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Connection between BBP and VPP Vertices in the Quark Model
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It is shown that in the quark model it is possible to express the N» X2t- vertex and the p7rm vertex in
terms of the axial-vector quark-pion coupling constant. By expressing then this constant in terms of the
NNm- coupling constant f, results in fair agreement with the experimental data are obtained for the above
vertices. A detailed comparison of this calculation with that of Gursey, Pais, and Radicati is made, illustrat-
ing the diRerent points of view and the different assumptions of the two procedures.

1. INTRODUCTION

''N previous papers we have applied the nonrela-
tivistic quark model' to the calculation of some

electromagnetic processes. ' ' In particular, in Ref. 2

the rates of the radiative decays of the vector mesons
have been calculated, and good agreement with experi-
ment has been obtained.

The purpose of this paper, which we hope to expand
in the future is to apply the same model and the same
methods to the calculation of some strong-interaction
vertices: more precisely, to connect the &'ItXx, iY&*~Vx,

and pew vertices.
It should be remarked that this has already been

discussed by Gursey, Pais, and Radicati in one of the
first papers on SU6, but, as will be apparent from the
following, our point of view is substantially different
from that of the authors mentioned above. Also, the
results will be somewhat diferent, in spite of the
apparent similarity.

2. STATEMENT OF THE PROBLEM

In this paper we shall confine ourselves to the three
vertices ()ViVtr, cV*Etr, and ptrtr) listed above, purely for
the sake of simplicity, although, of course, the same
arguments can be used to connect all the BBP and
UP'P vertices, where 8 is a baryon, P is a pseudoscalar
meson, and V is a vector meson. Briefly, our argument
is as follows.

Consider the quark —quark —pseudoscalar-meson inter-
action. This has the form, in the static limit, g eqp
~ VP &. The part of this interaction which refers to the
pions is, more explicitly,

H, =P, v2(f, /p)(, o; V4t(x;)+—H.c..), (1)

where the sum refers to the quarks which are present,
transforms a "p" quark into an "tt" quark, tr, is the

spin of the t'th quark, &2f, is the qyr constant to be
determined, and p, (inserted to make f, dimensionless)
is a mass which is chosen to have the numerical value

of the pion mass. We have omitted, for simplicity, the
neutral-pion part.

On the other hand, the conventional pion-nucleon
interaction is

FI~. 42(f/IJ——,)r rr Vxc t(X.)+H.c. , (2)

where f'/4tr=0 08.
Now, if the nucleon is an object composed of three

quarks with a wave function having the structure
described in Ref. 1, the pion-nucleon vertex can be
expressed in terms of the pion-quark vertex.

Neglecting the difference between the position xi of
the ith quark in the nucleon and the position X of the
center of mass of the nucleon, one obtains in this way

(3)

3. THE N*N~ VERTEX

The calculation of the matrix element for the lV33*—&

3+tr transition is straightforwa, rd. It is of course con-
venient to calculate the matrix element for the decay
Sag~++ ~ p+tr+ with the %33* and p having values of
the Z component of the spin, respectively 2 and ~.

This matrix element is

where H/~ and tV„are the proton- and neutron-spin—
unitary-spin. wave functions already given in Ref. 1.
Because the matrix element in (3) is simply 5/3 we
obtain

5f&

a relation expressing the pseudovector quark-pion
coupling constant in terms of the known pion-nucleon
coupling constant.

We shall now use the pion interaction (1) with f,
determined in the way shown above to calculate the
/*Em vertex and the pox vertex.

' G. Morpurgo, Physics 2, 95 (1965).' C. Becchi and G. Morpurgo, Phys. Rev. 140, B687 (1965).' C. Becchi and G. Morpurgo, Phys. Letters 17, 352 (1965).
4 F. Gursey, A. Pais, and L. A. Radicati, Phys. Rev. Letters 13,

415 (1964).

where we have again neglected the difference between
the position X of the center of mass and the position
x; of the ith quark. .

We obtain (noting that nrntnaptp~p3 is the spin—
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unitary-spin wave function of the iV*++t and using
again the spin —unitary-spin wave function of the
proton given in Ref. 1):

6' f, p,—'p„
BRtt=-

+18 tt g(2(d, )
(6)

4. THE yern VERTEX

Our calculation of the pew decay will be, admittedly,
much more open to criticism than that of the E33 —+

lV+»r decay presented above. We are well aware of
this; but to be as clear as possible we criticize the weak
points of the calculation at the end, and proceed first
ignoring these points.

The idea is the following. Equation (1) gives us the
amplitude for a quark to flip its spin and emit a pion;
now the transition p —+»r+»r is precisely a transition
between a triplet qq state (p) into a singlet qq state (»r)

plus a pion.
What we shall do will be to use the static amplitude

(1) Lwhere f, is given by Eq. (4)j to calculate this
transition. We shall 6x our attention on the decay
p' —+»r++»r .

It is appropriate to list the wave functions of the
intervening particles, using the same (obvious) no-
tation of Ref. 2. %'e have

pt'= -', v2 (nrn-, —n,n») f(r),
»r+(p) =-,'%2(nrps —ptns) f(r) expiy X

»r (p) = sV2(nrP» —n—sar) f(r) expiy. X.

The wave functions above describe, respectively, a, p'
with spin up (in the direction of the Z axis) and a»r+
and a»r with momentum y; f(r) is the internal wave
function, which we have assumed to be the same for the
vector and pseudoscalar mesons; n, , p; and n;, p; are
the spin wave functions of the quark and antiquark,
respectively.

The total matrix element of the transition for decay
' In the tables by Rosenfeld et ot. LRev. Mod. Phys. 36, 977

(1964)j, a value of 125 MeV is reported for the width of the IVss*.
We are not entirely clear how such a large value is obtained. The
fitting procedure briefly described in Ref. 10 of a paper by Secchi,
Eberle, and Morpurgo LPhys. Rev. 136, II808 (1964)j leads to
~100 MeV.

where p and te~ are the pion momentum and energy.
From (6) the total decay ra, te of the Ess* is calculated
immediately as

4 f»' M„48 f' p'M~
Rate(A „* X+~) =— Ps —=———,(7)

3m p,
' 3l* 25 4m- p,

' M*

where M„ is the proton mass and M* is the Ã33* mass.
Ke get for the width of the E33* resonance 80 MeV,
to be compared with its experimental value of 100
MeV. ' In Ref. 4 the same result is obtained apart from
the substitution of M„—' with 3fpp ', where 3Ipp is the
central baryon mass.

of a p into»r+( —y)+»r (y) consists of two additive
contributions: (a) The ps emits a»r with momentum y
and transforms into a»r+ with momentum —y; (b) The
p emits a x+ with momentum —y and transforms into
a m with momentum p. Because the final state is the
same, the two matrix elements (a) and (b) must be
added.

Noting also that the amplitude for emission of a pion
by a quark or by an antiquark are the same, we obtain
for the matrix element for the transition pst —+»r+( —y)
+»r (y) the expression

g' 9 (Mp 'f'—=—XS/
4»r 25 ~ tt 4»r

(12)

Here a very serious ambiguity manifests itself. How
must we take the nonrelativistic limit of Eq. (10)?
Should we consider nonrelativistic a situation in which
the mass of the p is taken to be 280 MeU, twice the
pion mass, or instead, a situation in which the mass of
the p has as its real value 750 MeV, and we imagine
the mass of the pion increased to 375 MeVP

' The procedure which we follow is the same as that used in
Ref. 2; it amounts to neglecting the mass dependence of the vertex
function. However, the ambiguities in the present case, as will be
explained later in detail, are much larger than for the case of the
V —+ P+y decays treated in Ref. 2.

7 J. Sakurai, Proceedirlgs of the VarerIna School of Physics
(Academic Press Inc. , New York, 1962).R. H. Dalitz, Ann. Rev.
Nucl. Sci. 13, 37j. (1963). The p ~ 27r decay rate expressed in
terms of the g appearing in Kq. (10) is —,'(g'/kr) (p'/3II, '), leading
to a value g'/kr =2. The g appearing in Ref. 4 is defined as our g
divided by 2. Hence the value of gs/4s- used in Ref. 4 is, correctly,
1

4f» p ip» 1
BR——

V2 Q(2te~)

At this point we compare' this matrix element with
the relativistic matrix element for the p~ 2m decay
taken in the nonrelativistic limit. The relativistic
matrix element (written in the rest system of the p) is

OR&"'& = 2gr. y/(SM prey')'t', (10)

where a is the polarization unit vector of the p. It is
known" that the width of the p is correctly obtained if
g in (10) is chosen to be

g'/4»r = 2.

Writing (10) for a p' with spin up, we have

2g (p. ip.)—5Rt'""=
v2 (SMpre„')'"

Putting both in (9) and in (10) te„= rsM„and equating
expressions (9) and (10), we have

g = 242 f»M p/tJ, .

Squaring and expressing the result in terms of the pion-
nucleon constant f instead of f„we have
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Note that, in spite of the fact that in Eq. (12) only
the ratio M,/p appears, these two cases give different
values for g because the value of g in Eq. (11) is fixed;
it, is the value (140 MeV) which appears in the non-
relativistic limit of the pion-nucleon interaction. Note
also that we might even be willing to consider a third
form of nonrelativistic limit, one in which for instance
one "pion" has mass M„and the other has mass zero.
However, this last "nonrelativistic limit" has little to
do with our process.

In short, the result is ambiguous. We shall comment
later on how we plan in the future to improve the theory
in order to avoid this kind of ambiguity. (Note, by
the way, that for the V —+ P+y decays considered in
Ref. 2 the situation is much better because the matrix
element is independent of My in the nonrela, tivistic
limit. ) But we emphasize, after these critical remarks,
an important point: The order of magmtude obtained

for g'/4~ is perfectly reasonable
In fact, if we insert in Eq. (12) M, =2@, we get

g'/4s. —1, while if we insert the real value of M,—5.5p,
we get g'/4ir —7.5. The correct value of g'/4ir=2 is in
between the two values obtained.

S. COMPARISON WITH THE POINT OF VIEW
OF GURSEY) PAIS, AND RADICATI

The procedure used in Ref. 4 to connect the lVEm
and pox vertices is, as we have said, substantially
different from the method used here.

Let us try (in order to show this difference) to sum-
marize the main arguments of Ref. 4. It is erst of all
stated that it is the meson SU6 tensor defined for
momentum zero of the mesons as

M~~=b, ~Pge+(e e) ~Vga (13)

(where P and V are, respectively, the pseudoscalar and
vector mesons) that must intervene as a basic object
in the baryon-baryon meson interaction. However, for
odd-parity mesons, the tensor M I' cannot be coupled
in the static approximation to the baryons, and it is
argued in Ref. 8 that the relativistic completion of Eq.
(13), which is the object which must be coupled to the
baryons for odd-parity mesons, has the form

X &(g)=i[(e q), /goo]P~ +b, eoV~e. (14)

Here we use the notation of Ref. 8, where in particular
happ is the central mass of the mesons. We do not repro-
duce the arguments of Ref. 8 but we only note, because
this is important for the following discussion, that the
fundamental assumption of Refs. 4 and 8 is that Ã &

must be coupled, globally, to the baryons. This assump-
tion establishes the equality between, on the one hand,
the axial-vector coupling constant f~ of the baryon
tensor to the pseudoscalar part of the meson tensor
and, on the other hand, the vector coupling constant

8 We shall use also the arguments and the notation of M. A. H.
Beg and A. Pais, Phys. Rev. 133, 81514 (1965);138, 8692 (1965).

f'= (5/3)f~. (16)

Now the second important assumption of Ref. 4 is
tha, t the vector coupling of the p to the isospin current
is universal. Writing the interaction

this universality implies g
= 2fi, and therefore, on

account of Eq. (16),
g=2X5f'

At this point note that

f'/I «=f/I

where p is the pion mass and f'/4vr=0 Og There. for. e,

g= 2X 5 (~oo/~)f=6f

if we take happ
—Sp,. It follows that

g'/4m=36 f'/4-7r=2 9, .

(19)

(20)

in reasonable agreement with the experimental data.
Note that in the last step we have deviated from Ref.
4, where one transforms the pseudovector constant f'
into the pseudoscalar constant gJ ~. Note also that, in
spite of the agreement with experiment, there are some
points which are not entirely clear in the above calcu-
lation connected with the value of central mass happ.

But it is not on these which we want to comment.
The point which we want to make is instead the

following: It is obvious from the reproduction of the
results of Gursey, Pais, and Radicati given above that
there are two assumptions underlying such a calcu-
lation:

(a) The V and P mesons are put together in a tensor
which interacts with the baryons globally; that is, the
indices of E ~ are saturated with those of the baryons.

(b) The coupling of vector mesons to the isotopic-
spin current is "universal. "

Unfortunately neither (a) nor (b) is an assumption
having a well-defined and clear meaning. As far as (a) is
concerned, the prescription used to construct the inter-
action is based on an invariance requirement which
cannot be shared by the free Lagrangian or by the total
S matrix. The meaning of requiring this invariance is
obscure. As far as (b) is concerned, the difficulties in

of the baryon tensor fv to the vector part of the nieson
tensor;

fr=fr (15)

On writing explicitly the p' and m' interaction with
protons in the static limit, one obtains in Refs. 4 and 8

fi'p&4pP4'+ (5/3)(f~/IJ«)p&4' V7r',

and, because of Eq. (15) defining f' as (5/3) f~, one gets
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defining a universal coupling of vector particles with
nonvanishing mass are well known.

On the other hand, in the quark model we do not
have to make assumptions of the above kind. (This is
the point we want to emphasize; this short reproduction
of Ref. 4 has been inserted in order to be able to clarify
this point as much as possible. ) No universality of the
coupling of vector mesons is postulated; instead, it is
the quark —quark —pseudoscalar-meson axial-vector in-
teraction which is, as we have seen, responsible in our
scheme for the p —+ 2m decay. Also, we do not need
special prescriptions for constructing the interactions.
Once the static quark-quark pion interaction is written
down in the only possible way, everything becomes auto-
matic.

6. FINAL REMARKS AND A
LIST OF PROBLEMS

The calculation which we have performed should be
considerably improved, particularly for the p —+ 2+
decay.

There are clearly three aspects of our calculation
which are in need of improvement:

(a) We have dealt with the two pions in the p —+ 2m.

decay in a rather asymmetric way, treating one pion
as a quantum of a field, the other as composite particle
(q-q in a singlet state).

(b) Although the pions from the p decay move
relativistically, we have used wave functions for them
which can be correct only for pions moving slowly.
(Note: we are not speaking of the internal dynamics;
we are speaking of the motion of the pion as a whole. )

(c) Also the interaction should be extended rela. -

tivistically, and it should in addition be investigated
whether this extension is univocal.

The points (b) and (c) are related. It is in fact also
possible to write down a wave function describing a
bound state of two particles with total momentum E'

and total energy E in the case in which P/E is not
substantially smaller than 1, that is, in the case in
which the motion of this bound object is relativistic.
Indeed, to obtain this wave function we need essentially
to perform a kinematical transformation on the rest
spinors a and 8 appearing in Eq. (8); that is, we must
replace these rest spinors with relativistic spinors each
satisfying a Dirac equation with momentum P/2,
energy E/2, and mass m/2, where m is the mass of the
bound object and not of the quark. One is therefore
naturally led to what is usually called a Bargmann-
Wigner description.

%hat is not entirely clear is how to transform the
interaction (originally written in terms of quark oper-
ators satisfying a Dirac equation with mass iV) in such
a way as to exhibit how it has to operate on these
bound spinors satisfying a Dirac equation with mass m. '

' What is required here is a kind of Furry transformation, or
more precisely, a mixture of a Furry transformation and a trans-

Also, an additional independent problem is r as
stated under (c)] whether the relativistic extension
of the interaction is univocal. "

Let us finally discuss briefly the point (a) mentioned
above. Since we introduce in our Hamiltonian both the
pion and the quark variables explicitly, and since we
describe the pion aggregate both as a field and as a
q-q aggregate, a consistency condition is necessary.
This condition must express the fact that if one de-
scribes the pion as an independent particle or as a q-g
composite particle one must obtain the same results.
We conjecture that this condition is a set of restrictions
on the internal wave function of the pion; more pre-
cisely, it relates the coupling constant to the internal
wave function of the pion. Indeed, the requirement that
the amplitude for a bare pion to become a composite
pion must be 1 just leads, in the first order in the
interaction, to a relation of the above kind, and our
conjecture is that this result is more general.

If this is so, our argument is then that, insofar as
our calculation does not depend on this internal wave
function (this means: insofar as we may neglect the
mass dependence of the vertex coupling constants) our
results should not be affected by ambiguities of this
kind.

It should be clear that, as its title indicates, the
discussion of this last section is very tentative: Essen-
tially we have only posed problems" and indicated a
program.

We hope to be able to come back to these problems.
The purpose of this paper has been only that of showing
that even with a nonrelativistic calculation it is possible
and straightforward in the quark model, by expressing
the X*Ãm and pm+ vertices exclusively in terms of the
axial-vector quark-pion coupling constant and deter-
mining this constant through the EXx vertex, to
obtain results in reasonable agreement with experi-
ment.

formation to the center-of-mass and relative coordinates, An
attempt in a related, but somewhat different direction, has been
made by Tavkhelidze in Proceedings of the Sem&sar on Eternentury
Particles end High Energy Physics, Trieste, l965 (International
Atomic Energy Agency, Vienna, 1965).

"What we mean by this can be made clear by considering the
4 ~X+K decay. Here the kinematics is clearly nonrelativistic.
Now we could easily repeat for this case, as stated at the beginning,
our nonrelativistic calculation for this process, assuming that we
know the coupling constant of the interaction q; eg 3 &E (i = 1, 2) .
The relativistic extension of this interaction is q;y5y„F38„K. But
the question is now: Will, in a correct relativistic calculation of
the 4 —+%+K decay (which is, as we have said, apparently a
nonrelativistic process), only the coupling constant of this y5y„
interaction intervene, or can there be an independent contri-
bution from the q;y5g3K interaction, a contribution having the
same order of magnitude?

"Another problem which we do not consider in this paper is
the following: What is the importance, in the binding of quarks,
of the forces among quarks due to pion exchange? From the small
value of the coupling constant f, and from the fact that the pion
force is strongly spin-dependent, it would superficially seem that
the forces due to pions are insignificant for binding quarks to-
gether; but this is at the moment an entirely open question, also
in view of the fact that at distances of the order m~ ' exchange of
more than one pion can be important.


