display the full symmetry
of the problem. This simplified the calculations needed
for methane and gave a general method for attacking
all problems involving a set of symmetrically placed
identical nuclei. In particular, it simplifies the work in-
volved in finding the eigenvalues in ammonia over that
which has been published, and can be used to reduce
such interactions in asymmetrical molecules to one
term for each interaction —although neither of these two
applications will be discussed here. Posener has also
done work on the general problem of hyperfine inter-
actions in poIyatomic molecuIes, using the analysis of
NH3 as his guide. ' His work makes a nice complement
to the work outlined here.

The paper is divided into four major sections. The
hrst and largest part deals with the analysis and experi-
ments on the CH4 molecule which lead to a value for the
average spin-rotational constant and also to a value for
the electrostatic potential at the proton. The second
section is on the proton in CD3H, and gives a determi-
nation of the two independent spin-rotational constants
of the proton in methane. The third gives a rough value
for the quadrupole interaction of a deuteron in methane,
and the fourth gives the results of measurements on the
rotational magnetic moment of the methane molecule.

II. ANALYSIS OF THE CH4 SYSTEM

A. The Hamiltonian

Methane is a spherical-top molecule with the four
protons occupying the vertices of a tetrahedron and the
carbon nucleus at the center. If it is in its ground elec-
tronic and vibrational state and is placed. in a homo-
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geneous external magnetic field, the effective Hamil-
tonian, ignoring certain small terms, can be written as

where

&=Br+%r+%rr+&rv,

Hr = BJ' DJ—(4 (2)

is the energy associated with the rotation of the mole-
cule and consists of the ordinary rotational term plus a
term due to centrifugal distortions. ' J,' is a tensor of
rank 4 formed from the components of the angular-
momentum operator and is a scalar under the tetra-
hedral point group T~. This centrifugal term is much
larger than the hyperfine interactions, and for this
reason, as will be shown later, it simplifies the analysis
for the energy levels.

r r '/]
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INTERNAL COORDINATE SYSTEM I
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is the interaction of the four proton dipole moments

(p,), and the rotational magnetic moment (pq) with
the external magnetic field (H), ignoring the small
shielding of the field at the protons by the electrons. The
magnetic field used in the experiments was greater than
a kG, making these terms larger than the hyperfine
interactions, so that a high-field approximation is used.

(-d, -d,
H
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INTERNAL COORDINATE SYSTEM II

FIG. 1. Molecular coordinate systems for the protons in methane.

is the direct dipole-dipole interactions of the protons
with each other and is written here in spherical tensor
form. ' The I" are tensors of rank 2 which are formed
from the spin vectors I' and I', and the R" are tensors
of rank 2 formed from the unit vectors directed from
proton s to proton t.

gives the spin-rotational interaction using the original
sign convention. ' The vectors I, are the four proton spin
vectors and J is the orbital-angular-momentum vector.
The tensors C, are the spin-rotational tensors associated
with their respective nuclei. If we use the primed co-
ordinate system I (given in I'ig. 1) for the definition of
the body coordinates and consider proton 1 which lies
on the s' axis of symmetry, then it is evident that the
spin-rotational tensor Cr' has the form

c 0 0
0 c 0
0 0 cp

where c and cp are two independent constants, which in
principle can be calculated from the electronic wave
function of the molecule, but here will be treated as
empirical constants to be determined experimentally.

' K. T. Hecht, J. Mol. Spectr. 5, 355 (1960).' A. R. Edmunds, Angular Momentum in Quantum 3fechgnjgs
(Princeton University Press, Princeton, New Jersey, 1957),
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Although the hyperfine terms B»z and Hz& are set
down in the usual manner, they do not display all the
symmetry of the problem, Before going into this it is

Physically, c is proportional to the magnetic field per
unit of angular momentum generated at a proton by
rotations about an axis perpendicular to the carbon-
hydrogen bond axis, and cp is proportional to the mag-
netic Geld per unit of angular momentum generated at
the proton by rotations about the bond axis.

The unprimed body coordinate system II given in
I'ig. 1, where the protons occupy alternating octants of
the coordinate system, treats all the protons symmetri-
cally and hence is in general a better one to use. Trans-
forming the spin-rotational tensor for proton 1 gives

0 0 0 1 1
Cr ——c. 0 1 0 +-s,cs 1 0 —1, (7)

0 0 1 1 —1 0

where c,= s(2c +csj and cq ——c —cs. The other spin-
rotational tensors can then be obtained from Ct by
noticing the symmetries involved to give

C&= c&l+ scqe
where
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TABLE I. Tetrahedral irreducible representation of the proton
spin wave functions x(y,r; I,mr)

TABLE II. Irreducible representations of the rotational and
ground vibrational wave functions of methane.

I =2

Type AI

I =0
Type B 1

2

mI g(A I,ml)

2
1
0

—1
-2

PEP«n+nPnn+anpn+nanP'3
(1/V6) E PP+Pp + Pp +P P+ P P+P P 3
~~Eappp+Pnpp+PPap+PPpnl
PPPP
g(F2,i; mr)
~z E (pana —nanp) —(npaa —nnpn) g
(1/v'2) EPnPn -apaP3
—:E(ppp-Ppp ) -(p Pp- PP P) 3
~ E(aP«+arzPzI) - (Pn«+a«P) j
(»lv'2) E PP —P Pj
kE(PPP + PPP) - (P PP+PP P) 3
~z E(pnaa —anap) + (npan —anpa) g

(1/Q2) EPPaa —anPP j
:E(-ppp-ppp-)+(p-Pp-Pp-P) ~

x(K~)
IE(PnnP+nPPn) —(PP«+nnPP) 3
4 E(P«P+nPPn) —(Pap~+~P~P) j

useful to present the representation in which the
problem will be solved.

3. Wave Functions

I'rom these we can construct the four vectors
(10)

The point symmetry group of methane is T~. It can
be shown that the sixteen spin functions for the protons
contain the irreducible representations 5Ar+E+3Iis,
further it can be shown that the spin functions of sym-
metry type A» correspond to a total spin of 2, those of
symmetry type E to a total spin of 0, and those of sym-
metry type Ii 2 to a total spin of 1."

The wave functions X(v,i; I,mz) are shown explicitly
in Table I in terms of the simple product spin functions,
where rr, and P, refer to the spin-up and spin-down
states of proton s, respectively. The index y refers to the
symmetry type of the wave function, the index i to a
particular function of that symmetry type, I to the
total spin, and mI to the projection of the spin vector
on the external s axis.

The F2 or I=1 spin wave functions are exhibited in
a form which is isomorphic to the body coordinate axis
the in coordinate system II, that is, they transform as
components of a vector under the transformations of
the point group T~. To see this, consider the four unit
vectors directed toward the protons given by

Irreducible representations

A1+A 2

F1+F2
2E+F1+F2
A»+A 2+2F1+2F2
A1+A 2+2E+2F1+2F2
2E+3F»+3F2

Now we note that the original vectors r, transform
isomorphically to the spin functions rrPPP, PnPP, PPnP,
PPP4r, since both sets depend only on a single nuclear
coordinate in a one-to-one fashion. Hence if we make
the same transformation on these spin wave functions
as was made on the vectors r„we obtain the irreducible
representation for the mI = —1 wave functions as given
in the table. The wave functions for the other values of
mI are then found by successive operations of the ladder
operator I+.

It is instructive to look a little more into the form of
these spin functions X(y,i; I,rr4z). These wave functions
form an irreducible representation of the laboratory
system, which is assumed to have spherical symmetry,
as well as an irreducible representation of the molecular
point group. The laboratory system is described by the
usual I,mI representation and the point group by the
exactly analogous quantities p,i. However, in this
problem there is the physical restriction that for y=A»,
I= 2; for y=E, I=0; and for y=P, I= 1; and no other
y's and I's exist.

In a similar fashion one can give the rotational wave
functions of the molecule in the form p(y, i; I,mz, p),
where y andi have the meaning given above, J and mg
are the angular momentum and its magnetic quantum
nuznbers, respectively, and p refers to any additional
multiplicities not taken care of by the other quantities.
These functions have been constructed explicitly from
the symmetric top wave functions l JErrzz) by Jahn for'
J's up to 10."The irreducible point representations for
each J state are given in Table II up to J=S.

The total wave function + is formed out of sums of
products of the spin wave functions X(y,s; I, )rrasznd

g(y, j; J,rwz). The symmetry of this wave function is
restricted by the Pauli exclusion principle to go into
minus itself for an odd permutation of the protons; thus

TA&LE III, Irreducible representations of D~&&Drr and p)~g&.

r~, ———', P r, = [0,0,0],
r,~'= —,'[rr —rs+ rs —r4]= (2/K3) [1,0,0],
r„~'= -', [—rr+ rs+ rs —r4]= (2/&3) [0,1,0],
r,~'= —',[rr+ rs 13 r4] (2/V3) [0,0,1],

which form the obvious irreducible representation of the
group —as shown.

A1 A1 A2
A2 A2 A1
jv E jv
P1 P1 P2
P2 P2 P1

E
jV

E+A1+Ag
F1+F2
F1+F2

P1
p2

P1+P2
A1+E+F1+F2
A.+E+F1+F2

P2
P1

F1+F2
A 2+E+Pl+I 2

A1+E+F1+F2

"E.B.Wilson, J. Chem. Phys. 3, 276 (1935). "H. M. Jahn, Proc. Roy. Soc. (London) A168, 469 (1938).
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=Q b,~x(F2,i; mz)y(Frj; J,mg, p), (12)

%(J,mg, I=O; p)

=p a;;x(E,i)y(E,j;J,mz, p).

Because the Il2 spin functions and Iii orbital wave
functions can be defined to transform as polar and axial
vectors respectively, the second form is simply a dot
product and so b,;= (1/V3)8;;. Similarly the E wave
functions can be assumed to be defined such that
a;;= (1/V2)8;; with no loss in generality.

The states allowed for each J value are those of
A2, E, and Iii symmetry as given in Table II.

C. Syxnmetrization of the HyperQne Operators

A general term in the hyperfine Hamiltonian has the
form h= P, g,f„where the f, operate on the rotational
part of the wave function, the g, on the spin part, the
sum is over all the proton sites or pairs of sites and even
possibly larger groupings, and the nature of the products
will be clarified below. The symmetry of h has to be A i
(i.e., a scalar) since the energy can never be changed

by any of the transformations which bring the molecule
into itself. The operators f, and g„ontheotherhand, can
change into one another under an element of the group
and thus form representations of the group which are
usually reducible. By taking certain linear combinations
of the f, we can form an. irreducible representation of
the group. Call this representation for the f operators
«&, where t denotes a member of the set of operators of
symmetry type y. Then define a set of operators gp
which transform centragradiently to the «~, so that the
total operator can be rewritten in the form

h= 2 Z «'g~'. (13)

This process is exactly identical to the usual one of
putting operators into the irreducible representation of
the space or laboratory system with spherical sym-
metry as was done, for example, with the magnetic
dipole-dipole interaction in the first section. Usually the

0 must be of symmetry type A2. Hence if the spin
function is of symmetry type 0, and the orbital wave
function is of symmetry type P, we must have the open
product D )&D& contain D~'.

Using the reduction of the open products of the ir-
reducible representations with themselves as given in
Table III, the acceptable total wave functions are given

by the forms

4'(J,mJ, I=2,mz,' p)

=X(Ar, mr)y(A, ; J,mg, p),

4'(J,mg, I=1,mr, p)

operators f and g are also spherical tensors of some rank
with components f,' (q= —1 1) and the interaction
takes on the form g (—1)'f,'g, ' to make it a scalar
under rotations in the laboratory coordinates.

Now we see that this concept can be generalized so
that the quantities f~,&' form the components of a
tensor operation of symmetry p in the point group of
the molecular coordinate system and of symmetry / in
the continuous spherical group of the laboratory system,
and to form a scalar in both coordinate systems a dot
product has to be performed in both systems as given by

D. Selection Rules

The procedure of symmetrizing the operators has the
advantage of simplifying the calculation of matrix
elements. Consider the general matrix element

e*(J',mg', I',mr', p')f&'. g&'e(J, mg, I,mr, p)

=2 (—1) Z ~*(", ; J', .', p')
g, q s ~ 2

Xfg, »y(nj; J,mg, P)X*(P',i; I',mr')g, ,&'

XX(Pj; I,mr) (15)

The theorem on selection rules states that all matrix
elements of the form f*(n,i)O,&x(t3,j) are nonvanishing
only if the open product D XD&)&D& includes the unit
representation, or what is the same thing, if D &(D&
includes D&. And in the case of diagonal matrix elements
the condition becomes the more stringent one of re-
quiring D& to be included in the symmetric subgroup
LD $' of D XD . Thus the above general matrix ele-
ment will vanish unless the following are all simll-
tuneously satisfied:

(i) 1Y'XD'DD'

(ii) D'XD'QD',
(ui) D~ XD~DD+,

(iv) DeXDe&D',

where the first two are the more familiar vector addition
rules of the spherical group and the second two are the
equivalent statements in the molecular point group.
Note also that the way the spherical tensors are con-
structecl, we have the conditions m~'+q= mg and
mz' —q=mz. If the point-group components are also
carefully constructed, similar rules can be made to
apply, as well as all the other concepts of reduced
matrix elements.

f":g"—=2 2 ( 1)'f~,—"'g~, -p'.
t q

This concept of putting the operators into an irre-
ducible representation of both the laboratory and
molecular coordinate systems seems to have been missed
in the past, although it has been used in the construction
of the wave fumctioes. In fact, it must be possible to
apply this technique to any quantity which is a function
of both laboratory and internal coordinates.
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E. Evaluation of the Matrix Elements
of the CH4 Hamiltonian

We can now go ahead and evaluate the matrix ele-
ments of the Hamiltonian and obtain the energy levels
to first order for the I=2 and I=O states. To do this
we first note that in methane the total spin state of the
protons determines the symmetry type of the spin wave
functions and, through the Pauli exclusion principle,
the sylznnetry type of the orbital wave functions.
Hence only one of the above conditions need be con-
sidered. Also, reference will be made to the reduction of
the open products given in Table III.

The rotational energy term Hz= BP DJ&4 i—s a
simple operator of symmetry type 2 & and thus has non-
vanishing matrix elements only if D XD 'QD~', which
gives o.=n'. This is an obvious statement, since the
operator is diagonal in the total spin I and thus is
diagonal in all the related symmetry quantum numbers.
If it were not for the centrifugal distortion term, all the
energy levels for a given J would be degenerate and so
could easily be mixed by the hyperfine terms. But the
centrifugal-distortion splittings, calculated by Hecht
up to J= 12, are much larger than Hzzz and Hz~, so that
the symmetry quantum numbers (as well as the total
spin) are very good and a first-order perturba, tion cal-
culation on the hyperfine terms can be carried out.

The factors in Hzz ———P, z' p, H —pq H can be re-
written as

—g„pgHIg —
ggIJ,xHJz,

Sec. IIB.Thus we have

(19)

where g y 8 refer to the molecular point-group trans
formation properties of these vectors and not to a par-
ticular spatial component of the vectors.

Similarly we have

4

C"'=-,' P C,=c.l,
s=z

0 0 0

C,~'=-', cq 0 0 1- =—'c s,~&

0 1 0

0 0 1

C '=-'cd 0

1 0 0

0 1 0

0 0 = —',cd a,~'

0 0 0

Thus we can rewrite Hzv in the form

where g„=the nuclear g factor of the proton, gJ- ——the
rotational g factor, p~ ——a nuclear magneton, H= the
magnitude of the external field, I.=g,= Iz;=the
spatial s component of the total spin, J,= the spatial s
component of the molecular angular momentum. Again
these are simple A~ operators which are diagonal in the
representation given in Sec. IIB with eigenvalues

—g„p~Hmg —
ggp~Hm J .

The magnetic field used in this problem was around
1600 G, so that this term was also much larger than the
hyperfine terms Hzzz and Hz~. This also makes mg and
m~ good quantum numbers to first order.

The spin-rotational interaction

Hzv= —h Q I'C, J

is a good example of one of the general operators in the
last section, although it usually is not convenient to put
it into irreducible spherical-tensor form. Before evalu-

ating matrix elements we first have to put the quantities
I, and C, into their irreducible forms of the point group.
This is done very easily by noting that they both trans-
form isomorphically to the vectors rs considered in

2=X,Q, Z

The diagonal matrix elements of the first term can
now be evaluated in a conventional manner, since it is
at an operator of symmetry type A&, to give

—hc mlmJ-.

The second term can have nonvanishing diagonal
matrix elements only if $D O'QD~', and an inspection
of Table III shows that this is true only for n=E, F&,
and Ii2. Hence this operator makes no contribution to
the diagonal matrix elements of the I= 2 or symmetry-
type-AJ spin states, but it does have nonvanishing
diagonal matrix elements with the I=1 or symmetry-
type-F2 spin states. The I=O or E states need not be
considered, since all diagonal matrix elements of opera-
tors involving the proton spins must vanish for these
states.

Note that this operator can have nonvanishing
matrix elements between states of diferent symmetry,
and thus would mix them if it were not for the cen-
trifugal-distortion term preventing it.

Finally consider the direct dipole-dipole interaction
term given by

(23)



MAGNETI C RESONANCE MOLECULAR —BEAM SPECTRA

The irreducible forms for the operators I"and R" are
again easily formed by noting they transform iso-
morphically to the spin wave functions for mr=0
(i.e., ~~pp, npnp, nppn, etc.). Hence, their reduction
contains the symmetries A r+E+Iir, as shown in
Table II for these wave functions. Consider, however,
the tensor R"' which is associated with the Cartesian
tensor R,,."' in the body coordinates. This must be a
tensor completely symmetric under all elements of T~
and yet have a vanishing trace, since it is formed from
a sum of traceless tensors (R,,").The only tensor which
satisfies these two conditions simultaneously is the null

tensor. Another way to see that this tensor must vanish
is to note that it must transform isomorphically to an
orbital-angular-momentum wave function for J=2,
since it is a tensor of rank 2. An inspection of Table II
shows that no wave function for J= 2 has 3 & symmetry
and hence R" must vanish. Thus Hrrr can be rewritten
as

+ 2 2 ( 1)"I'n"—~' n" (-24)

We now see that this term must vanish for the I= 2

state, since it does not contain any operators of A&

symmetry. The diagonal matrix elements for the I=O
states also vanish, so this term makes a contribution
only to the I=1 states.

Thus, for the I=2 spin states, leaving out the rota-
tional energy terms, we have the eigenvalues

W(J,mq, I=2,mr) = —wgA'mr
p~g„Hmr —hc,mrm~. —(25)

Similarly for the I=0 states we have the eigenvalues

W(J,mg, I 0)= =rrvgJHmg-
The spin-1 energy levels are quite complicated to cal-

culate, since the contributions from the Fj spin-rota-
tional interaction term and the direct dipole-dipole
terms require explicit forms for the rotational wave
functions. Since these levels have not been clearly re-
solved in the experiments, they have not been calcu-
lated. However, the fact has been used that the dipole-
dipole interaction depends on m~' and so these levels
are not equally spaced in m&.

F. Transition Probabilities

The resonances of the total-spin-1 and -2 molecules
for a hmr ——&1 transition are centered at the Larmor
frequency of the protons in the external Geld and in
general overlap one another. The apparatus used in the
experiments did not have the resolution to clearly
resolve all the lines, and so a condition was found which
enhanced the spin-2 lines over the spin-1 lines, thus
enabling the simpler spectrum to be observed.

For equally spaced levels, the Majorana formula gives
the probability of going from level m to m' under the
inQuence of an oscillating magnetic Geld at the reso-
nance frequency. If we detect all changes in m with
equal sensitivity then all we need is the probability of
leaving m. From Ramsey, 'we have for the probability
of staying in level m, for weak rf fields, approximately

P —1—2t I(I+1)—mr'1 sin'(~2m), (26)

where (sin'(-,'n)) = the transition probability of a spin--,'
particle to flip under the inhuence of the rf Geld. The
total resonance signal for a spin state I is then propor-
tional to

(1 p, ,)—= ',I(I+1)-(2I+1) sin'(2~+) . (27)
mI=—l

The ratio of the I= 2 lines to the I= 1 lines at low rf
power levels is 5 if both can undergo multiple transi-
tions. The I=1 lines, however, are unequally spaced
because of the dipole-dipole interaction, which makes
this ratio even larger. Thus low rf levels enhance the
spin-2 resonance signal about an order of magnitude
over the spin-1 resonance signals.

The resonance frequencies for the spin-2 state are
given by v = v„+c,mz, where v„ is the Larmor frequency
of the protons. At liquid-nitrogen temperatures, only a
few J states in methane are populated, and so the in-
tensity of the signal for each value of mJ is given ap-
proximately by

5 8J2
s(v,+c.mr)= P N(I=2, I) exp —,(28)

J=[mJ/ pT

where e(I= 2,J) is the number of times the irreducible
representation A2 is given for that J value. An inspec-
tion of Table II shows that this quantity is 1 for
J=0,3,4 and 0 for J=1,2,5. The most striking feature
of this spectrum is that the intensities of the resonances
for m J= 1, 2, and 3 are all equal.

G. The Experiments at 78'K

The experiments with methane have few features dif-
ferent from those carried out previously on the new
molecular-beam apparatus at Harvard. "Methane was
introduced into the source chamber, which was cooled
to 78'K by liquid nitrogen, at a pressure of a few rnrn of
mercury and Rowed out through a pair of slits 1 mil
wide. The molecules were collimated into a beam by a
2-mil slit in the center of the homogeneous C magnet
and were ionized after passing through the detector slits
by an electron beam. The ions formed were passed into
a mass spectrometer and then focused onto the Grst
dynode of an electron multiplier. The output from the
multiplier was then sent into a lock-in amplifier whose
output was put into a recorder.

"(a) J. A. Leavitt, M. R. Baker, H. M. Nelson, and N. F.
Ramsey, Phys. Rev. 124, 1482 (1961); (b) H. M. Nelson, J. A.
Leavitt, M. R. Baker, and N. F. Ramsey, ibid. 122, 856 (1961).
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m~ in the range dJdmJ, equal

~f (2J+1) exp L BJ—'/kT)d JdzrzJ .

1 I & l 1 I l I & I I I

-60 -40 -20 0 20 40 60

-80 -40 -20 0 20 40 60

0.25 amp 8 F

FIG. 2. Proton
magnetic resonance
spectrum in methane
at 78'I and various
rf levels.

The factor A (2J+1) gives the multiplicity of the pos-
sible states of a given J and mJ for a spherical-top
molecule. Ignoring spin statistics and the restrictions
of the Pauli principle, this factor is simply 2J+1.

The direct dipole-dipole interaction and the tensor
part of the spin-rotational interaction act only on the
I= 1 state and will not shift the average position of the
resonance lines of this state from the value v= v„+c,zn~,
hence we shall assume that this the only dependence v

has on the quantum numbers. "
Making a formal change in variable from mJ- to v in

Eq. (26) and integrating over the allowed J' values, we
have the Gaussian line shape

—Io exp (30)
I I

-6O -4O -20 O 20 40 eo
(&-&o) Frequency in kc/sec

The beam of methane was detected at all the ion
fragments CH„+ for zz =0 to 4. The best signal-to- noise
ratio was found using the CH3+ ion at mass 15. The ion
CH4+ at mass 16 had oxygen background problems and
the other ions were produced in smaller quantities.

The rf coil in the center of the homogeneous C magnet
had 3 turns on it and was 3 in long. The C field was
usually run around 1600 G and so the resonance fre-
quency of the proton was about 7 Mc/sec. The optimum
rf current (modulated on-off at 17 cycles) for the
proton in HD at 78 K was found to be about 3 A and
produced a resolution of about 11 kc/sec in this mole-
cule. Since the heavier methane molecules move slower
at 78'K, the optimum rf for a single proton in CH4
should be around 1.3 A and the resolution should be
about 5 kc/sec.

Figure 2 shows the resonance curves for the proton
at rf currents of 0.25, 0.50, and 1.0 A, respectively. It is
clear that the spectrum becomes unresolved and more
complicated at higher rf levels where the I=1 lines
become more important, as was predicted in the last
section. Figure 3 shows half the resonance curve taken
at 0.20 A compared with the theoretical calculation for
the I=2 lines at 78'K, where Ic, I

was taken around
10.4 kc/sec.

A detailed analysis of several curves taken with rf
currents of 0.20 to 0.50 A has given the consistent value
for Ic. l

of 10.40&0.10 kc/sec.

H. Statistical Model

When the proton spectrum in CH4 is studied at room
temperature with a short rf coil, a single broad reso-
nance is observed. This curve can be described by the
following statistical model.

Let dE, the number of molecules in the state J and

instead of the error function which is obtained in the
linear-molecular case. '

Figure 4 shows a comparison between an experimental
curve taken at room temperature with a 4 in. rf coil,
and a theoretical curve for Ic, I

=10.5 kc/sec and an

I.6—

1

1.4+

I2 I

I.O

~ A

l.8 lc
l

.6—

—Experiment
0.20 amp R F in 5 coil

——--Theory with

ccs =
& I2cs+cz] =IO4 kc/sec

02

0—0 IO
I I I I

20 50 40 50
( &- &o) Frequency in kc/sec

FIG. 3. Comparison between a theoretical and experimental
curve for the proton resonance in methane with the beam source
chamber at 78'K and rf current about a factor of 5 below optimum
to enhance the I=2 transitions.

rs R. G. Gordon (J.Chem. Phys. 44, 1184 (1966}j, in analyzing
the room-temperature CH4 data of this work, included the tensor
part of the spin-rotational interaction and then concluded that the
interaction constant cq is small, in contradiction to the results dis-
cussed in Sec. IV. The identity of the four protons in CH4, which
was not properly taken into account in Gordon's calculation, leads
to an averaging of the c's among the diBerent protons and to a
consequent diminution of the apparent value of cg, so the limits
he set for c& are excessively narrow.

~4W. A. Nierenberg and N. F. Ramsey, Phys. Rev. 72, 1075
(&947).
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intrinsic line width of 25 kc/sec. The close agreement is
better than one would expect, since only J up to about
12 are excited, and in fact the disagreement near the
origin must be due to the low-J states, which make a
major contribution in this region.

Fitting the experimental curve with the theory gave
the value for ~c.

~
of 10.5&0.3 kc/sec, which is in very

good agreement with the resolved structure. This makes
applications of this statistical model to other spherical-
top molecules appear somewhat more reliable.

A better molecule to apply such a statistical model
to is CF4, which has a most probable J of about 27 at
room temperature. The Quorine resonance was run in
this molecule at room temperature and produced an
almost perfect Gaussian with a full width at half-height
of 356 kc/sec. Analysis of this curve gave a value of
5.8&1.0 kc/sec for ~c,F~ of the fluorine nuclei in CF4.

where

—U 2mm„1
o. = + -TrC„ I,

3mec gn&Ãeh 3
(31)

cr„=the shielding constant for the nucleus e.
V„=e'J'(p /r )dr = the electrostatic potential

energy at the nucleus e.
p„=the total charge distribution in the molecule

except for the nucleus e.
C„=the spin rotational tensor for the nucleus fs.

g„=the nuclear "g" factor for the nucleus e.
I = the moment of inertia tensor for the molecule.

m~= the mass of the proton.
m, = the mass of the electron.

c= the velocity of light.

This expression ignores corrections for zero-point vi-

brations and the Thomas precession, both of which

should be less than a few percent, and hence usually

less than the experimental errors involved.
If we assume that V„ for a given nucleus does not

change appreciably from one molecule to another, the
chemical shift can be related to the spin-rotational
constants as

2~my 1
5=o I'& —o„&'&~ —

t
TrC„II~'—TrC„'I~'$. (32)

g~mgS 3
"' N. F. Ramsey, Phys. Rev. 78, 699 (1950).
' R. Schwartz, Ph.D. thesis, Harvard University, 1952

(unpublished).
'r J. Pinkerton, Ph.D. thesis, Harvard Vniversity, 1961 (un-

published); C. H. Anderson, Ph.D. thesis, Harvard University,
1961(unpublished).

III. DETERMINATION OF THE SIGN
OF c, IN CH4

Ramsey's relationship between the spin-rotational
interaction and the shielding constant" was generalized
to polyatomic molecules by Schwartz. I' One of the more
convenient ways to express this relationship is'

I 0 g X/X f
I

i
I [

I
i

I
f

I
[

I j I

.s- Theoretical Curve

~x for [Co„[ ~ IO.5 kc/sec
x x x Experimental Points

.7—
x~

.6- X~
Xs,x

x~
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X
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X2- 'x
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~X~.l- " x-x XX x
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I" rx~
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.8—

5—

3—

FIG. 4. Experimental and statistical-model curves for the proton
in methane with the source temperature at 300'K.

Using the chemical shift of 4.20 ppm between H2 and
CHe, 's and CoHs= 112.85 kc/sec for the spin-rotational
constant of the proton in Hs,"we obtain for C„H' the
value +11.7 kc/sec. This is very close to the experi-
mental value of 10.40 kc/sec, the slight discrepancy
being due to a change in the potential U„between CH4
and H2 of 2.2 eV. If we took the negative value this
would imply an unlikely shift in U„of —35.5 eV. Thus
we have c,=+1 0. 40+ 01 Okc/sec and the additional
fact that the proton in CH4 lines in a potential 2.2 eV
lower than in H2.

B. The Hamiltonian, Eigenvalues, and
Transition Frequencies

The Hamiltonian for the protons is

s, r

~8 J. A. Pople, %'. G. Schnieder, and H. J. Bernstein, High-
Resolutiofs Nuclear Magnetic Resoftafsce (McGraw-Hill Publishing
Company, New York, 1959).

11' N. J. Harrick, R. G. Barnes, P. J. Bray, and N. F. Ramsey,
Phys. Rev. 90, 260 (1953),and N. F.Ramsey, ibid. 90, 232 (1953).
The value 112.85 kc/sec is the di8erence between 115.904 kc/sec
of the 6rst paper and 1.059 kc/sec of the second.

IV. PROTON IN CD3H

A. Introduction

Since the spectrum of CH4 gave only a measurement
of c„ it was necessary to investigate the proton in
CD3H to obtain independent information about the
constants c and cp. The analysis of the proton hyperhne
structure in this molecule is simpler than in CH4, since
there is only one proton and it lies on the axis of sym-
metry of a symmetric-top molecule. However, more
rotational states are excited, and the spectrum observed
is an envelope of a large number of lines which possesses
a periodic structure. The semistatistical nature of this
problem reduces the accuracy of the result even though
the resonance curves are much quieter because of a
small background problem.
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Since the first term is much larger than the next two
terms, a 6rst-order high-field perturbation calculation
can be used, giving for the first term the eigenvalues
—Ij,~gyIIm J.

The second term is the spin-rotational interaction,
where

9 kc/sec, and it usually spreads them less. Since the
resolution of the apparatus was only 5 kc/sec this inter-
action is never resolved, so it will be treated as a broad-
ening mechanism, though it might produce a slight
shifting as well. Thus, ignoring this last term, the transi-
tion frequencies of the proton are given by

Ca

C,'= 0
.0

0 0
c' 0
0 cp'.

v= vv+mz c~ +cg
J(J+1)

(36)

The eigenvalues for this term can be calculated using
where

the vector model or simply taken from Townes and
Schawlow" to give

Cd =CP —Ca .

C. A Semi-Statistical Model

—hmz mz c~ + (cp —c~ )J(J+1)
(35)

where E is the symmetric-top quantum number for the
projection of J on the axis of syinmetry.

The third term gives the dipole-dipole interaction be-
tween the proton and the three deuterons, and in general
should be treated using the techniques developed in the
last section. But using the distance of 1.79 A and the
magnetic moments of the proton and deuteron, it is
found this term can spread the lines by at most about

A qualitative idea of the shape of the spectrum may
be obtained from the following simple model. The
number of molecules in the state J, E in the range
dKd J for a given value of m J is given by

B,J(J+1)+'(B, B,)E'—
dE=Ad JdK exp (37)

kT

Making the change in variable from E to (v—v„)= v'

and integrating over all allowed J we have for each
value of m J the line shape

I(v', mg) =Ip exp — 1+ ——1
II

IzT B. i& ImzIc '

B, ) v' —mac ')
Lc& m&(v' —mac-') j"' 1+ —1

I

B, i m,c,' i
(38)

with the restriction that

p mJc~
0& (1

cg mJI

which comes from

0& (1.
J(J+1)

For mJ ——0, this analysis is not valid and what we have
is just a single broadened line at the Larmor frequency.

For c 'm~) 0, I(v', mz) has a singular point at
v'=m Jc„and trials o6, either to the right or left of this
point, depending on whether c ' and c~' have the same
or opposite signs, approximately as

Is exp( B,m j/IzT)—
I

v' —mac 'I'~'
(39)

The total resonance curve then is a single line at the
Larmor frequency plus a sum of the I(v')mz terms for
mJ —+1) +2) ' ' '

~

It will have broadened peaks at the points w'= mJc '

"C.H. Townes and A. L. Schawlow, Microwave SPectroscoPy
(Me@ra&-IIill Publishing Company, New York, 1955).

and the region between the central peak and the points
&c will be either relatively clear or filled in depending
on whether c ' and cd,

' have the same or opposite signs.

D. The Experiment

The experimental conditions for the proton resonance
in CD3H were similar to those for the CH4 run at 78'K,
except that the beam was detected by the CD3H+ ion
at mass 19.The gas, supplied by Merck Ltd. of Canada,
had a stated purity of 98% CDsH, and since no other
isotopic form of methane has an ion fragment at mass 19
the resonance curves were attributed only to CD3H.
The optimum rf current was found to be about 1 A;
however the shape of the resonance was found to be
relatively independent of rf power, in contrast to the
CH4 resonance.

One of the best curves is shown in Fig. 5. The most
notable feature is the appearance of regularly spaced
peaks approximately every 10 kc/sec giving c '= &10
kc/sec. Also, the central peak is not standing alone, so
it appears that c ' and c~' have opposite signs.

E. Discussion of the CDSH Results

To relate the spin-rotational tensors in two molecules
containing different isotopes, we note that these tensors
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are related to the strength of the magnetic field gen-
erated at a nucleus per unit of angular momentum,
whereas the fields are generated by the angular velocity
of the charges. Thus the product of the spin-rotational
tensor times the moment-of-inertia tensor (taken in
that order) is an invarient tensor under isotope charges,
as can also be seen by the expression in Townes and
Schalow. '0 This is true only if corrections for vibrations
and stretching are ignored. Therefore, the constants
c ' and cp' for the CD3H molecule are given in terms of
the spin-rotational constants for the CH4 molecule, as
defined in the first section, by

c '=c /1.6,
cp'= cp/2. 0.

Using these relationships, the measured value for
c~= s(2c~+cp)=+10.40 kc/sec, and the observation
that c„'&10kc/sec, we find that either

or
(a) cp' ———10.4 kc/sec for c '=+10.0 kc/sec

(b) cq'=+41.6 kc/sec for c '= —10.0 kc/sec.

Both are consistent with the experimental observation
that c ' and c~' have opposite signs. Statistical-model
calculations were made for these two cases and gave
curves which favored the 6rst possibility but were not
conclusive.

A calculation for the nuclear framework of positive
charges gives a value of +3.7 kc/sec for cp. Any shield-

ing by the electrons would tend to reduce this quantity,
and so it should be a reasonable upper limit. Notice that
the first possibility above implies cp ———0.4 kc/sec, a
very reasonable value, whereas the second gives
cp'=+31.6 kc/sec, which is highly unlikely.

A detailed calculation of all the lines in the region
between 15 and 35 kc/sec for

i '= mgL (10.0—10.4K')/J (7+1)7

gave two groups of lines, the first centered at 18 kc/sec
and the second at 27 kc/sec. The average of ten experi-
mental curves gave peaks at 19.4&0.1 kc/sec and
29.8&0.2 kc/sec. Thus a value for c ' of ~L(19.42/18)
+ (29.77/27)710= 10.9 kc/sec is a better value for this
constant. Using this value for c ' with an uncertainty of
&1.0 kc/sec, we now find that the components of the
CH4 spin-rotational tensor are

c = 17.4&1.6 kc/sec,

cp = —3.6&3.2 kc/sec.

It should be pointed out that although the statistical-
model comparison gives some weight to the physical
argument outlined above, we really have no clear experi-
mental evidence which explicitly rules out the second
possibility for the sign of c, which gives for the com-
ponents of the CH4 spin-rotational tensor the values

c = —17.4&1.6 kc/sec,

-60 -40 -20 0 20
(p-y ) in kc/sec0

40 60

FIG. 5. Proton magnetic resonance spectrum in CHD3 at 78'K.

(40)

where the I„' are components of the tensor of rank 2

formed from the spin vestor of nucleus s, and q„' are
the components of the electric field gradient at nucleus
s. To put this interaction into an irreducible form of the
molecular point group we need only note that the above
tensors depend only on the single nuclear coordinate s
and hence are isomorphic to the vectors r, directed to
the nuclei, which we have shown can be put into the

cp = +66.0%3.2 kc/sec.

V. THE DEUTERON'S QUADRUPOLE
INTERACTION IN METHANE

A. CD4

The dueteron resonance in CD4 was run in the hope
of measuring the quadrupole coupling constant of a
deuteron in methane.

Since the deuteron has a much smaller magnetic
moment then the proton, higher rf currents are needed
to induce transitions. the 3-in. coil used in the proton
measurements, however, would overheat with the
higher currents to such a degree that it would outgas
enough to scatter the beam. Thus the shorter 4-in. coil
which was water-cooled had to be used, resulting in an
intrinsic resolution of about 20 kc/sec for a CD4 beam
at 78'K and 30 kc/sec for the beam at room
temperature.

Unfortunately, what was observed at both tempera-
tures was a single resonance line only slightly broader
than the intrinsic widths. And the slight amount of
broadening could be accounted for by the spin-rota-
tional interaction, this interaction being smaller in CD4
because of a larger moment of inertia than in CH4 and
the smaller magnetic moment of the deuteron.

This single narrow line can be explained by consider-

ing the quadrupole interaction, which can be written in

spherical tensor form as
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forms A&+Fs. The scalar or A&-symmetry quadrupole
interaction must vanish for reasons identical to the ones
given for the scalar dipole-dipole interaction, and so the
quadrupole interaction has only F2 symmetry. The
diagonal matrix elements of this term vanish for the
spin states of symmetry type A& and E, and are in
general nonvanishing for the Fj- and J &-symmetry spin
states. (The spin states CD4 can be shown to have the
reduction 15Ar+6E+3Fr+15Fs.) Thus it is possible
that the type-F states are spread out so much that they
are Dot observed, while the type-A~ and -8 states,
which show no quadrupole interaction, are broadened
only slightly by the spin-rotational interaction.

This difference can be enhanced even more by the
fact that the sensitivity for a 3m=&1 transition was
slightly less than optimum for the apparatus, because
of the small magnetic moment of the deuteron. Thus
multiple transitions would be detected with greater
sensitivity, and these would occur mainly for the A & and
E spin states and all resonances near the Larmor fre-
quency. This type of distortion has been seen before. "'
Because of these difficulties, no definite conclusion about
the quadrupole coupling constants for a deuteron in
methane could be obtained with CD4.

It might be assumed that the same behavior would
also occur in all spherical-top molecules, in particular a
molecule like CCP'4. But in CD4 the centrifugal dis-
tortion term is larger than the quadrupole coupling
constant for all J, whereas in CCP'4 the centrifugal dis-
tortion energies are probably smaller than the quad-
rupole coupling terms, which are typically tens of mega-
cycles. Thus in CCP'4 the symmetry numbers are no
longer good quantum numbers because the quadrupole
Hamiltonian will mix states of symmetry A and E with
the Ii states.

B. The Deuteron in CH3D

Because of the failure of CD4 to yield any definite in-
formation about the quadrupole coupling constant, the
deuteron in CH3D was investigated. This molecule
should have been ideal because of the relatively simple
analysis for a single particle on an axis of symmetry,
but experimental difficulties made its deuteron reso-
nance very noisy. First there was a large background
problem at the masses 17 (CHsD+) and 16 (CHsD+)
due to OH+ and 0+, and there was a relatively small

signal at mass 15 (CHs+ and CHD+). Another difliculty
was the fact that the deuteron has a small magnetic
moment compared to the three protons and so the large
defection fields, necessary to deQect the deuteron, have
their imperfections or aberrations magni6ed by the
protons. In spite of these difhculties a noisy resonance
was observed which spanned about 150 kc/sec.

The maximum deviations from the Larmor frequency
vz is given by Ass eqQ. Using the value for the maximum
extent of the resonance curve of &75 kc/sec gives

eqQ—100 kc/sec. This seems quite small for the quad-
rupole interaction of the deuteron compared with its
value in other molecules.

VI. THE CH4 ROTATIONAL
MAGNETIC MOMENT

When considering the general Hamiltonian for CH4
in Sec. II there was the term —yq 8 which gives the
interaction of the rotational magnetic moment pJ with
the external field. An rf field at the Larmor frequency
p, gq /h will induce AmJ transitions which could be de-
tected by the apparatus if DmJgJ was about 1 nm. The
detection of small rotational magnetic moments by
using multiple-quantum transitions has been reported
previously. "

A search with the ~-in. rf coil gave a resonance which
corresponds to a g of about 0.31 nm and so transitions
of Am J&3 must have occurred. The line was not strong
and only slightly broader than the intrinsic linewidth
of the rf coil. A number of runs calibrated against the
deuteron in Ds gave ~gq~ =0.3133+0.0002.

There have been microwave Zeeman measurements of
the component of the g tensor along the axis of sym-
metry of the molecules H-C= C-CH3 and D-C= C-CH3
giving the values [ g„~ = 0,298&0.006 and

~ g„~
=0.31+0.01, respectively, "which are consistent with
the above measurement for CH4. Weltner23 pointed out
this correspondence sometime ago and using a compari-
son with the susceptibility measurements obtained the
reasonable result that the sign of the g value is probably
positive.

~' R. A. Brooks, C. H. Anderson, and N. F. Ramsey, Phys. Rev,
Letters 10, 441 (1963)."J.T. Cox, P. B. Peyton, Jr., and W. Gordy, Phys. Rev. 91,
A22 (1953);J. T. Cox and W. Gordy, ibid. 101, 1298 (1955).

ss W. Wettner, Jr., J. Chem. Phys. 24, 918 (1956); 28, 477
(1958).


